The Control Algorithm and Experimentation of Coaxial Rotor Aircraft Trajectory Tracking Based on Backstepping Sliding Mode

Xu, Jiulong and Hao, Yongping and Wang, Junjie and Li, Lun (2021) The Control Algorithm and Experimentation of Coaxial Rotor Aircraft Trajectory Tracking Based on Backstepping Sliding Mode. Aerospace, 8 (11). p. 337. ISSN 2226-4310

[thumbnail of aerospace-08-00337-v2.pdf] Text
aerospace-08-00337-v2.pdf - Published Version

Download (3MB)

Abstract

In view of the uncertainty of model parameters, the influence of external disturbances and sensor noise on the flight of coaxial rotor aircraft during autonomous flight, a robust backstepping sliding mode control algorithm for the position and attitude feedback control system is studied to solve the trajectory tracking problem of an aircraft in the case of unknown external interference. In this study, a non-linear dynamic model based on a disturbed coaxial rotor aircraft was established for an unknown flight. Then, a non-linear robust backstepping sliding mode controller was designed, which was divided into two sub-controllers: the attitude controller and the position controller of the coaxial rotor aircraft. In the controller, virtual control was introduced to construct the Lyapunov function to ensure the stability of each subsystem. The effectiveness of the proposed controller was verified through numerical simulation. Finally, the effectiveness of the backstepping sliding mode control algorithm was verified by flight experiments.

Item Type: Article
Subjects: Research Scholar Guardian > Engineering
Depositing User: Unnamed user with email support@scholarguardian.com
Date Deposited: 23 Mar 2023 09:19
Last Modified: 29 Mar 2024 05:42
URI: http://science.sdpublishers.org/id/eprint/361

Actions (login required)

View Item
View Item