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Abstract

We study the uniform convergence of the general version of Gauss-type proximal point algorithm
(GG-PPA), introduced by Alom et al. [1], for solving the parametric generalized equations
y ∈ T (x), where T : X ⇒ 2Y is a set-valued mapping with locally closed graph, y is a parameter,
and X and Y are Banach spaces. In particular, we establish the uniform convergence of the
GG-PPA by considering a sequence of Lipschitz continuous functions gk : X → Y with gk(0) = 0
and positive Lipschitz constants λk in the sense that it is stable under small perturbations when
T is metrically regular at a given point. In addition, we give a numerical example to justify the
uniform convergence of the GG-PPA.
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1 Introduction

Let X and Y be Banach spaces and Ω be an open subset of X. Let T : X ⇒ 2Y be a set valued
mapping that have locally closed graph. We deal with the problem of approximating a point x ∈ Ω
satisfying the generalized equation

y ∈ T (x), (1.1)

where y is a parameter. Robinson [2][3] first introduced the generalized equation (1.1) for y = 0
as a general mechanism for describing, analyzing, and solving different problems in a unified way.
This kind of problems have been reviewed broadly. Various examples are system of inequalities,
variational inequalities, linear and nonlinear complementary problems, system of nonlinear equations,
equilibrium problems, etc.; see in [1][3][4][5].

The proximal point algorithm (PPA) is one of the most important methods for solving (1.1) in the
case y = 0, which is defined as follows:

0 ∈ λk(xk+1 − xk) + T (xk+1), for each k = 0, 1, 2, . . . , (1.2)

where {λk} ⊆ (0, λ) is a sequence of scalars. This PPA, whose origin can be found in the works
of Martinet [6] for variational inequalities, has been further studied and extended in [7][8][9][10][11]
to a more general setting, including convex programs, convex-concave saddle point problems and
variational inequality problems. Rockafellar [11] throughly analyzed the PPA in the general structure
of maximal monotone inclusions. When y = 0, Aragón Artacho et al. [12] have been introduced
the general version of proximal point algorithm (GPPA) for solving (1.1) by choosing a sequence
of functions gk : X → Y with gk(0) = 0 which are Lipschitz continuous in a neighborhood O
of the origin with Lipschitz constants λk for each k and established the linear and super-linear
convergence results under certain conditions. Let x ∈ X satisfying y ∈ T (x). The subset of X,
denoted by Dk(x), is defined by

Dk(x) :=
{
d ∈ X : y ∈ gk(d) + T (x+ d)

}
. (1.3)

Moreover, Aragón Artacho and Geoffroy [13] have been presented the following GPPA for solving
(1.1) and proved the uniform convergence of GPPA:

Algorithm 1 (General version of proximal point algorithm (GPPA))

Step 0. Let x0 ∈ X, λ ∈ (0,∞) and put k := 0.
Step 1. If 0 ∈ Dk(xk), then stop; otherwise, go to Step 2.
Step 2. Put {λk} ⊆ (0, λ), gk(0) = 0. If 0 /∈ Dk(xk), choose dk such that
dk ∈ Dk(xk).
Step 3. Write xk+1 := xk + dk.
Step 4. Put k = k + 1 and go to Step 1.

Basically, the sequences generated by Algorithm 1 are not uniquely defined and not every generated
sequence is convergent. Under certain conditions, Aragón Artacho and Geoffroy [13] showed that
there exists one sequence {xn} generated by Algorithm 1, which is linearly convergent to the
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solution. Hence in view of mathematical computation, this type of methods are not convenient
in practical application. Thus, to overcome this barrier, we propose a method ”so called” the
general version of Gauss-type proximal point algorithm (GG-PPA) for solving (1.1) as follows:

Algorithm 2 (General version of Gauss-type proximal point algorithm (GG-PPA))

Step 0. Select η ∈ [1,∞), x0 ∈ X, λ ∈ (0,∞) and put k := 0.
Step 1. If 0 ∈ Dk(xk), then stop; otherwise, go to Step 2.
Step 2. Put {λk} ⊆ (0, λ), gk(0) = 0. If 0 /∈ Dk(xk), choose dk such that
dk ∈ Dk(xk) and ∥dk∥ ≤ η dist (0,Dk(xk)).
Step 3. Write xk+1 := xk + dk.
Step 4. Put k = k + 1 and go to Step 1.

We observe that,

(i) if η = 1 and Dk(xk) is single valued, Algorithm 2 coincides with the Algorithm 1.

(ii) if gk(u) = λku, y = 0 and Y = X a Banach space, Algorithm 2 is equivalent to the classical
Gauss-type proximal point algorithm, which have been introduced by Rashid et al. [9].

(iii) if gk(u) = λku and Y = X a Banach space, Algorithm 2 is equivalent to the classical
Gauss-type proximal point algorithm introduced by Rashid in his PhD thesis [4, Algorithm
4.2.1].

(iv) if y = 0, Algorithm 2 is equivalent to the algorithm introduced by Alom et al. [1].

The difference between the Algorithm 1 and the Algorithm 2 is that the GG-PPA generates at
least one sequence and every generated sequence is convergent, but this does not happen for the
Algorithm 1.

The main goal in this paper is to present a kind of convergence of the sequence generated by
Algorithm 2, which is uniform in the sense that the attraction region (i.e., the ball in which the
initial guess x0 can be taken arbitrarily) does not depend on small variations of the value of the
parameter y near ȳ and for such values of y the method finds a solution x of (1.1) whenever T is
metrically regular at (x̄, ȳ).

Many authors have been studied on local convergence analysis about Algorithm 1 in the case y = 0,
see for examples [2][3][8][11], but there is no semi-local analysis for the Algorithm 1. A large
number of participations have been studied on semi-local analysis for the Gauss-Newton method
(cf. [14][15][16]). A semi-local convergence analysis for the classical Gauss-type proximal point
method were presented by Rashid et al. [9]. A semi-local convergence analysis for the GG-PPA
were presented by Alom et al. (cf. [1]). As our best knowledge, there is no study on uniformity
of semi-local analysis for the Algorithm 2. Thus, we conclude that the contributions, presented in
this study, seem new.

To analyze the uniformity of semi-local convergence of the GG-PPA is the main task in this paper.
The main tools in our study are the metric regularity property and Lipschitz-like property for
set-valued mappings. Based on the information around the initial point, the main results are the
convergence criterion, which provide some sufficient conditions confirming the convergence to a
solution of any sequence generated by Algorithm 2. As a consequence, uniform local convergence
of the GG-PPA is obtained.

The content of this paper is organized as follows: In section 2, some notations, notions and
preliminary results are presented. In Section 3, we consider the GG-PPA which is introduced
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in section 1. Then utilizing the concept of metric regularity property for the set valued mapping
T , we will show the existence of the sequence generated by Algorithm 2 and present the uniform
convergence of the GG-PPA. In section 4, we give a numerical example to justify the uniformity of
semi-local convergence of the Algorithm 2. The summary of the major results are presented in the
last section.

2 Notations and Preliminary Results

In this section, we suppose that X and Y are two real or complex Banach spaces. The closed ball
with centered at a and radius r is denoted by Br(a). All the norms are denoted by ∥ · ∥. For each
x ∈ X, the distance from a point x to a set C ⊆ X is defined by dist(x,C) := inf{∥x− y∥ : y ∈ C},
while the excess from the set B ⊆ X to the set C is defined by e(B,C) := sup{dist(x,C) : x ∈ B}.

Let F : X ⇒ 2Y be a set-valued mapping. Here gphF := {(x, y) ∈ X × Y : y ∈ F (x)} is the graph
of F and domF := {x ∈ X : F (x) ̸= ∅} is the domain of F . The inverse of F is denoted by F−1

and is defined by F−1(y) := {x ∈ X : y ∈ F (x)} for each y ∈ Y .

The concept of metric regularity for set valued mapping in the following definition is taken from
[9], and has been studied extensively; see for example [10][17][18][19].

Definition 2.1. Let F : X ⇒ Y be a set-valued mapping and let (x̄, ȳ) ∈ gphF . Let rx̄ > 0, rȳ > 0
and κ > 0. Then F is said to be

(i) metrically regular at (x̄, ȳ) on Brx̄(x̄)× Brȳ (ȳ) with constant κ if

dist
(
x, F−1(y)

)
≤ κ dist

(
y, F (x)

)
for all x ∈ Brx̄(x̄), y ∈ Brȳ (ȳ).

(ii) metrically regular at (x̄, ȳ) if there exist constants r′x̄ > 0, r′ȳ > 0 and κ′ > 0 such that F is
metrically regular at (x̄, ȳ) on Br′x̄

(x̄)× Br′ȳ
(ȳ) with constant κ′.

Recall the definition of Lipschitz-like continuity for set-valued mapping from [7]. This notion was
introduced by Aubin [20] and has been studied extensively; see for examples [9][18][19].

Definition 2.2. Let Γ : Y ⇒ 2X be a set-valued mapping and let (ȳ, x̄) ∈ gphΓ. Let rx̄ > 0, rȳ > 0
and M > 0. Then Γ is said to be Lipschitz-like at (ȳ, x̄) on Brȳ (ȳ)×Brx̄(x̄) with constant M if the
following inequality hold:

e(Γ(y1) ∩ Brx̄(x̄),Γ(y2)) ≤ M∥y1 − y2∥ for any y1, y2 ∈ Brȳ (ȳ).

The following result establishes the equivalence relation between metric regularity of a mapping F
and the Lipschitz-like continuity of the inverse F−1, which can be seen in [1][10].

Lemma 2.1. Let F : X ⇒ 2Y be a set valued mapping and (x̄, ȳ) ∈ gphF . Let rx̄ > 0, rȳ > 0,
then F is metrically regular at (x̄, ȳ) on Brx̄(x̄) × Brȳ (ȳ) with constant κ if and only if its inverse
F−1 : Y ⇒ 2X is Lipschitz-like at (ȳ, x̄) on Brȳ (ȳ)× Brx̄(x̄) with constant κ, that is,

e(F−1(y) ∩ Brx̄(x̄), F
−1(y′)) ≤ κ∥y − y′∥ for all y, y′ ∈ Brȳ (ȳ).

The following concept of Lyusternik-Graves theorem for metrically regular mapping is extracted
from [21]. This theorem plays an important role in the theory of metric regularity and proves the
stability of metric regularity of a generalized equation under perturbations. We use the following
convention: we say that a set C ⊆ X is locally closed at z ∈ C if there exists a > 0 such that the
set C ∩ Ba(z) is closed.
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Lemma 2.2. Let T : X ⇒ 2Y be a set valued mapping with locally closed graph. Let F be metrically
regular at (x̄, ȳ) on Brx̄(x̄) × Brȳ (ȳ) with constant κ > 0. Let g : X → Y be a function which is
Lipschitz continuous at x̄ with Lipschitz constant λ > 0 such that λ < κ−1. Then the mapping g+F

is metrically regular at (x̄, ȳ + g(x̄)) on Brx̄(x̄)× Brȳ (ȳ + g(x̄)) with constant
κ

1− κλ
.

We end this section with the following lemma, which is known as Banach fixed point lemma, proved
in [22].

Lemma 2.3. Let Φ : X ⇒ 2X be a set-valued mapping. Let η0 ∈ X, r ∈ (0,∞) and α ∈ (0, 1) be
such that

dist(η0,Φ(η0)) < r(1− α) (2.1)

and
e(Φ(x1) ∩ Br(η0),Φ(x2)) ≤ α∥x1 − x2∥ for any x1, x2 ∈ Br(η0). (2.2)

Then Φ has a fixed point in Br(η0), that is, there exists x ∈ Br(η0) such that x ∈ Φ(x). If Φ is
additionally single-valued, then the fixed point of Φ in Br(η0) is unique.

3 Uniform Convergence Analysis

This section is devoted to study the uniform convergence of GG-PPA. To do this, let (x̄, ȳ) ∈
gphT and rx̄ > 0, rȳ > 0 be such that Brx̄(x̄) ⊆ domT and Brȳ (ȳ) ⊆ T (X), the image of T .
We assume that T is metrically regular at (x̄, ȳ) on Brx̄(x̄) × Brȳ (ȳ) with constant κ > 0 and
gphT ∩ (Brx̄(x̄)× Brȳ (ȳ)) is closed.

Indeed, we are intended to prove that whenever T is metrically regular at (x̄, ȳ) on Brx̄(x̄)×Brȳ (ȳ)
with a constant κ, then for initial guess x̄ ∈ X and for every y ∈ Brȳ (ȳ), there is a sequence {xk}
generated by Algorithm 2 starting from x̄ and converging to a solution x of (1.1) for y. Let x ∈ X
and define a mapping Px by

Px(·) := g(· − x) + T (·). (3.1)

Then we obtain the following equivalence

z ∈ P−1
x (y) ⇔ y ∈ g(z − x) + T (z) for any z ∈ X and y ∈ T (z).

In particular,
x̄ ∈ P−1

x̄ (ȳ) for each (x̄, ȳ) ∈ gphT.

Let (x̄, ȳ) ∈ gph(g + T ). Since g(· − x̄) is Lipschitz continuous on O + x̄, applying Lemma 2.2, we

assume that the mapping Px̄ is metrically regular at (x̄, ȳ) on Brx̄(x̄)×Brȳ (ȳ) with constant
κ

1− κλ
.

So, by Lemma 2.1, we say that the mapping P−1
x̄ is Lipschitz-like at (ȳ, x̄) on Brȳ (ȳ)×Brx̄(x̄) with

constant
κ

1− κλ
, that is,

e(P−1
x̄ (y) ∩ Brx̄(x̄), P

−1
x̄ (y′)) ≤ κ

1− κλ
∥y − y′∥ for all y, y′ ∈ Brȳ (ȳ). (3.2)

Suppose that
lim
x→x̄

dist(y, T (x)) = 0. (3.3)

Write

r̄ := min
{2rȳ − rx̄λ

2
,
rx̄(1− 3κλ)

4κ

}
. (3.4)

Then

r̄ > 0 ⇔ λ < min
{2rȳ

rx̄
,
1

3κ

}
. (3.5)
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The following lemma plays an important role to present the uniform convergence of the GG-PPA,
which is due to [9].

Lemma 3.1. Suppose that Px̄(·) is metrically regular at (x̄, ȳ) on Brx̄(x̄) × Brȳ (ȳ) with constant
κ

1− κλ
such that (3.4) and (3.5) are satisfied. Let x ∈ B rx̄

2
(x̄) and Brx̄(0) ⊆ O. Then P−1

x (·) is

Lipschitz-like at (ȳ, x̄) on Br̄(ȳ)× B rx̄
2
(x̄) with constant

κ

1− 3κλ
, that is,

e(P−1
x (y1) ∩ B rx̄

2
(x̄), P−1

x (y2)) ≤
κ

1− 3κλ
∥y1 − y2∥ for any y1, y2 ∈ Br̄(ȳ).

To complete our main result, we suppose that a sequence of functions gk : X → Y such that
gk(0) = 0, which are Lipschitz continuous around the origin, the same for all k, with Lipschitz
constants λk satisfying

λ := sup
k

λk <
1

6κ
. (3.6)

We replace gk instead of g in (3.1), we obtain the mapping Px(·) as follows:

P k
x (·) := gk(· − x) + T (·) for each k = 0, 1, 2, . . . .

and rewrite the equation (3.2) as follows:

e(P k−1

x̄ (y) ∩ Brx̄(x̄), P
k−1

x̄ (y′)) ≤ κ

1− κλ
∥y − y′∥ for all y, y′ ∈ Brȳ (ȳ). (3.7)

By Lemma 2.2 and Lemma 2.1 with (3.6), we obtain that the mapping P k
x̄
−1

(·) is Lipschitz-like at

(ȳ, x̄) on Brȳ (ȳ)× Brx̄(x̄) with constant
κ

1− κλ
satisfying (3.7). Thus we have

Dk(x) =
{
d ∈ X : x+ d ∈ P k−1

x (y)
}

(3.8)

and we obtain the following equivalence

z ∈ P k−1

x (y) ⇔ y ∈ gk(z − x) + T (z) for any z ∈ X and y ∈ T (z).

In particular,

x̄ ∈ P k−1

x̄ (ȳ) for each (x̄, ȳ) ∈ gphT.

For each x ∈ X and y ∈ T (x), we define the mapping Zk
x : X ⇒ Y by

Zk
x(·) := y + gk(· − x̄)− gk(· − x),

and the set-valued mapping Φk
x : X ⇒ 2Y by

Φk
x(·) := P k

x̄

−1
[Zk

x(·)]. (3.9)

Then

∥Zk
x(x

′)− Zk
x(x

′′)∥ = ∥y + gk(x
′ − x̄)− gk(x

′ − x)− y − gk(x
′′ − x̄) + gk(x

′′ − x)∥
≤ ∥gk(x′ − x̄)− gk(x

′′ − x̄)∥+
∥gk(x′ − x)− gk(x

′′ − x)∥ for each x′, x′′ ∈ X. (3.10)

Now, we prove the uniformity of the semi-local convergence of the sequence generated by Algorithm
2 for solving (1.1) when T is metrically regular.
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Theorem 3.1. Suppose η > 1 and that P k
x̄ (·) is metrically regular at (x̄, ȳ) on Brx̄(x̄)×Brȳ (ȳ) with

constant
κ

1− κλ
, and let r̄ be defined in (3.4). Let Brx̄(x̄) ⊆ O, δ > 0 and σ > 0 be such that

(a) δ ≤ min
{rx̄

2
,

r̄

3λ
,
rȳ
3λ

, 1
}
,

(b) (η + 3)κλ ≤ 1,

(c) σ < λδ.

Then, for every y ∈ Bσ(ȳ), there exists some δ̂ > 0 such that any sequence {xk} generated by
Algorithm 2 with initial point in Bδ̂(x̄) converges to a solution x of (1.1) for y.

Proof. Let

M :=
κ

1− 3λκ
.

Since η > 1, by assumption (b) we have that

Mηλ ≤

η

η + 3

1− 3

η + 3

= 1.

Assumption (c) and (3.3) allow us to take 0 < δ̂ ≤ δ so that

dist(y, T (x0)) ≤ σ < λδ for each x0 ∈ Bδ̂(x̄). (3.11)

Note that the metric regularity of the mapping P k
x̄ (·) at (x̄, ȳ) on Brx̄(x̄) × Brȳ (ȳ) with constant

κ

1− λκ
, implies through lemma 2.1 that P k−1

x̄ is Lipschitz-like at (ȳ, x̄) on Brȳ (ȳ) × Brx̄(x̄) with

constant
κ

1− λκ
, that is, (3.7) holds.

To complete the proof we will proceed by mathematical induction. It suffices to show that the
Algorithm 2 generates at least one sequence and any generated sequence {xk} satisfies

∥xk − x̄∥ ≤ 2δ, (3.12)

and
∥xk+1 − xk∥ ≤ (Mηλ)k+1δ (3.13)

for each k = 0, 1, 2, . . .. Define

r̂x :=
5κ

3(1− λκ)

(
λ∥x− x̄∥+ ∥y − ȳ∥

)
for each x ∈ X. (3.14)

Since η > 1, by assumption (b) and (c) we have

r̂x ≤ 5κλ

1− λκ
δ ≤ 5

η + 2
δ ≤ 2δ for each x ∈ B2δ(x̄). (3.15)

First, we will prove that
D0(x0) ∩ r̂x̄(0) ̸= ∅. (3.16)

To do this, we will consider the mapping Φ0
x0

defined by (3.9) and apply Lemma 2.3 to Φ0
x0

with

η0 := x̄, r := r̂x0 and α :=
2

5
. It’s sufficient to show that assertions (2.1) and (2.2) of Lemma 2.3
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hold for Φ0
x0

with η0 := x̄, r := r̂x0 and α :=
2

5
.

To proceed, we note that x̄ ∈ P 0−1

x̄ (ȳ) ∩ Br̂x0
(x̄). Then by the definition of Φ0

x0
and excess e, we

have

dist(x̄,Φ0
x0
(x̄)) ≤ e(P 0−1

x̄ (ȳ) ∩ Br̂x0
(x̄),Φ0

x0
(x̄))

≤ e(P 0−1

x̄ (ȳ) ∩ Brx̄(x̄), P
0−1

x̄ [Z0
x0
(x̄)]). (3.17)

(noting that Br̂x0
(x̄) ⊆ B2δ(x̄) ⊆ Brx̄(x̄)). For each x ∈ B2δ(x̄), we have that

∥Z0
x0
(x)− ȳ∥ = ∥y + g0(x− x̄)− g0(x− x0)− ȳ∥

≤ ∥y − ȳ∥+ ∥g0(x− x̄)− g0(x− x0)∥
≤ ∥y − ȳ∥+ λ0∥x0 − x̄∥ ≤ ∥y − ȳ∥+ λ∥x0 − x̄∥. (3.18)

Then by the relations σ < λδ and 3λδ ≤ rȳ in assumptions (c) and (a) respectively, we obtain that

∥Z0
x0
(x)− ȳ∥ ≤ 3λδ ≤ rȳ, (3.19)

that is, for each x ∈ B2δ(x̄), Z
0
x0
(x) ∈ Brȳ (ȳ). Put x = x̄ in (3.18), we obtain that

∥Z0
x0
(x̄)− ȳ∥ = ∥y + g0(x̄− x̄)− g0(x̄− x0)− ȳ∥

≤ ∥y − ȳ∥+ ∥g0(0)− g0(x̄− x0)∥
≤ ∥y − ȳ∥+ λ0∥x0 − x̄∥ ≤ ∥y − ȳ∥+ λ∥x0 − x̄∥ (3.20)

≤ 3λδ ≤ rȳ.

This yields that Z0
x0
(x̄) ∈ Brȳ (ȳ). Using (3.7), (3.20) and (3.14) in (3.17), we have

dist(x̄,Φ0
x0
(x̄)) ≤ κ

1− λκ
∥ȳ − Z0

x0
(x̄)∥ ≤ κ

1− λκ
(λ∥x0 − x̄∥+ ∥y − ȳ∥) =

(
1− 2

5

)
r̂x0 = (1− α)r.

This implies that assertion (2.1) of Lemma 2.3 is satisfied.

Below, we will show that the assertion (2.2) of Lemma 2.3 also holds. To show this, let x′, x′′ ∈
Br̂x0

(x̄). Then by the fact 2δ ≤ rx̄ in assumption (a) and (3.15), we have x′, x′′ ∈ Br̂x0
(x̄) ⊆

B2δ(x̄) ⊆ Brx̄(x̄). Moreover, we have from (3.19) that Z0
x0
(x′), Z0

x0
(x′′) ∈ Brȳ (ȳ). Then by Lipschitz-

like property of P 0−1

x̄ (·), we have

e(Φ0
x0
(x′) ∩ Br̂x0

(x̄),Φ0
x0
(x′′))

≤ e(Φ0
x0
(x′) ∩ Brx̄(x̄),Φ

0
x0
(x′′))

= e(P 0−1

x̄ [Z0
x0
(x′)] ∩ Brx̄(x̄), P

0−1

x̄ [Z0
x0
(x′′)])

≤ κ

1− λκ
∥Z0

x0
(x′)− Z0

x0
(x′′)∥. (3.21)

Applying (3.10) and (3.6) in (3.21), we obtain

e(Φ0
x0
(x′) ∩ Br̂x0

(x̄),Φ0
x0
(x′′))

≤ κ

1− λκ
(∥g0(x′ − x̄)− g0(x

′′ − x̄)∥+ ∥g0(x′ − x0)− g0(x
′′ − x0)∥)

≤ 2λ0κ

1− λκ
∥x′ − x′′∥ ≤ 2λκ

1− λκ
∥x′ − x′′∥

≤ 2

5
∥x′ − x′′∥ = α∥x′ − x′′∥.
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Therefore, the assertion (2.2) of Lemma 2.3 is also satisfied. Since both assertions (2.1) and (2.2)
of Lemma 2.3 are fulfilled, there exists a fixed point

x̂1 ∈ Br̂x0
(x̄) such that x̂1 ∈ Φ0

x0
(x̂1),

which translates to Z0
x0
(x̂1) ∈ P 0

x̄ (x̂1), that is, y ∈ g0(x̂1 − x0) + T (x̂1). This shows that x̂1 − x0 ∈
D0(x0) and hence (3.16) holds. Consequently, inasmuch as η > 1, we can choose d0 ∈ D0(x0) such
that

∥d0∥ ≤ η dist(0,D0(x0)). (3.22)

By Algorithm 2, x1 := x0 + d0 is defined. Hence the point x1 is generated by Algorithm 2.
Furthermore, by the definition of D0(x0), from (3.8) we can write

D0(x0) := {d0 ∈ X : x0 + d0 ∈ P 0−1

x0
(y)},

and so

dist(0,D0(x0)) = dist(x0, P
0−1

x0
(y)). (3.23)

Since P k
x̄ (·) is metrically regular at (x̄, ȳ) on Brx̄(x̄)×Brȳ (ȳ) with constant

κ

1− λκ
, it follows from

Lemma 3.1 that the mapping P k−1

x (·) is Lipschitz-like at (ȳ, x̄) on Br̄(ȳ) × B rx̄
2
(x̄) with constant

M for each x ∈ B rx̄
2
(x̄). In particular, P 0−1

x0
(·) is Lipschitz-like at (ȳ, x̄) on Br̄(ȳ) × B rx̄

2
(x̄) with

constant M as the ball B rx̄
2
(x̄) contains the point x̄. Furthermore, the facts 3λδ ≤ r̄ and σ < λδ in

assumptions (a) and (c) respectively imply that

σ < λδ ≤ r̄

3
< r̄,

and hence we have that y ∈ Bσ(ȳ) ⊆ Br̄(ȳ). Applying Lemma 2.1 we have that the mapping P 0
x0
(·)

is metrically regular at (x̄, ȳ) on B rx̄
2
(x̄)× Br̄(ȳ) with constant M , that is,

dist(x0, P
0−1

x0
(y)) ≤ M dist(y, P 0

x0
(x0)) for each x0 ∈ B rx̄

2
(x̄) and y ∈ Br̄(ȳ). (3.24)

Using (3.23), (3.24) and ((3.11)) in (3.22), we obtain that

∥x1 − x0∥ = ∥d0∥ ≤ η dist(0,D0(x0)) = η dist(x0, P
0−1

x0
(y))

≤ ηM dist(y, P 0
x0
(x0)) = ηM dist(y, T (x0))

≤ (Mηλ)δ.

This shows that (3.13) holds for k = 0.

We assume that the points x1, . . . , xn are generated by Algorithm 2 such that (3.12) and (3.13) are
true for k = 0, 1, 2, . . . , n− 1. We show that there exists xn+1 such that (3.12) and (3.13) hold for
k = n. Because of (3.12) and (3.13) hold for k ≤ n− 1, we have the following inequality

∥xn − x̄∥ ≤
n−1∑
i=0

∥di∥+ ∥x0 − x̄∥ ≤ δ

n−1∑
i=0

(Mηλ)i+1 + δ ≤ Mηλ

1−Mηλ
δ + δ ≤ 2δ,

and so xn ∈ B2δ(x̄). This reflects that (3.12) holds for k = n. Now with almost the same argument
as we used for the case when k = 0, we can find that the mapping Pn

xn

−1(·) is also Lipschitz-like at

9
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(ȳ, x̄) on Br̄(ȳ)× B rx̄
2
(x̄) with constant M. Then by applying again Algorithm 2, we have

∥xn+1 − xn∥ = ∥dn∥ ≤ η dist(0, Dn(xn)) = η dist(xn, P
n
xn

−1(y))

≤ ηM dist(y, Pn
xn

(xn)) = ηM dist(y, T (xn))

= ηM dist(y, y − gn−1(xn − xn−1))

= ηM ∥gn−1(xn − xn−1)− gn−1(0)∥
≤ ηλn−1M ∥xn − xn−1∥ ≤ ηλM ∥xn − xn−1∥ (3.25)

≤ Mηλ(Mηλ)nδ ≤ (Mηλ)n+1δ.

This shows that (3.13) holds for k = n. Hence (3.12) and (3.13) hold for each k. This implies that
{xn} is a Cauchy sequence which is generated by Algorithm 2 and there exists x∗ ∈ Brx̄(x̄) such

that xn → x∗. Thus, passing to the limit xn+1 ∈ Pn−1

xn
(y) and since gphT ∩ (Brx̄(x̄) × Brȳ (ȳ)) is

closed, it follows that y ∈ T (x∗). This completes the proof.

In the particular case, when x̄ is a solution of (1.1) for y = 0, Theorem 3.1 can be reduced to the
following corollary which gives the uniformity of the local convergence result for GG-PPA defined
by Algorithm 2.

Corollary 3.1. Suppose that η > 1 and x̄ is a solution of (1.1) for y = 0. Let T be metrically
regular at (x̄, 0) which have locally closed graph at (x̄, 0). Let r̃ > 0 be such that B2r̃(x̄) ⊆ O and
suppose that

lim
x→x̄

dist(0, T (x)) = 0. (3.26)

Then there exist constants δ̂ > 0 and σ > 0 such that for every y ∈ Bσ(0) there exists any sequence
{xk} generated by Algorithm 2 with initial point x0 ∈ Bδ̂(x̄), which is convergent to a solution x of
(1.1) for y.

Proof. Since gphT is locally closed at (x̄, 0) and T is metrically regular at (x̄, 0), there exist constants
rx̄, r0 > 0 such that T is metrically regular at (x̄, 0) on Brx̄(x̄) × Br0(0) with constant κ and
gphT ∩ (Brx̄(x̄)×Br0(0)) is closed. Since g(·− x̄) is Lipschitz continuous on O+ x̄, applying Lemma
2.2 we assume that the mapping P k

x̄ (·) is metrically regular at (x̄, 0) on Brx̄(x̄)×Br0(0) with constant
κ

1− λκ
.

Let η > 1 and supk λk := λ ∈ (0, 1) be such that κλ ≤ 1

η + 3
. Choose rx̄ ∈ (0, r̃) and rȳ ∈ (0, r0)

such that
rx̄
2

≤ r̃ and rȳ − rx̄λ

2
> 0. Then put

r̄ = min
{2rȳ − rx̄λ

2
,
rx̄(1− 3κλ)

4κ

}
> 0.

It follows that

λ < min
{2rȳ

rx̄
,
1

3κ

}
.

Let δ > 0 be such that

δ ≤ min
{rx̄

2
,

r̄

3λ
,
rȳ
3λ

, 1
}
.

Let y ∈ Bσ(0). Since (3.26) holds, we can take 0 < δ̂ ≤ δ so that for each x0 ∈ Bδ̂(x̄) there exists ȳ
near 0 such that ȳ ∈ T (x̄), that is, ȳ ∈ P k

x̄ (·). Then for such ȳ we have that y ∈ Bσ(ȳ) so that

∥y − ȳ∥ ≤ σ < λδ.

It follows that Brȳ (ȳ) ⊆ Br0(0) and hence gphT ∩(Brx̄(x̄)×Brȳ (ȳ)) is closed. Thus, by the property
of P k

x̄ (·), we conclude that P k
x̄ (·) is metrically regular at (x̄, ȳ) on Brx̄(x̄) × Brȳ (ȳ) with constant

κ

1− λκ
. Now, it is routine to justify that all assumptions in Theorem 3.1 hold. Thus, Theorem 3.1

is applicable to complete the proof of the Corollary 3.1.
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4 Numerical Experiment

In this section, we will provide a numerical example to validate the uniformity of semi-local
convergence result of the GG-PPA.

Example 4.1. Let X = Y = R, x0 = −0.2, y = 0.1, η = 1.5, λ = 0.3 and κ = 0.2. Define a set-
valued mapping T on R by T (x) = {3x+1, 4}. Consider a sequence of Lipschitz continuous function

gn with gn(0) = 0, which is defined by gn(x) = −1

2
x. Then Algorithm 2 generates a sequence which

converges to x∗ = −0.3 for 0.1.

From the statement, it is obvious that T is metrically regular at (−0.2, 0.4) ∈ gph T and gn is
Lipschitz continuous in the neighborhood of origin with Lipschitz constant supk λk := λ = 0.3.
Consider T (x) := 3x+ 1. Thus from (1.3), we have that

Dk(xk) =
{
dk ∈ R : y ∈ gk(dk) + T (xk + dk)

}
=

{
dk ∈ R : dk =

−(30xk + 9)

25

}
.

On the other hand, if Dk(xk) ̸= ∅ we obtain that

y ∈ gk(xk+1 − xk) + T (xk+1) ⇒ xk+1 =
−(5xk + 9)

25
.

Thus from (3.25), we obtain that

∥dk∥ ≤ ηκλ

1− 3κλ
∥dk−1∥.

For the given values of η, λ, κ, we see that
ηκλ

1− 3κλ
=

9

82
< 1. Thus, this implies that the sequence

generated by Algorithm 2 converges linearly. Then the following Table 1, obtained by using Mat
lab program, indicates that the solution of the assumed generalized equation is -0.3 for 0.1 when
k = 10.

Table 1. Finding a solution of generalized equation

x T(x)

-0.2000 0.4000
-0.3200 0.0400
-0.2960 0.1120
-0.3008 0.0976
-0.2998 0.1005
-0.3000 0.0999
-0.3000 0.1000
-0.3000 0.1000
-0.3000 0.1000
-0.3000 0.1000
-0.3000 0.1000
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Fig. 1. The graph of T (x)

5 Concluding Remarks

Semi-local and local convergence results for the GG-PPA, defined by Algorithm 2, are presented
under yellow the assumptions that η > 1, T is metrically regular at a given point which have locally
closed graph and a sequence of Lipschitz continuous functions gk with gk(0) = 0. We observe that
in the case when gk(u) = λku, Algorithm 2 is reduced to the classical Gauss-type proximal point
algorithm introduced by Rashid in his PhD thesis [4, Algorithm 4.2.1]. This result improves and
extends corresponding one [1][4][9][13].
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