
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: horta@uaq.mx; 
 
 
 

British Journal of Applied Science & Technology 
13(3): 1-14, 2016, Article no.BJAST.22578 

ISSN: 2231-0843, NLM ID: 101664541 
 

SCIENCEDOMAIN international 
            www.sciencedomain.org 

 

 

Fluid-Structure Interaction and Aeroelastic Balance  
on the Analysis of a Tall Building with  

Irregular Geometry 
   

J. M. Horta-Rangel 1*, J. P. Lara-López 1, J. G. Valdés-Vázquez 2  
and I. Arreola-Sifuentes 3 

 

1Department of Graduate Engineering, Universidad Autonoma de Queretaro, Cerro de las Campanas 
s/n Querétaro, Qro. C. P. 76010, Mexico. 

2Department of Civil Engineering, Universidad de Guanajuato, Ave. Juárez 77 Guanajuato,  
Gto. C. P. 36000, Mexico. 

3Design Lab Constructions, Laguna Norte 236, Torreon, Coah. C. P. 27000, Mexico. 
 

Authors’ contributions 
 

This work was carried out in collaboration between all authors. Author JMHR designed the study, 
managed the scope of numerical and experimental analysis, revised the manuscript. Author JPLL 

conducted and realized the numerical calculations as well the experimental tests, wrote the first draft 
of the manuscript and managed literature searches. Author JGVV conducted the numerical tests on 

Dines+Gid and revised the manuscript. Author IAS conducted the experimental test on wind tunel. All 
authors read and approved the final manuscript. 

 
Article Information 

 
DOI: 10.9734/BJAST/2016/22578 

Editor(s): 
(1) Jakub Kostecki, Department of Civil and Environmental Engineering, University of Zielona Góra, 

 Poland. 
Reviewers: 

(1) Fuad Okay, Kocaeli University, Turkey. 
(2) Tian- Quan Yun, South China University of Technology, China. 

Complete Peer review History: http://sciencedomain.org/review-history/12417 
 
 
 

Received 12 th October 2015  
Accepted 2 nd  November 2015 

Published 25 th  November 2015  
 

 

ABSTRACT 
 

Aims: In this work the effect of wind on a building with irregular geometry is analyzed. Today, many 
cases of computational fluid-structure phenomena are validated with Benchmark models; 
nevertheless, the structure analyzed in this work does not have an associated benchmark model. 
Numerical algorithms applied in this work are also validated with a physical scale model under wind 
loads on a subsonic wind tunnel. 
Study Design:  Developed procedure involves two coupled field models corresponding to fluid and 
mechanical phenomenology, each one governed by different methodology: Fluid field associates 
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an Eulerian Configuration, meanwhile solid model is described on Lagrangean configuration. These 
two models require a third model named ALE to interact each other; this last model is built on the 
interfaces between them. This work develops the numerical procedure as well experimental ones 
for solving these complex structures.  
Place and Duration of Study:  Graduate Engineering Lab. Universidad Autonoma de Queretaro, 
Mex., Civil Engineering Department. Universidad de Guanajuato, Mex., Design Lab. Construction, 
Torreon Cohauila, Mex., between September 2012 and July 2014. 
Methodology:  The numerical model was analyzed through the software ANSYS and also DINES + 
GiD while the experimental test was performed in a subsonic wind tunnel. The prototype consists of 
structural steel sections while walls are made of glass panels; physical model belongs to an elastic 
model where the effect of twisting is not included. 
Results:  Main results obtained in this work are the bending moment at the basement of the 
building, the displacement at the top of the structure and the non-uniform pressure distribution on 
the structural walls. 
Conclusion:  Dynamic fluid-structure interaction (IDFE) problems have attracted the attention of a 
large number of researchers. IDFE plays an important role in the structural engineering: on the 
analysis of high-rise buildings, large bridges, industrial plants, chimneys, transmission towers, etc., 
all these structures may collapse due to the aeroelastic instability caused by wind effect. The goal 
of this work is provide a methodology for real structures of complex geometry. 
 

 
Keywords: Fluid-structure interaction; structural dynamics; coupled fields; aeroelastic modeling. 
 
1. INTRODUCTION  
 
In recent years various scientific areas have had 
an important development, one of the areas 
where an important progress has been seen on 
the analysis of dynamic fluid-structure interaction 
(IDFE) problems which has attracted the 
attention of a large number of researchers [1-3]. 
The IDFE studies play an important role in the 
structural engineering as on the analysis of high-
rise buildings, large bridges, industrial plants, 
chimneys, transmission towers, etc., all these 
structures may collapse due to the aeroelastic 
instability caused by wind effect [4,5]. The 
complexity of this phenomenology leads to 
research on experimental procedures (usually in 
wind tunnels) as well in numerical algorithms 
through computational fluid dynamics (CFD), 
taking this into account, two groups of research 
are clear, the first one addressed to obtain the 
maximum effects of wind occurring in the 
structure, while the second focuses on the 
evaluation of maximum flow effects [6]. 
 
These kinds of problems are treated as coupled 
models [7], they are multi-physical problems 
governed by phenomenologies interacting 
simultaneously [8], Most researchers consider 
IDFE phenomenology as a case including three 
main fields: solid (structural), fluid (wind) and 
interface (border) between domains [5]. The 
solution of these cases keeps some difficulty 
because the total domain has to be divided into 

structural subdomain as well as fluid subdomain 
which associate different configurations: 
Lagrangian and Eulerian ones, which are not 
compatible each other [9]. Therefore generated 
geometries tend to be complex, whereas the 
boundary conditions between fluid and structure 
are nonlinear due to movements of the interface, 
besides, the position of the interface is part of the 
solution [10,11]. 
 
The key for solving these problems is a method 
consisting of coupling these two 
phenomenologies: structural and fluid dynamics, 
in addition it must be included movement 
techniques of nonstructural meshes for the fluids 
in order to represent the movement of the 
interface. It is also required stabilization methods 
and segregation of pressures for the fluid domain 
as well a block method for solving the coupling, 
all this together with computational procedure for 
large scale solutions [12]. 
 
Related to experimental tests in wind tunnels, the 
aeroelastic "stick" model is popular for its 
efficiency in the design, manufacture, calibration 
and measurement procedures. In most structures 
under wind effects has been observed that the 
fundamental modes of vibration are the most 
significant, this feature promotes simplification of 
the "stick" model by which only two fundamental 
modes of translation is enough to include for 
obtaining a direct similarity between the model 
and prototype structure [13]. 
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2. MATERIALS AND METHODS 
 

2.1 Phenomenological Continuum 
Equations 

 
The equilibrium equation of a continuous medium 
is given by the following relation (1), while 
equation of local mass conservation is expressed 
by the relation (2), [14]: 
 

div	� + � = 	
� 			                                          (1) 
 
	′ + 	div	�	

 = 0		                                       (2)           

 
T is the Cauchy stress tensor, b is the body force 
field, ρ density field, velocity field v. Moreover, 
the constitutive equation for a Newtonian fluid is 
expressed by the next relationship: 
 

� = −�� + 2��						                                      (3) 
 
here π pressure is a scalar field, D is the spatial 
gradient tensor of velocity, µ is the viscosity fluid 
and I is a identity tensor. Substituting equation 
(3) in (1) and (2) the Navier-Stokes equation for a 
Newtonian fluid are obtained: 
 

	�
′ + �grad	

	
� = −grad� + �∆
 + �	      (4) 
 

div	
 = 0							                                                (5) 
 
On the other hand, the constitutive equation of a 
homogeneous isotropic elastic solid is given by 
the equation: 
 

� = 2�� + ��tr�
�					                                   (6) 
 
where E is the tensor of infinitesimal deformation, 
λ and µ are Lame constants. 
 
2.2 Dynamic Models 
 
2.2.1 Solid  
 
The matrix equation governing the dynamic 
behavior of a solid is given by the following 
equation [15]: 
  !"#$ + 	  %"#� +  &"# = 	'� +	'(							              (7) 
 
Being  M",  C"	and 	K"  mass, damping and 
stiffness matrices respectively, also u, u� ,
u$ , F0	and	F1  are the vectors of displacement, 
velocity, and acceleration in addition to the force 
vectors and surface forces respectively, the latter 
ones commonly as a time-dependent vector. This 

equation (7) associates a set of linear or 
nonlinear equations depending on the structure 
of the matrix involved in the process. A typical 
solution of (7) is given by the method of 
Newmark where displacement and velocity fields 
are approximated by the following relationships 
[4,15]:    
   

#�2
345 = #3 + #� 3∆2 + �67
89:;#$ 3 + <#$ 345�∆2=		  (8) 

 
	#	� �2
345 = #� 3 +  �1 − ?
#$ 3 + ?#$ 345"∆2			    (9) 

 
β		and		γ  are parameters of stability of the 
method, ∆t is the time step [16,17]. 
 
2.2.2 Fluid  
 
Analogously, the discrete equations governing 
the behavior of the fluid are described below: 
 

 !"	#$ + 	 &"@� �u� 
#� −  A"B +  &"µ#� = '� + '(			   (10) 
 

	 A"C#� = 0							                                           (11) 
  
Here  M",  K"@� ,  G",  K"µ  represent the mass, 
convection, pressure and viscosity matrix 
respectively, u� , u$ , p, F0	and	F1	  are the velocity, 
acceleration, pressure, body forces and surface 
force vector respectively. Equations (10) and (11) 
are a set of nonlinear equations. The solution of 
these equations is based on the implicit 
integration scheme of Euler [5,18]: 
 

 !"	 FG#�HI79J#� H4#� HK7
=∆L M +	 &"�∙
 #� 345" −  A"B345 = '345			(12) 

 
					 A"C#� 345 = 0													                              (13) 

 
The process of solving of the discrete model 
described in these equations (12) and (13) 
requires a method of stabilization, particularly 
Ansys program uses SUPG (Streamline-
upwind/Petrov–Galerkin) and PSPG (Pressure 
stabilized/Petrov–Galerkin) [19], whose 
methodology is based on the following equation: 
 

O �P + QR + SR�C�	 
′ + �grad	


" + grad	� − �∆
 − � +
Ω

div	

dΩ = 0					                                          (14) 
 

The terms δR	and	εR  are the stabilizers terms 
called SUPG y PSPG, The latter equation (14) is 
solved using the scheme named "SIMPLE" 
(semi-implicit method pressure linked equations) 
where grades of freedom corresponding to the 
velocity are solved with the algorithm "TDMA" 
(tri-diagonal matrix algorithm) and the pressure 
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are solved with the method of residual conjugate 
pre-conditioned. The integration process (14) is 
quite similar to that indicated in the equations 
(10) and (11). In contrast, the DINES + GiD 
software uses the stabilization method OSS 
(orthogonal sub-scale) expressed by the relation 
[5,20]: 
 

 !"#$ 	 +  &"@� �u� 
#� +  &"µ#� 	–  A"B	 +  A"C#� 	 + U�∙
 = '� + '(   (15) 
 
Here τ�∙
 is the stabilization parameter described 
in [5], then a fractional step scheme is used. The 
key is to use the auxiliary variable u ̇and the 
following approximation [21]:  
 

&�∙
 #� 345" ≈ &�∙
�#W� 345�	                            (16) 
 
Thus, equations (12) and (13) are transformed 
into the following equivalent relationship: 
 

	 !"	 FG#W� HI79J#�H4#� HK7
=∆L M +  &"�∙
�uX� 345� −  A"B3 + �Y = 'Z4Y	(17) 

 
− =

G ∆2	 A"C	 !"95	 A"�B345 − B3
 + �[ =  A"C#W� 345					    (18) 
 
 !"	 FG#� HI79G#W� HI7

=∆L M −	 A"�B345 − B3
 = 0							                (19) 
 
Where E5	and	E= are stabilizers terms of the OSS 
scheme corresponding to the momentum and 
continuity equations respectively. The resulting 
equations from this methodology of fractional 
steps are solved by the method of Picard. 
 

2.3 Coupled Model 
 
In previous pages the structural and fluid models 
were raised in its Lagrangian and Eulerian 
domain respectively, however, when considering 
the interaction between these domains, 
incompatibilities can be solved through a third 
description called ALE (Algorithm Lagrangian 
Eulerian) [22]. This procedure refers a mesh 
movement method complying the law of 
geometric conservation, there are several 
methods of moving mesh, one of the most used 
is the Laplacian method [8,23]:   
 ∆#] = 0						                                               (20) 
 u] is the movement of mesh nodes in areas near 
of the structural domain. As the nodes of the 
mesh of the fluid domain can move arbitrarily, is 
necessary then to consider the convective 
velocity c defined by [24]:  
 ^ = 
 − 
_									                                            (21) 

 
Being v and v_ the material flow velocity and the 
velocity of the mesh respectively, therefore, 

considering (21) is obtained the following 
equation [5]: 
 

 !"	u$ + 	 &"@� �u� 
^ −  A"B +  &"µ#� − ' +  A"C#� + ∆#] + �Y + �[ = 0			  
(22) 

                              
which is the set of discrete equations on the 
domain of the fluid. The integration procedure for 
this equation (22) is similar to the equations of 
fluid mechanics indicated above. Mesh 
movement is considered only in the vicinity of 
fluid domain with the structural domain. Similarly, 
equation (11) is modified as follows: 
  M"u$ +	  C"u� +  K"u = 	 F0 +	F1 + H								     (23) 
 
Here H is the effect of the fluid domain over the 
structural domain. Boundary kinematics and 
dynamics conditions required in the solution of 
the coupled problem are indicated as follows: 
 

xbc + d = x			,				d� = u							                            (24) 
 

Tn = Sn										                                            (25) 
 
Where d is the structural displacement during the 
interaction, xbc  is the initial position of the 
structural domain and n is a unit normal vector. 
The equation (22) and (23) are solved by the 
block method Gauss-Seidel [25]:     
 

ef45345 = F�ef3, g3
									                                 (26) 
 

gf45345 = E�e345, gf3
									                             (27) 
 
F and E are abstract representations of 
equations (22) and (23) respectively, x and y are 
the unknowns of fluid domains (velocity and 
pressure) and structural (displacement), n 
represents the time step and k is a counter for 
controlling the iterations sets. 
 

2.4 Experimental Procedure 
 
2.4.1 Aeroelastic balance  
 
When considering the effect of Aeroelastic 
Structure, we can rewrite equation (7) as follows 
[13,26]: 
 

hu$ + iu� + ju = F�2, u, u� , u$ 
								                   (28) 
 
where the force vector F is a function of time, 
movement and its derivatives. The form of the 
first mode of vibration of the structure to be 
analyzed can be approximated by the following 
exponential equation [13]: 
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k�l
 = m no
pq: 											                                   (29) 

 
α  and and  β  are normalization coefficients, H is 
the total height of the structure z is a height 
between H and zero. For a linear mode shape, 
considering scaling laws described in [13,27], 
together with relation (28), and according to 
[16,28] we obtain: 
 

#$ + r 5
st

u4�wx#� + �2�wx
=# = yz/pz
xz

n 5
s|}

q r 5
s~�

s~
s��u n s�

s�s�
q				(30) 

 
Here f]  the fundamental frequency in the wind 
direction, Mm  is the bending moment at the 
basement, Hm is the total height of the structure, 
the subindex m indicates that these three 
parameters are related to the physical scale 
model. Equation (30) refers the scaling laws 
regarding damping, force coefficient, generalized 
mass and stiffness. These scaling laws are 
functions of K�, K�, K1, K��, Kρ� , Kρ	and	Kζ 
representing geometry similarities, wind velocity, 
frequency, force coefficient, density, mass and 
damping between the physical scale model and 
the prototype [13]. 
 
Based on these scaling laws, the model 
represents a direct similarity with the prototype 
and can be obtained the bending moment at the 
basement of the scale model as well as the 
displacement at any point in the model. The ratio 
between the bending moment at the basement 
for the model and the prototype is K�  and it is 
defined by [13]:   
 

�� = �~�	s��
��8 							                                           (31) 

 
2.4.2 Wind tunnel settings  
 
The mass of the physical model is obtained by 
applying equation [13]: 
 

h�l
� = x��6s~�;�s�
�	
�8�

								                           (32) 

 
 m�� is the general mass of prototype and φ the 
fundamental mode shape in the wind direction. 
Once the model was built, its damping is 
determined by the logarithmic decrement method 
[28]: 
 

� = � �8
J�84�8									                                       (33) 

 
Where δ is the logarithmic decrement and ξ the 
damping factor. After built the Physical model, its 

fundamental frequency f5]. Wind velocity in the 
tunnel is determined by the following relationship: 
 

�x = ���
 n 5
s�		q ��							                               (34) 

 
 v] 	and	v�  are the wind velocity applied to the 
model (on the wind tunnel) and the 
corresponding velocity of the prototype. Before 
making the measurements in the wind tunnel is 
required to establish a calibration equation based 
on the displacement of the model resulting of a 
known force and its point of application, this 
same equation will be applied to the 
measurements on the wind tunnel with the 
difference that the force will be produced by the 
wind. The moment of the prototype is given by 
the equation (31): 
 

�� = �x
�s�
8

	�s�	
�						                                      (35) 
 M�	and	M]  are the bending moment at the 
basement of the prototype and the model 
respectively, in (35) has been considered that the 
air density in the model and prototype are 
identical. 
 

2.5 Test Models 
 
2.5.1 Properties   
 
The structural prototype has a prismatic shape 
depending on the height, the structural elements 
are made of steel and concrete, the building is 
covered with glass plates to prevent the flow of 
wind inside (Fig. 1). The total height is 72.0 
meters, it has 18 slabs (including the roof one) 
uniformly spaced. Table 1 shows the mechanical 
properties of the prototype applied in this work 
while in Table 2 are shown the geometrical 
properties of the structural sections. Numerical 
models were developed in ANSYS [29], and 
DINES + GiD [30,31] software and the 
experimental test was carried out on a subsonic 
wind tunnel. 
 
All beams are sections W18x35, all levels to a 
height of 12.00 meters are supported with 
columns HSS16, next levels up to a height of 
24.00 meters are supported by columns HSS14, 
the following levels to a height of 48.00 meters 
are HSS12 columns sections, the rest of the 
levels are supported by columns sections 
HSS10. The slab and glass sections are identical 
in all levels. Each column-column connections 
and beam-column are rigid type. All supports at 
basement of building have been considered 
fixed. 
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Table 1. Mechanical properties 
 

Material  E (N/m2) ν (-) ρ(kg/m 3) ����				(kg/m 2 s) 
Steel 2.00x1011 0.250 7,800 - 
Concrete 2.25x1010 0.100 2,400 - 
Glass 1.00x101* 0.225 0.500  
Wind - - 1.185 1.831x10-5 

 
Table 2. Structural sections 

 
Section   d (m)  b (m) t f (m) tw (m) 
W18x35 0.4496 0.1524 0.0108 0.0076 
HSS16 0.4064 0.4064 0.0127 - 
HSS14 0.3556 0.3556 0.0127 - 
HSS12 0.3048 0.3048 0.0127 - 
HSS10 0.2540 0.2540 0.0127 - 
Slab 0.1100 - - - 
Glass 0.0050 - - - 

 

 
 

Fig. 1. Main dimensions of the Irregular 
Building composed of steel structure and 

reinforced concrete slabs 
 
The domain of the fluid surrounds the structural 
domain is shown on Fig. 2, the fluid domain size 
and boundary conditions considered in this work 
are indicated. In all areas dividing the two 
domains is considered a velocity v = 0 m / s. The 
hatched area on Fig. 2 shows the structural 
domain. 

2.5.2 Computational modeling in ansys  
 
The discrete model was built with 50,228 finite 
elements. For beams and columns have been 
used elements "beam" with 6 degrees of freedom 
per node. For concrete slabs as well as cover 
glass on windows have been used elements 
"shell" with 12 degrees of freedom (see Fig 3). 
To model the fluid, finite elements "brick" of 24 
degrees of freedom were used. The structural 
model solution obeys the equation (23) with β = 
1/6 and γ = 1/2. The fluid domain use equations 
(12), (13), (14), (22), while coupling of fields 
applied equations (20), (26) and (27). In both 
domains was used a step time of 0.01 seconds, 
having carried out a total of 500 iterations, the 
convergence criteria used for displacements was 
1x10-3, whereas in velocities 1x10-6 and for 
pressures 1x10-3. Figs. 3(a) and 3(b) show the 
internal structure geometry together with 
elements "beam" and "shell". Fig. 3(c) shows the 
external geometry of the structure including the 
domain of fluid that surrounds the structural 
domain. 
 
2.5.3 Computational modeling with DINES + 

GiD 
 
In this case only was modeling the fluid domain, 
structural domain has been considered as a rigid 
body. A total of 113.000 finite elements were 
required. The fluid was modeled with elements 
"brick" of 24 degrees of freedom. Fluid domain 
was solved by equations (12), (13), (15), (17), 
(18), (19), and (22). The time step used was 0.01 
seconds, 1,000 iterations in total were 
performed, and the convergence criteria were in 
velocities equal to 1x10-6 while in pressures 
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1x10-3. Fig. 4 shows the domain of the fluid 
which surrounds the structural domain. 
 

2.6 Test on Wind Tunnel 
 
The fundamental frequency of the building in 
wind direction was initially determined turning out 
to be 0.51 Hz and the mode shape associated as 
shown in Fig. 5. The scale model (Fig. 6) was 
made with PVC foamed material and scaled from 
the first fundamental vibration mode. The 
prototype analyzed has not a linear mode shape, 
however, in this work was linear considered 
taking parameters α = 1.00 and β = 0.914 
according to (29). In Fig. 5 are shown both 
modes. 
 
Considering the fundamental linear mode in (32) 
and a geometric scale 1: 200  it has been 
obtained a mass scale model of 0.293 kg  (while 
the prototype has a mass of  2345 x103 kg). 
Using equation (33) we obtain a damping factor 
of 0.0418, this value was also used in ANSYS 
modeling. The frequency of the model was 
obtained experimentally proving to be of 20.81 
Hz, and by means of equation (34) has been 
obtained the wind velocity inside the tunnel of 
11.11 m / s. Equipment used for physical 
experimentation is shown in Figs. 7 and 8. Table 
3 shows a comparison between the physical 
parameters of the model and prototype used. 
 
3. RESULTS AND DISCUSSION 
 
The model inside the wind tunnel was 
instrumented in wind direction; hence the results 

that will be validated with the numerical results 
will be only the ones corresponding to this 
direction. On the other hand, the bending 
moment at the basement obtained with Ansys 
[29] was 47.504 kN-m with a displacement at the 
top of 0.936 meters in a time of 1.30 seconds. 
Figs. 9 and 10 show some of the numerical 
results obtained with Ansys. 
 
Through Dines + Gid software [30,31], it has 
been obtained at the Building basement a  
bending moment of 53.706 kN-m in a time of 
1.06 seconds. Figs. 11-12 show some results 
corresponding to the pressure generated by the 
bending moment at the basement. 
 
In the wind tunnel the bending moment at the 
basement of the model was obtained as 0.291 
Nm and a displacement at the top of model of 
0.00458 meters. Applying the scale law (35) and 
considering a geometrical scale 1: 200 the 
bending moment at the basement of prototype 
will be 55,397 kN-m while the corresponding 
displacement at the top of the building of 0.916 
meters. 
 

Table 3. Physical parameters 
 

Parameter Model Prototype 
Mass (kg) 0.293 2,345x103 
Height (m) 0.36 72.0 
Period (s) 0.048 1.96 
Frequency (Hz) 20.81 0.51 
Damping (-) 0.0418 0.0418 
Wind velocity (m/s) 11.11 55.0 

 

 
 

Fig. 2. Domain fluid on planes "xy" and "yz" respect ively 
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                                   (a)                                                                     (b)                             

 

 
                                                                            

(c) 
 
Fig. 3. Structural and fluid domain in ANSYS: (a) B eam steel structure and slabs of reinforced 

concrete. (b) Side covers of building. (c) Fluid do main enveloping the building 
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(a) 

 

 
(b) 

 
Fig. 4. Structural and fluid domain in Dines + GiD:   

(a) Building as a rigid body. (b) Fluid Domain arou nd the building 
 

 
 

Fig. 5. Mode Shape of Prototype 
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Fig. 6. Scale model made of PVC foamed material 
 

 
 

Fig. 7. Wind tunnel and instrumented scale model 
 

 
 

Fig. 8. Equipment used on test measurements 
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Fig. 9. Displacement results for t=1.0 sec 
 

 
 

Fig. 10. Displacement results for t=1.1 sec 
 
 

 
 

Fig. 11. Pressure contours for a time t=1.0 sec 
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Fig. 12. Pressure contours for a time t=1.3 sec 
 
The test in the wind tunnel allows us to compare 
results with those obtained from computational 
modeling. Regarding DINES + GiD software, 
here it is only possible to compare the maximum 
moment obtained with respect to the wind tunnel. 
On the other hand ANSYS solutions allow as 
compare displacement and moment at the 
basement. We proceed to make a comparison 
(value: e) between experimental obtained results 
with respect to the computational modeling. 
 

e = 55.4 − 47.5
55.4 = 0.142 = 14.2	%		using	ANSYS	 

 

e = 55.4 − 53.7
55.4 = 0.031 = 3.1	%			using	DINES + GiD	 

 

4. CONCLUSIONS 
 
The above results observe differences in part by 
the different algorithms applied on each program. 
Some remarks resulting from this work are as 
follow: 
 

The physical scale model used in this work is 
quite similar to that shown in Ansys, which is in 
turn based on the twist that occurs in the 
basement of the model due to the wind effect, so, 
the physical model behaves like a rigid body. On 
the other hand the torsion effect it was not 
considered in our scale model, but from ANSYS 
Simulation it is observed to be significant the 
torsion effect in the highest points of the 
structure. 
 

In Dines + GiD, the structural model is 
considered as a rigid body fixed at the basement, 
so it has been possible to run the wind algorithm 
turbulently because a quantity of finite elements 
within the fluid domain were enough to achieve 

the corresponding convergence criterion, this 
number of elements was possible due to the no 
transfer process of pressure towards another 
domain. 
 
In ANSYS both domains were modeled, but in 
the flow domain fewer elements were used due 
to the fact that was proposed that only the fluid 
pressure on the external nodes of the 
tridimensional frame structure will be transferred, 
this proposal was suggested because it was no 
possible introduce real material properties of 
plates cover glasses, in another case, this plates 
will be highly deformed causing early failures. 
ANSYS algorithm requires a structural surface to 
be adjacent to the fluid domain to calculate the 
displacement in the boundary between domains, 
because of this, was not possible to propose a 
finer mesh to achieve convergence criteria in a 
turbulent fluid model and therefore it was chosen 
a laminar flow. 
 
Despite the large numerical and experimental 
development nowadays, difficulties prevail for 
solving this kind of structures having a complex 
geometry. This work can be useful in choosing 
criteria for analogous analysis cases of high 
buildings subject to wind effects. 
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