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Abstract

In Susceptible-Infected-Removed-Susceptible (SIRS) compartmental models, we can suppose that
a removed population has lost its immunity after being healed from an infection, and then, it moves
to the susceptible compartment. In this paper, we devise a multi-regions SIRS discrete epidemic
model which describes infection dynamics in regions which are connected with their neighbors by
any kind of anthropological movement. We introduce controls variables into our model to show
the effectiveness of movements restrictions of the infected individuals coming from the vicinity
of a region we target by a control strategy we call here by the travel-blocking vicinity optima
lcontrol strategy. A gridded surface of colored cells is presented to illustrate the whole domain
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affected by the epidemic while each cell represents a sub-domain or region. The infection is
supposed starting from only one cell located in one of the borders of the surface, while the
region aiming to control is supposed to be located in the center as an example to show the
effectiveness of the travel-blocking vicinity optimal control approach when it is applied to a cell
with 8 neighboring cells.

Keywords: Multi-regions model; SIRS epidemic model; discrete-time model; optimal control; vicinity;
travel-blocking.

2010 Mathematics Subject Classification: 53C25, 83C05, 57N16.

1 Introduction

Susceptible-Infected-Removed-Susceptible (SIRS) epidemic models have been applied to situations
in which it has been supposed that a removed population could move to the susceptible compartment
after being healed from an infection due to the loss of its immunity. This kind of compartmental
models is very useful to model the evolution of many phenomena, see as examples, subjects treated
in [1],[2] and [3].

Zakary et al. have devised in 2016, a new modeling approach based on multi-regions discrete-
time and continuous-time SIR models [4],[5],[6] and [7], aiming to describe the spatial-temporal
evolution of epidemics which emerge in different geographical regions and to show the influence of
one region on an other region via infection travel. The authors have also sought reasonable control
strategies, including awareness, vaccination and travel-blocking approaches which could prevent
some particular infectious diseases such as HIV/AIDS and Ebola, or epidemics and pandemics in
general, from spreading more.

Here, we suppose the region we aim to control, is infected due to movements of infected people
which enter only from its neighboring regions, with the hypothesis that in all regions, the removed
individuals lose an amount of their immunity.

For this, we suggest here, a new modeling approach which is based on a multi-regions SIRS discrete-
time epidemic model describing the spatial-temporal spread of an epidemic which emerges in a global
domain of interest Ω represented by a gridded surface of colored cells which are uniform in size.
These cells are supposed to be connected by movements of their populations, and they represent
sub-domains of Ω or regions, noting that only one of these cells, that is targeted by our control
strategy.

In [4], each region was represented by a sub-domain (Ωj)j=1,..,p while here, each region or cell
is denoted by (Cpq)p,q=1,..,M .

For this, we assume that the epidemic can be transmitted and propagated by movements of
people, from one spatial cell Cpq, to its neighbors or cells belonging to its vicinity. In fact, in a
geographical scale relatively small, some infectious diseases such as African Swine Fever [8], Bovine
Viral Diarrhoea virus [9],[10] and Foot-and-Mouth Disease [11], follow that pattern of spread, and
Cpq can represent a farm, while in a large geographical scale such as in the case of Ebola Virus
[6], SARS [12], HIV/AIDS [7],[13],[14], and ZIKA Virus [15], a cell Cpq can represent a city or
country. Thus, the multi-cells model with the vicinity optimal control strategy can represent good
approaches for infection dynamics studies regardless of the area size. In fact, the optimization
criteria are chosen here in a way to restrict the movement of people coming from one or more cells
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and entering other cells. Explicitly, we seek to minimize an objective function associated to Cpq and
subject to its associated discrete-time system, with optimal control functions introduced to show
the effectiveness of the travel-blocking operations followed between Cpq and its neighbors. Vpq is the
vicinity set, composed by all neighboring cells of Cpq and which are denoted by (Crs)r=p+k,s=q+k′

with (k, k′) ∈ {−1, 0, 1}2 except when k = k′ = 0. Note also as we have mentioned before, these
cells are attached just in the grid, but in reality, they are not necessarily joined together. Thus,
the travel-blocking vicinity optimal control approach will show the impact of the optimal blocker
controls on reducing contacts between susceptible people of the targeted cell Cpq and infected people
coming from one cell Crs or more cells from Vpq.

The paper is organized as follows: Section 2. presents the discrete-time multi-cells SIRS epidemic
system based a colored cell modeling approach. In Section 3., we announce a theorem of necessary
conditions and characterization of the sought optimal controls functions related to the travel-
blocking vicinity optimal control approach. Finally, in section 4., we provide simulations of the
numerical results for an example of 100 cells when an infection starts from one cell of them and
which has 5 neighboring cells, while aiming to control only one cell with 8 neighboring cells.

2 The Mathematical SIRS Model

Explicitly, we consider a multi-regions discrete-time epidemic model which describes SIRS dynamics
within a global domain of interest Ω which in turn is divided to M2 regions or cells, uniform in size.

In other words, Ω =

M∪
p,q=1

Cpq with Cpq denoting a spatial location or region.

We note that (Cpq)p,q=1,...,M could represent a country, a city or town, or a small domain such
as neighborhoods, which belong respectively to the global domain of interest Ω which could in turn
represent a part of continent or even a whole continent, a part of country or a whole country, etc.

The S-I-R populations associated to a cell Cpq are noted by the states S
Cpq

i , I
Cpq

i , and R
Cpq

i ,
and we note that the transition between them, is probabilistic, with probabilities being determined
by the observed characteristics of specific diseases. In addition to the death, there are population
movements among these three epidemiological compartments, from time unit i to time i + 1. We
assume that the susceptible individuals not yet infected but can be infected only through contacts
with infected people from Vpq (Vicinity set or Neighborhood of a cell Cpq), thus, the infection
transmission is assumed to occur between individuals present in a given cell Cpq, and is given by∑

Crs∈Vpq

βrsI
Crs
i S

Cpq

i

where βrs is the constant proportion of adequate contacts between a susceptible from a cell Cpq

and an infective coming from its neighbor cell Crs ∈ Vpq with
Vpq=

{
Crs ∈ Ω/r = p+ k, s = q + k′, (k, k′) ∈ {−1, 0, 1}2

}
\ Cpq.

SIR dynamics associated to domain or cell Cpq are described based on the following multi-cells
discrete model
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For p, q = 1, . . . ,M , we have

S
Cpq

i+1 = S
Cpq

i − βpqI
Cpq

i S
Cpq

i −
∑

Crs∈Vpq
βrsI

Crs
i S

Cpq

i

−dS
Cpq

i + θR
Cpq

i (2.1)

I
Cpq

i+1 = I
Cpq

i + βpqI
Cpq

i S
Cpq

i +

∑
Crs∈Vpq

βrsI
Crs
i S

Cpq

i

− (α+ γ + d) I
Cpq

i (2.2)

R
Cpq

i+1 = R
Cpq

i + γI
Cpq

i − (d+ θ)R
Cpq

i (2.3)

i = 0, ..., N − 1

with S
Cpq

0 > 0, I
Cpq

0 > 0 and R
Cpq

0 > 0 are the given initial conditions.

d > 0 is the natural death rate while α > 0 is the death rate due to the infection, γ > 0 denotes the
natural recovery rate from infection and θ > 0 denotes the immunity loss rate. By assuming that
is all regions are occupied by homogeneous populations, α, d and γ are considered to be the same
for all cells of Ω.

3 The Travel-Blocking Vicinity Optimal Control
Approach

The main goal of the travel-blocking vicinity optimal control approach is to restrict movements of
infected people coming from the set Vpq and aiming to reach the cell Cpq. For this, we introduce
controls upqCrs variables which characterize the travel-blocking strategy operation and aims to limit
contacts between susceptible of the targeted cell Cpq and infected individuals coming from cells Crs

which belong to Vpq [16]. Then, for a given cell Cpq in Ω, the discrete-time system (2.1)-(2.2)-(2.3)
becomes

S
Cpq

i+1 = S
Cpq

i − βpqI
Cpq

i S
Cpq

i −
∑

Crs∈ Vpq
upqCrs
i βrsI

Crs
i S

Cpq

i

−dS
Cpq

i + θR
Cpq

i (3.1)

I
Cpq

i+1 = I
Cpq

i + βpqI
Cpq

i S
Cpq

i +

∑
Crs∈Vpq

upqCrs
i βrsI

Crs
i S

Cpq

i

− (α+ γ + d) I
Cpq

i (3.2)

R
Cpq

i+1 = R
Cpq

i + γI
Cpq

i − (d+ θ)R
Cpq

i (3.3)

i = 0, ..., N − 1
Since our goal concerns the minimization of the number of the infected people and the cost of the
vicinity optimal control approach, we consider an optimization criterion associated to cell Cpq and
we define it by the following objective function

Jpq(u) = A1I
Cpq

N

+

N−1∑
i=0

A1I
Cpq

i +
∑

Crs∈ Vpq

Ars

2
(upqCrs

i )2

 (3.4)

where A1 > 0 and Ars > 0 are the constant severity weights associated to the number of infected

individuals and controls respectively. The control functions u =
(
upqCrs
i

)
Crs∈Vpq , i=1,...,N−1

are
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defined in the control set Upq associated to the cell Cpq, defined by

Upq = {u measurable/umin ≤ upqCrs
i ≤ umax, umax < 1, umin > 0,

i = 0, ..., N − 1, Crs∈Vpq} (3.5)

Then, we seek optimal controls upqCrs∗ such that

Jpq(u
∗) = min{Jpq(u)/u ∈ Upq}

The sufficient conditions for the existence of optimal controls in the case of discrete-time epidemic
models have been announced in [4],[5],[17] and [18].

As regards to the necessary conditions and the characterization of our discrete optimal control,
we use a discrete version of Pontryagin’s maximum principle [4],[5],[19].

For this, we define an Hamiltonian H associated to a cell Cpq by

H = A1I
Cpq

i +

∑
Crs∈ Vpq

Ars

2
(upqCrs

i )2

+ ζ
Cpq

1,i+1

[
S

Cpq

i − βpqI
Cpq

i S
Cpq

i

−
∑

Crs∈ Vpq
upqCrs
i βrsI

Crs
i S

Cpq

i − dS
Cpq

i + θR
Cpq

i

]
+ ζ

Cpq

2,i+1

[
I
Cpq

i + βpqI
Cpq

i S
Cpq

i

+

∑
Crs∈ Vpq

upqCrs
i βrsI

Crs
i S

Cpq

i − (α+ γ + d) I
Cpq

i

]
+ ζ

Cpq

3,i+1

[
R

Cpq

i + γI
Cpq

i − (d+ θ)R
Cpq

i

]
i = 0, ..., N − 1
with ζ

Cpq

k,i , k = 1, 2, 3, the adjoint variables associated to S
Cpq

i , I
Cpq

i and R
Cpq

i respectively, and
defined based on formulations of the following theorem.

Theorem 3.1. (Necessary Conditions and Characterization)

Given optimal controls upqCrs∗ and solutions SC∗
pq , IC

∗
pq and RC∗

pq , there exists ζ
Cpq

k,i , i = 0...N, k =
1, 2, 3, the adjoint variables satisfying the following equations

△ζ
Cpq

1,i = −

(1− d) ζ
Cpq

1,i+1 +

βpqI
Cpq

i +
∑

Crs∈Vpq

upqCrs
i βrsI

Crs
i

(
ζ
Cpq

2,i+1 − ζ
Cpq

1,i+1

)
(3.6)

△ζ
Cpq

2,i = −
[
A1 + βpqS

Cpq

i

(
ζ
Cpq

2,i+1 − ζ
Cpq

1,i+1

)
+(1− (α+ γ + d)) ζ

Cpq

2,i+1

+γζ
Cpq

3,i+1

]
(3.7)

△ζ
Cpq

3,i = −
[
(1− d) ζ

Cpq

3,i+1 + θ
(
ζ
Cpq

1,i+1 − ζ
Cpq

3,i+1

)]
(3.8)
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with ζ
Cpq

1,N = 0, ζ
Cpq

2,N = A1, ζ
Cpq

3,N = 0, are the transversality conditions.
In addition

u
pqC∗

rs
i = min{max{umin,

(ζ
Cpq

1,i+1 − ζ
Cpq

2,i+1)βrsI
C∗

rs
i S

C∗
pq

i

Ars
}, umax}, (3.9)

i = 0, ..., N − 1

Proof. Using a discrete version of Pontryagin’s Maximum Principle in [4],[5],[19], and setting SCpq =
SCpq∗, ICpq = ICpq∗, RCpq = RCpq∗ and upqCrs = upqCrs∗ we obtain the following adjoint equations

△ζ
Cpq

1,i = − ∂H
∂S

Cpq

i

= −

(1− d) ζ
Cpq

1,i+1 +

βpqI
Cpq

i +
∑

Crs∈Vpq

upqCrs
i βrsI

Crs
i

(
ζ
Cpq

2,i+1 − ζ
Cpq

1,i+1

)
△ζ

Cpq

2,i = − ∂H
∂I

Cpq

i

= −
[
A1 + βpqS

Cpq

i

(
ζ
Cpq

2,i+1 − ζ
Cpq

1,i+1

)
+ (1− (α+ γ + d)) ζ

Cpq

2,i+1 +γζ
Cpq

3,i+1

]
△ζ

Cpq

3,i = − ∂H
∂R

Cpq

i

= −
[
(1− d) ζ

Cpq

3,i+1

]
with ζ

Cpq

1,N = 0, ζ
Cpq

2,N = A1, ζ
Cpq

3,N = 0; the transversality conditions.

In order to obtain the optimality condition, we calculate the derivative of H with respect to upqCrs
i ,

and we set it equal to zero

∂H
∂upqCrs

i

= Arsu
pqCrs
i − ζ

Cpq

1,i+1βrsI
Crs
i S

Cpq

i + ζ
Cpq

2,i+1βrsI
Crs
i S

Cpq

i = 0

Then, we obtain

upqCrs
i =

(ζ
Cpq

1,i+1 − ζCpq
2,i+1)βrsI

Crs
i S

Cpq

i

Ars

By the bounds in Upq, we finally obtain the characterization of the optimal controls u
pqC∗

rs
i as

u
pqC∗

rs
i = min{max{umin,

(ζ
Cpq

1,i+1 − ζ
Cpq

2,i+1)βrsI
C∗

rs
i S

C∗
pq

i

Ars
}, umax}, (3.10)

i = 0, ..., N − 1, , Crs ∈ Vpq
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4 Numerical Results and Discussions

4.1 Brief presentation

In this section, we provide numerical simulations to demonstrate our theoretical results in the case
when the studied domain Ω, represent the assembly of M2 regions or cells (cities, towns, ...). A code
is written and compiled in MATLAB using data cited in Table 1. The optimality systems are solved
using an iterative method where at instant i, the states S

Cpq

i , I
Cpq

i , and R
Cpq

i with an initial guess,

are obtained based on a progressive scheme in time, and their adjoint variables ζ
Cpq

l,i ,l = 1, 2, 3 are
obtained based on a regressive scheme in time because of the transversality conditions. Afterwards,
we update the optimal controls values (3.9) using the values of state and costate variables obtained
in the previous steps. Finally, we execute the previous steps till a tolerance criterion is reached.
In order to show the importance of our work, and without loss of generality, we consider here that
M = 10 and then we present our numerical simulations in a 10× 10 grid and which represents the
global domain of interest Ω.

At the initial instant i = 0, susceptible people are homogeneously distributed with 50 individuals
in each cell except at the upper border cell C15, where we introduce 10 infected individuals and 40
susceptible ones.

In all of the figures below, the redder part of the color bars contains larger numbers of individuals
while the bluer part contains the smaller numbers.

In the following, we discuss with more details, the cellular simulations we obtain, in the case
when there are yet no controls.

Table 1. Parameters values of α, β, γ, d and θ associated to a cell Cpq, p, q = 1, ...,M ,
and which utilized for the resolution of all multi-regions discrete-time systems

(2.1)-(2.2)-(2.3) and (3.1)-(3.2)-(3.3), and then leading to simulations obtained from

Figure 1 to Figure 6, with the initial conditions S
Cpq

0 , I
Cpq

0 and R
Cpq

0 associated to any
cell Cpq of Ω.

S
Cpq

0 I
Cpq

0 R
Cpq

0 α β γ d θ

50 0 0 0.002 0.0001 0.003 0.0001 0.0002

4.2 Cellular simulations without controls

In this section, Figs 1,2 and 3. depict dynamics of the susceptible population in the case when there
is yet no control strategy, followed for the prevention of the epidemic, and we note that in all these
figures presented here, simulations give us an idea about the spread of the disease in the case when
the epidemic starts in a cell Cpq with p = 1, q = 5 (located in the upper border of Ω). It represents
the case when the vicinity set Vpq associated to the source cell of infection, contains 5 cells).

For instance, in Figure 1, if we suppose there are 40 susceptible people in cell C15 located at
the upper border of Ω, and 50 in each other cell, we can see that at instant i = 150, the number
SC15 becomes less important and takes a value close/or equal to 20, while SCpq in cells of V15

take values close/or equal to 30, and as we move away from V15 = {C14, C16, C24, C25, C26}, SCpq

remains important. At instant i = 300, we can observe that in most of cells, SCpq becomes less
important, taking values between 0 and 10 while in other cells, it takes values between 20 and 40
except SC1010 and its neighboring cells conserve their values in 50 since it is located far away from
the source of infection. At instant i = 450, SCpq becomes zero except at the corners and in most
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cells at the borders of Ω because these cells have vicinity sets smaller than other cells. Finally at
last instants, SCpq converge to zero in all cells.
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Fig. 1. SCpq behavior in the absence of controls

Fig 2. illustrate the rapid propagation of the infection when the disease starts from cell C15, and
when it starts from the center of Ω respectively. In Fig 4., if we suppose there are 10 infected people
in cell C15, and no infection in all other cells, we observe that at instant i = 150, the number IC15

increases to bigger values close/or equal to 30 in C22, while ICpq in cells of V15 take values close/or
equal to 20, and as we move away from V15, ICpq remains less important. At instant i = 300,
we can see that in most of cells, ICpq becomes more important, taking values between 30 and 35
in cells which are close to cells with 8 neighboring cells, while in few other cells, it takes values
between 0 and 20. From these numerical results, we can deduce that once the infection arrives to
the center or to the cells with 8 cells in their vicinity sets, the infection becomes more important
compared to the case of the previous instant. At instant i = 450, ICpq takes values close/or equal
to 20 in the cell from where the epidemic has started, and 25 in V15 and near to it, and as we
move away towards the center and further regions, infection is important with the presence of more
than 30 infected individuals in each cell except the ones in the 3 opposite corners even at instant
i = 600. In fact, at the center of Ω, the number of infected people which has increased to 35 at
the previous instant, has been reduced, because once a cell becomes highly infected, it loses an
important number of individuals which die or recover naturally after. All cells Cpq become highly
infected and the number ICpq becomes less and less important at further instants, noting that at
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i = 900, a large number of infected individuals, has decreased because many ICpq have died or
moved to the removed compartment.
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Fig. 2. ICpq behavior in the absence of controls

As we can observe in Fig 3., when we have supposed there are 40 susceptible people in cell C15,
and 50 in each other cell, we can see here that simultaneously, at instant i = 150, the number RC15

and RCpq in cells of V15 are close/or equal to only 1 or two removed people, and as we move away
from V15, R

Cpq becomes zero. Similarly, at instant i = 300, the number RCpq is not zero and takes
values between 1 and 3, except for distant cells where it remains zero. At instant i = 450, RCpq

takes values between 3 and 5 except at the opposite 3 corners and some cells at the borders where
it does not exceed 2 removed people. Finally, at further instants RCpq converge to 5 in most cells
at i = 600 and in all cells at i = 900 since as more we go forward in time, some people acquire
immune responses that help them to cure naturally from the disease.

4.3 Cellular simulations with controls

Figs 4, 5 and 6. depict dynamics of the SIR populations when the travel-blocking vicinity optimal
control strategy is followed.

In order to show the importance of the optimal control approach suggested in this paper, we take
the example of a cell which has 8 neighboring cells, and as done in the previous part, we investigate
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also here, the results obtained when the disease starts from cell C15 located in the upper border of
Ω. As an example, we suppose that the cell we aim to control is C55.
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Fig. 3. RCpq behavior in the absence of controls.

In Fig 4., as supposed also above, there are 40 susceptible people in cell C15, and 50 in each other
cell. We can see that at instant i = 150, the numbers SC15 and SCpq are at most the same as in the
case when there was no control strategy. At instant i = 300, we can observe that in most of cells,
SCpq becomes less important, taking values between 0 and 10 in cells that are close to V15, while
in other cells, and as more we move away from V15, it takes values between 20 and 40. However,
the controlled cell C55 contains 45 susceptible people. In fact, even at instant i = 150, the number
of susceptible people in the controlled cell conserved its value in 50, which is not also exactly the
same as in the case when there was yet no control strategy since in Figure 2., SCpq has decreased
more significantly. Thus, we can deduce that the travel-blocking vicinity optimal control strategy
has proved its effectiveness earlier in time. At instants i = 450, 600 and i = 900, SCpq is also the
same as done before but fortunately again, we reach our goal in keeping the number SC55 close to
its initial value despite some small decrease. Thus, this demonstrates that most of movements of
infected people coming from the vicinity set V C55 , have been restricted in final times.

In Fig 5., when the disease starts from cell C15, as supposed in the section above, there are 10
infected people in cell C15, and no infected in each other cell, and we can deduce that at instant
i = 150, the numbers IC15 and ICpq are at most the same, as shown in the absence of controls. At
instant i = 300, we can see that in most of cells, ICpq is similar to the case in Figure 3., and it is also
more important, taking values between 20 and 30 while in other cells, it takes values between 0 and
10 as shown in the previous subsection. However, the controlled cell C55 is still not really infected
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and contains only about one infected individual. At instant i = 450, ICpq takes values around 20 in
neighboring cells which belong to V15, and about 30 in other cells except at the 3 opposite corners
and borders of Ω. At instant i = 600, most cells Cpq begin to lose some infected individuals due
to natural recovery and the number ICpq becomes less and less important at further instants while
IC55 does not exceed 2 infected individuals.

In Fig 6., when we suppose there are 40 susceptible people in cell C15, and 50 others in each other
cell, we can see that simultaneously, at instant i = 150, the number RC15 takes a value close/or
equal to 5, while RCpq in cells of V15 are zero, and as we move away from V15, R

Cpq is still zero.
Similarly, at instant i = 300, the number RCpq is zero at the 3 opposite corners and borders of Ω
while it takes values between 1 and 3 in other cells, but RC55 is still very close to zero since very
few people who have been infected there. At instant i = 450, RCpq takes values between 2 and 4
except at the corners and borders while C55 is still not containing more than 1 or 2 people in its
removed compartment. Finally at last instants, RCpq converge to 4 at i = 600 in all cells except
in C55, and between 5 or 6 in all cells at i = 900 and a number of individuals close to zero in C55

since not many individuals have been infected to move to the removed compartment.
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Fig. 4. Cpq behavior in the presence of optimal controls (3.9)
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Fig. 5. ICpq behavior in the presence of optimal controls (3.9)
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Fig. 6. RCpq behavior in the presence of optimal controls (3.9)
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Fig 7. depicts shapes of the optimal controls u55Crs with (Crs)r=5+k,s=5+k′ , k, k′ ∈ {−1, 0, 1} except
when k = k′ = 0, and we mention that the optimal controls associated to the value Ars = 103 are
the ones utilized in simulations of Figures 4., 5. and 6. We observe that the optimal control whose
severity weights are important, take smaller values.
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Fig. 7. The optimal controls (3.9), associated to cells which belong to V55

This is a result which can be deduced directly from the characterization (3.9), and in that case, the
optimal controls are more effective in reducing the number of contacts between susceptible people
and infected ones, and then minimizing the number Ipq as we can see more clearly in Figure 8. (a),
the infected population associated to the targeted cell C55, take minimal values when Ars is less
important. The case when the optimal controls are minimal, is also beneficial for keeping the costs
minimal as seen in Fig 8. (b).
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Fig. 8. (a) I55 behavior with respect to Ars. (b) Costs with respect to Ars

5 Conclusion

We devised a multi-regions SIRS discrete-time model which describes infection dynamics due to
the presence of an epidemic in one region and which spreads to other regions via travel. Regions
have been assembled in one gridded surface of cells where each cell represents a region, in order
to exhibit the impact of infection which comes from the vicinity of a cell. In fact, by this kind of
representations, we have succeeded to show the effectiveness of the travel-blocking vicinity optimal
control approach when it is applied to only one cell, an then, we demonstrated that when we restrict
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movements of infected people coming from the vicinity of one targeted cell, we can keep this cell
safe, and without/or with no important infection. The cellular simulations in the numerical results
section, have illustrated the case of 100 cells threatened by infection coming from cell called C15

located in the upper border of the global domain of interest Ω, while the targeted cell aiming to
control, was chosen exactly in the center, called C55. The travel-blocking vicinity optimal control
strategy has shown its effectiveness in preventing the infection from entering the targeted cell while
it was emerging in other cells where there were no controls.
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[8] Sánchez-Vizcáıno JM, Mur L, & Mart́ınez-López B. African swine fever: An epidemiological
update. Transboundary and emerging diseases. 2012;59(s1):27-35.

[9] Fray MD, Paton DJ, Alenius S. The effects of bovine viral diarrhoea virus on cattle
reproduction in relation to disease control. Animal Reproduction Science. 2000;60:615-627.

15



Abouelkheir et al.; BJMCS, 20(4), 1-16, 2017; Article no.BJMCS.31355

[10] Thiaucourt F, Yaya A, Wesonga H, Huebschle OJB, Tulasne JJ, Provost A. Contagious bovine
pleuropneumonia: A reassessment of the efficacy of vaccines used in Africa. Annals of the New
York Academy of Sciences. 2000;916(1):71-80.

[11] Grubman MJ, Baxt B. Foot-and-mouth disease. Clinical Microbiology Reviews. 2004;17(2):465-
493.

[12] Afia N, Manmohan Singh, David Lucy. Numerical study of SARS epidemic model with the
inclusion of diffusion in the system. Applied Mathematics and Computation. 2014;229: 480-
498.

[13] Zakary O, Rachik M, Elmouki I. On the impact of awareness programs in HIV/AIDS
prevention: An SIR model with optimal control. Int J Comput Appl. 2016;133(9):1-6.

[14] Samanta GP. Permanence and extinction of a nonautonomous HIV/AIDS epidemic model with
distributed time delay. Nonlinear Analysis: Real World Applications. 2011;12(2):1163-1177.

[15] Chunxiao D, Tao N, Zhu Y. A mathematical model of Zika virus and its optimal control. In
Control Conference (CCC), 2016 35th Chinese, TCCT. 2016; 2642-2645.

[16] Mateus ALP, Otete HE, Beck CR, Dolan GP, Nguyen-Van-Tam JS. Effectiveness of travel
restrictions in the rapid containment of human influenza: A systematic review. Bulletin of the
World Health Organization. 2014;92(12):868-880D.

[17] Wandi D, Hendon R, Cathey B, Lancaster E, Germick R. Discrete time optimal control applied
to pest control problems. Involve, a Journal of Mathematics. 2014;7(4):479-489.

[18] Dabbs K. Optimal control in discrete pest control models. Thesis. trace.tennessee.edu; 2010.

[19] Sethi SP, Thompson GL. What is optimal control theory? Springer, US. 2000;1-22.
——————————————————————————————————————————————–
c⃝ 2017 Abouelkheir et al.; This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://sciencedomain.org/review-history/17845

16

http://creativecommons.org/licenses/by/4.0

	Introduction
	The Mathematical SIRS Model
	The Travel-Blocking Vicinity Optimal Control Approach
	Numerical Results and Discussions
	Brief presentation
	Cellular simulations without controls
	Cellular simulations with controls

	Conclusion

