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Abstract

The topography directly influences the functioning of an irrigation system, being necessary the determination of
the uniformity to verify its performance. Statistical quality control is a powerful tool for verifying the quality of a
process. Thus, it was aimed to use the statistical control of quality in the evaluation of the uniformity of a drip
irrigation system in different slopes. The Christiansen’s uniformity coefficient (UC) and Uniformity of
Distribution (UD) were determined and analyzed by the control graphs of Shewhart, Zones and CUSUM and by
the indices of process capacity (Cp, Cpl and Cpk), in different slopes (0%, 2% and -2%). The slope irrigation
was more uniform (UC = 99.03% and UD = 98.45%), however, for all the graphs studied it was out of statistical
control. Zone charts were more sensitive than the CUSUM and Shewhart charts.

Keywords: microirrigation, control charts, process capability index
1. Introduction

Drip irrigation is characterized by the application of water in the form of drops, allowing water to be supplied in
small quantities (Resende et al., 2004). The benefits of this method are: Water economy, favors the development
of plants, reduction of salinity, possibility of chemigation, limits the development of weeds, reduces labor and
energy consumption (Frizzone et al., 2012).

The evaluation of the irrigation system in operation is determined by performance parameters that must be
defined based on field determinations, such as flow and application uniformity (Souza et al., 20006).

The performance of an irrigation system is directly proportional to the improvement of crop production variables
(Geisenhoff et al., 2015) and minimization of water and energy expenditures (Gris et al., 2015). Distribution
uniformity is the main way to determine whether an irrigation system is acceptable or not (Brennan, 2008).

The evaluation of drip irrigation systems in areas with slopes and aclives is necessary due to the variation of
pressure in the system, resulting in different flow rates that interfere with distribution uniformity (Lima et al.,
2003). The percentage of a localized irrigation system due to declivity can lead to an increase of up to 8.86% per
hectare (Cunha et al., 2014). Souza et al. (2018) concluded that the slope influences the dimensions and
geometry of the wet bulb.

Statistical quality control is a tool composed of control charts and statistical process control, which seeks to
maintain variables within limits or standards pre-established by technical norms, seeking to ensure that a given
process behaves appropriately. For Justi et al. (2010), irrigation systems are perfectly adequate to apply
statistical quality control.

Control charts are used to monitor the process and signal to analysts the need to investigate and adjust it
according to the size of the deviations found (Walter et al., 2013).
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The process capability indices are used to define how much a process is able to meet the specifications (Tamagi
et al., 2016). Silva et al. (2016) point out that process capability indices are tools capable of diagnosing whether
the irrigation system has the capacity to remain under control, ic whether it is able to maintain acceptable levels
of uniformity.

The study of statistical quality control is already known in the evaluation of the uniformity of irrigation systems.
However, their study in drip irrigation systems with different topographic situations is still unknown.

Thus, the objective of this work was to analyze the results of the use of control charts and the index of process
capacity in the uniformity of a drip irrigation system in different slopes.

2. Material and Methods

The experiment was carried out at the Irrigation and Fertirrigation Laboratory (IFL), at the Experimental
Nucleus of Agricultural Engineering (ENAE), at the State University of West Parand (UNIOESTE), located in
the municipality of Cascavel, state of Parana, Brazil, with Latitude 24°53" South, Longitude 53°23" West.

The experiment was carried out with a 5.0 m long workbench with 4 lateral lines, by means of pulleys, where it
is possible to carry out the lateral line, obtaining lateral lines of 10 m (Figure 1). The bench consists of an
Acquapump motor pump (Ferrari), a motor of 0.5 hp, maximum flow rate (Q) of 1.8 m’ hour”, maximum
manometric head (Hm) of 22 mca and maximum suction of (Hs) of 8 m.

Drippers
Pulleys
e

Si=n Gutter

=
/ H
}
g <

Lifting cables

Control head

Figure 1. Illustration of the test bench used

The drip tubes tested were of IRRITEC brand, model P1, spaced at 0.5 m, characterized with 16 mm diameter,
maximum working pressure of 80 kPa, coefficient of proportionality of the emitter equation (K) of 1.26 and
exponent of discharge (x) of 0.48.

Data collection was performed using the methodology proposed by Keller and Karmeli (1975). This
methodology consists in determining the flow rate in 4 emitters per lateral line, that is the first dripper, the
drippers located 1/3 (7°) and 2/3 (13°) of the length of the lateral line and the last dripper (20°) in 4 lateral lines.

The flow of the drippers was measured by the gravimetric method, in order to obtain greater precision in the
determination. The volume collected in the emitters during 3 minutes, with the aid of plastic collectors, was
weighed in a precision scale.

Twenty-five trials were performed for each slope: Aclivity (2%), Level (0%) and Declivity (-2%), this number of
samples is recommended by Montgomery (2016) for quality control tests.

From the data of collected flows the Christiansen's uniformity coefficient (UC) proposed by Christiansen (1942)
and of the Distribution (UD) proposed by Merrian & Keller (1978), calculated by equations 1 and 2 respectively,
were calculated from the collected flow data.

UC=(17%{;’Q')MO 1)

UD = (%) x 100 )
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Where, Q = Arithmetic mean of flows (L h™); Qi = flow in the dripper of order i, (L h™); n = Number of
drippers evaluated in the irrigation system; Q25 = Average of % of the flows with lower values, (L h™).

To classify the UC and UD data, the following classifications were used, which are described in Table 1.

Table 1. Classification of the Christiansen’s Uniformity Coefficient (UC) and Uniform Distribution Coefficient
(UD)

UC-UD (%) Ranking
90% or greater Great

80% to 90% Good

70% to 80% Regular

60% to 70% Bad

Less than 60% Unacceptable

Source: Frizonne et al. (2012).

In the quality control process, the Shewhart, Zones and CUSUM charts were used.

The Shewhart control chart consists of a center line representing the mean of the desired quality characteristic,
an upper control limit line (UCL) and another lower control limit line (LCL) (Frigo et al., 2016 ).

The Zones graph consists of eight zones (four on each side of the center line) (Zhang et al., 2018), bounded by a
central line, the limits: 1-sigma, 2-sigma and 3-sigma. Its use is recommended for practical use because of its
performance, simplicity, efficiency, ease of use and understanding (Ho & Case, 1994). For the interpretation of
the Zones graphs, the scoring rules (Davis et al., 1990), described in Table 2, were used, and a graph is
considered out of statistical control when it reaches 8 points.

Table 2. Scores for each sigma of the zones graph

Zone Score

Between Central Line and 1-sigma 1

Between 1 and 2-sigma

Between 2 and 3-sigma

In addition to 3-sigma
Source: Davis et al. (1990).

e <lF SN N

For the construction of the Shewhart and Zones control charts it was necessary to calculate the upper and lower
specification limits obtained by Equations 3 and 4, respectively.

UCL=%+32 3)
dy

LCL=% -3 4)
dy

Where, UCL = Upper control limit; LCL = lower control limit; X = Average of the data; MR = Average of the
mobile range of data; d, = Constant when used a moving amplitude of n = 2 observations (d, = 1.128)
(Montgomery, 2016).

In the CUSUM control chart, the deviations from the mean are accumulated over time, generating a cumulative
sum obtained according to Equation 5. The CUSUM graph accumulates deviations that are below or above the
target value, with statistics C;7 (CUSUM lower) and C; (upper CUSUM), which are expressed by Equations 5,
6 and 7.

Cim B ) >
C = max[O; (up +K) —x; + C;-l] ©
Ci = rnaX[O; xj — (up +K) + Ci)r-l] @

Where, x; = Average of the jth sample size n > 1; C; = cumulative sum up to the i th sample; uy, = sample mean;
K = compensation value or gap.
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To measure how much the process is able to meet specifications, we use what are called capacity indices. The
centered (Cp), lower limit (Cpl) and non centered (Cpk) process indices described in Equations 8, 9 and 10 were
used.

_ USL-LLS

Cp=——" (3)
cpl= 2 ©)
Cpk = (Cpl; Cp) (10)

Where, USL = Upper specification limit; LLS = Lower limit of specification; ¢ = Standard deviation of the data;
X = Average of the data.

Montgomery (2016) classified the process capability indices into recommended minimum values (Table 3).

Table 3. Recommended minimum values of the process capability ratio

Unilateral Bilateral
Existing processes 1.33 1.25
New Processes 1.50 1.45
Safety, force or critical parameter (existing) 1.50 1.45
Safety, force or critical parameter (new) 1.67 1.60

Source: Montgomery (2016).
All statistical and graphical analyzes were performed in MINITAB 18 software.
3. Results

The data presented in Table 4 represent the physicochemical characteristics of water used in irrigation.

Table 4. Physical-chemical parameters for water used in drip irrigation with different slopes

Parameters Results
Total iron (mg LY 0.34%*
Manganese (mg L) 0.050*
Total dissolved solids (mg L) 60%*
Solids in suspension (mL L") 20*
Electrical conductivity (uS cm’™) 0.06*
Sodium (mg L") 2.0%
pH 7.60%*
Hydrogen Sulfide <0.07*
Calcium (mg L™ 2.40*
Magnesium (mg L™ 4.86*

Note. * Low clogging risk; ** Moderate clogging risk; *** Severe clogging risk.
Source: Nakayama and Bucks (1980); Capra and Scicolone (1998).

Figure 2 shows the system flow maps at level (A), aclivity (B) and declivity (C).
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Figure 2. Flow distribution map in: (A) Level, (B) Aclivity and (C) Declivity

Table 5 presents the descriptive statistics for CUC and UD, using the different slopes.

Table 5. Descriptive statistics of the uniformity coefficients UC and UD of the flow of the 25 tests of a drip

irrigation system in level, slope and slope

. Level Aclivity Declivity

Coefficients

ucC UD ucC UD ucC UD
Minimum 98.30 97.50 98.34 97.48 98.38 97.20
Q1 98.74 97.97 98.56 97.93 99.02 98.48
Average 98.79 98.11 98.64 98.05 99.03 98.45
Medium 98.83 98.16 98.63 98.06 99.08 98.58
Q3 98.88 98.26 98.77 98.18 99.12 98.62
Maximum 98.87 98.45 98.87 98.56 99.22 98.72
S. deviation 0.15 0.24 0.13 0.25 0.19 0.38

The Shewhart control charts for UC and UD are shown in Figures 3 and 4 respectively.
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Figure 4. Shewhart control chart for UD in: (A) Level, (B) Aclivity (C) Declivity

The control charts of Zones for UC and UD are shown in Figures 5 and 6, respectively.
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Figure 6. Zone control charts for UD: (A) Level, (B) Aclivity and (C) Declivity

The CUSUM control charts for the UC and UD are shown in Figures 7 and 8, respectively.
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Figure 8. CUSUM graphs for UD: (A) Level, (B) Aclivity and (C) Declivity

Table 6 contains the process capability indices for UC and UD, at different slopes.
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Table 6. Values of process capacity indices (Cp) and process performance (Cpk) for UC and CUD in level, slope
and slope

Coefficient Level Index Cp Index Cpk index Cpl
Aclive 12.48 3.00 21.97
ucC Slope 13.15 3.56 22.73
Level 12.50 242 22.58
T Adive 721 273 7o
UD Slope 7.83 3.04 12.61
Level 6.08 1.88 10.28

4. Discussion

The physical-chemical analysis of the water (Table 4) didn’t present any parameters with a severe risk of
clogging according to the Nakayama and Bucks indexes (1980), and Capra and Scicolone (1998). Only the
concentrations of total iron and pH had a moderate risk of clogging and the other parameters having a low risk of
clogging.

According to the contour map (Figure 2), a similar behavior is observed in the system in level and aclivity, with
the larger flows at the beginning of the lines and decrease until the end of them. Alves et al. (2015) report that
the flow decreases due to the pressure drop during the stretch. For the sloping system, a concentration of the

largest flows at the end of the last line was explained by the gradual increase of the pressure that occurs until the
end of the pipe (Marcuzzo & Wendland, 2011).

The average uniformity (Table 5) was excellent for all situations (> 90%). The declivity system showed higher
excellence in relation to the others, with a higher average uniformity for CUC (99.03%) and for UD (98.45%).
Ella et al. (2009), when studying the uniformity of water distribution in a low-cost drip irrigation system with
different slopes and hydraulic loads, verified that uniformity decreased as the slopes increased.

In the Shewhart chart for the UC (Figure 3), it is observed that the level and declivity system were outside the
control limits. The level system showed a point outside the control limits. The declivity system presented two
points outside the control limits, however, the aclivity system was under statistical control. Pressure
destabilization can lead to a point outside the control limits (Silva et al., 2015).

The comparison of UC and UD in the Shewhart chart (Figure 4) shows a different behavior, and the level system
was under statistical control. The Shewhart control chart proved to be a good statistical tool in the study of
conventional sprinkler irrigation, demonstrating very well the process variability (Frigo et al., 2016).

The control chart of Zones presents high sensitivity, as shown in figure 5. The UC presents all slopes (0%, 2%
and -2%) outside the statistical control. The level and aclivity system obtained a point out of control, while the
declivity system obtained 3 points out of statistical control. Davis and Krehbiel (2002), when comparing the
performance of the Shewhart and Zonas control charts, concluded that the zone chart is slightly better at
detecting processes that take linear changes over time.

Exploring the UD data in the Zones control chart (Figure 6), it was verified that the level system remained under
statistical control by the Zones control chart, while the slopes in aclivity and declivity were out of statistical
control. Thus, aclivity, got 3 points and declivity 2 points out of control. Isolated points may be the result of
fluctuations in pressure, operator fatigue, some equipment variable or climatic variations (Justi & Saizaki, 2015).

The CUSUM graph with the UC data (Figure 7) at the level was presented under statistical control, differing
from the Shewhart and Zone graphs, which were out of statistical control.

Table 6 shows that the process capacity indices for UC and UD coefficients in all slopes were higher than the
established limits (> 1.33), that is, they were statistically capable. Silva et al. (2015) also obtained capacity
indices above the required limit in drip irrigation. Thus, statistical process control is an excellent tool for the
quality of the drip irrigation system.

All coefficients and slopes have Cpk > Cp, this implies that the processes are within specification point and the
distribution is centered. Silva et al. (2015) by studying the process capability index in saline water
self-compensating emitters and also obtained Cpk > Cp. The results also corroborate with Andrade et al. (2017)
who observed an increase in the process capacity index directly proportional to the mean values of UC and UD.
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