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Deep learning models trained from smart meter data have proven to

be effective in predicting socio-demographic characteristics of electricity

consumers, which can help retailers provide personalized service to electricity

customers. Traditionally, deep learning models are trained in a centralized

manner to gather large amounts of data to ensure effectiveness and

efficiency. However, gathering smart meter data in plaintext may raise

privacy concerns since the data is privately owned by different retailers.

This indicates an imminent need for privacy-preserving deep learning. This

paper proposes several secure multi-party computation (MPC) protocols

that enable deep learning training and inference for electricity consumer

characteristics identification while keeping the retailer’s raw data confidential.

In our protocols, the retailers secret-share their raw data to three

computational servers, which implement deep learning training and inference

through lightweight replicated secret sharing techniques. We implement

and benchmark multiple neural network models and optimization strategies.

Comprehensive experiments are conducted on the Irish Commission for

Energy Regulation (CER) dataset to verify that our MPC-based protocols have

comparable performance.

KEYWORDS

machine learning, secure multi-party computation, replicated secret sharing, smart meter,

characteristics identification

1 Introduction

Nowadays, smart meters are widely applied in residential households, which
allow both customers and retailers to learn a large amount of accurate electricity
consumption data (Wang et al., 2015; Mallapuram et al., 2017). In general, these fine-
grained data are closely bound up with electricity consumption behavior of customers
(Liang et al., 2019). Data analytics can extract the deeper insights from smart meter
data, which can be used to enhance efficiency, save energy and improve smart
grid systems. A vast amount of studies in machine learning algorithms have
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been applied to smart meter data, including classification,
regression, clustering, and sparse coding (Chicco, 2016).
Applications include non-technical loss detection
(Jokar et al., 2015; Júnior et al., 2016), price strategy
(Chen et al., 2016; Li et al., 2016), demand response program
enrollment (Wang et al., 2016a; Chen and Liu, 2017), load
forecasting (Taieb et al., 2016) and the electricity consumer
characteristics identification (Beckel et al., 2014).

Understanding the relationship between electricity
consumer characteristics and smart meter data benefits most
participants in the electricity market. Through the estimated
electricity consumer characteristics, retailers can infer consumer
consumption patterns and thus improve demand response
programs, provide more personalized services and promote
energy efficiency. There is no doubt that this will significantly
enhance the competitiveness of retailers who are proficient in
this capability. On the other hand, customers will enjoy better
services and save energy due to the technological advances.

In the literature, several data analysis methods are
applied to extract mathematical models that enable the
identification of electricity consumer characteristics from
smart meter data. Generally, these methods consist of three
phases: feature extraction, feature selection and classification
or regression. In order to infer the socio-demographic
characteristics of electricity consumers from smart meter data,
Beckel et al. (2013) propose a automatic classification system
called CLASS, and the characteristic prediction accuracies
of this system are higher than 70%. Viegas et al. (2016)
estimate the characteristics of consumers by transparent
fuzzy models. Wang et al. (2016b) utilize non-negative sparse
coding to extract hidden consumption patterns and implement
classification using support vector machine (SVM). Zhong
and Tam (2014) achieve the classification of customers by
discrete Fourier transform. The majority of these works rely
on manually extracting features, while the manually extracted
features may not effectively model the high variability and
nonlinearity of individual load profiles. To solve this problem,
the emerging deep learning techniques (LeCun et al., 2015) are
applied to electricity consumer characteristics identification.
Wang et al. (2018) leverage convolutional neural networks
(CNN) to extract the highly nonlinear features from massive
load profiles, and demonstrate the effectiveness by experiments
on the Irish CER dataset. Lin et al. (2021) combine CNN and
long short-term memory (LSTM) to predict the household
characteristics.

Training an accurate deep learning model requires a large
amount of available data. However, smart meter data is privately
held by different retailers. In order to solve this problem, the
previous works assume that there is a server having access to
the raw data of retailers so that it can provide machine learning
services in a centralized manner. Note that smart meter data
and socio-demographic characteristics are sensitive information
for consumers. Information leakage may lead to dissatisfaction

from customers and public opinion attacks from competitors.
As a result, retailers may not reveal raw data to the server due
to privacy concerns and potential business risks. In addition,
governments are also pushing for strict regulation of data privacy.
For instance, the General Data Protection Regulation (GDPR) is
already in effect in the European Union.

Secure multi-party computation (MPC) (Yao, 1986;
Goldreich et al., 2019) provide a solution to these privacy-
preserving issues, which is an important cryptographic technique
that is commonly employed in previous studies for privacy-
preserving machine learning, such as SecureML (Mohassel and
Zhang, 2017), ABY3 (Mohassel and Rindal, 2018), SecureNN
(Wagh et al., 2019) and Falcon (Wagh et al., 2021). Secure
multi-party computation enables multiple parties P1,…,Pn to
collectively compute a function fwith their private input x1,…,xn
and without revealing any information except the output. In
this paper, we leverage replicated secret sharing techniques to
construct MPC protocols for deep learning. The secret sharing
based protocols require that all computing parties stay online
during the execution process and have sufficient computing
power. Consider that some retailers may not be able to meet
both requirements, we assume that retailers distribute smart
meter data in the form of secret shares to three servers, which
provide the deep learning training and inference services. Such
an outsourced computation pattern has proven to be very
practical (Zhang et al., 2020; Zhang et al., 2021; Lu et al., 2022).

1.1 Our contributions

We summarize our contributions as follows.

• We design several MPC protocols that enable privacy-
preserving deep learning training and inference for
electricity consumer characteristics identification while
keeping the retailer’s raw data confidential. In our protocols,
we implement twodeepneural networkmodels andmultiple
optimization strategies.
• To relieve the burden on retailers, we propose a system
architecture that allows retailers to not have to engage in
online computation. Retailers only need to upload secret
shares of their smart meter data.
• To demonstrate the practicality, we implement our
protocols based on the MP-SPDZ framework (Keller, 2020)
and conduct a series of experiments on the Irish
Commission for Energy Regulation (CER) dataset
(Commission for Energy Regulation, 2012).

1.2 MPC frameworks

In recent years, MPC has evolved from theoretical research
to provide practical privacy-preserving protocols for many
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TABLE 1 Notations used in this paper.

Symbols Descriptions

α The learning rate
B Themini-batch size
N The number of retailers
Dn The smart meter dataset of the nth retailer
D The data set consisting of all Dn
l The bit length of the arithmetic circuit
x Lowercase bold letter denotes vector
x(i) The ith element of x
[x]M A arithmetic secret sharing of x ∈ M
[x]2 A binary secret sharing of ∈ ℤ2
[x]B A vector of l binary secret sharing which encodes x ∈ ℤ2l

machine learning tasks, such as training and evaluation of linear
regression, logistic regression and neural networks (Mohassel
and Zhang, 2017; Mohassel and Rindal, 2018; Wagh et al., 2019,
2021). Here, we give a brief overview on works related to our
protocols. ABY3(Mohassel and Rindal, 2018) follow the same
blueprint as ABY(Demmler et al., 2015) by mixing replicated
secret sharing with garbled circuits. Eerikson et al. (2019)
introduce an optimization that can leverage pseudo-random
generator (PRG) to reduce the communication costs of input
sharing in replicated secret sharing. Keller and Sun, (2021)
implement purely training of neural network in MPC with 99%
accuracy. Furthermore, Keller and Sun, (2021) discuss in detail
how to implement various building block of secure computation
with replicated secret sharing.

1.3 Road map

The rest of the paper is organized as follows: we present the
problem statement in Section 2. In Section 3, we introduce basic
three-party protocol. We introduce in detail how to construct
the required secure computation building blocks in Section 4. In
Section 5, we discuss the building blocks for deep learning. We
report the experimental results in Section 6. Finally, we conclude
this paper in Section 7.

2 Problem statement

2.1 Notation

We summarize the notations used in this paper in Table 1.

2.2 Privacy-preserving deep learning

Deep learning is broadly applied in many domains, such
as language translation and image classification, often leading
to breakthroughs in each domain. The model used for deep

learning is a deep neural network, which consists of linear layers
and nonlinear layers. Linear layers, including fully connected
layers and convolutional layers, can be reduced to arithmetic
operations as multiplications and vector dot products. While
the activation functions required for the nonlinear layers,
such as ReLU functions and max-pooling functions, can be
efficiently implemented on binary circuits. Privacy-preserving
deep learning is very challenging due to it involves the “mixed”
evaluation of arithmetic and binary circuits. The previous
works have proposed two main cryptographic approaches that
can implement privacy-preserving deep learning: homomorphic
encryption (Paillier, 1999; Gentry, 2009) and MPC. The (fully)
homomorphic encryption is mainly used for computing linear
layers in two-party (client-server model) secure neural network
inference. The nonlinear layers in two-party secure neural
network inference are usually implemented via oblivious transfer
(OT) (Asharov et al., 2013) or garbled circuit (GC) (Yao, 1986),
which are important cryptographic primitives of MPC. The
studies on secure neural network training mainly focus on two
types of three-party MPC protocols (Mohassel and Rindal, 2018;
Wagh et al., 2019, 2021) for efficiency. The first have the two
computing parties performing the secure neural network
training by two-party additive secret sharing and the remaining
party generating the materials required by the two computing
parties The second utilize the three-party replicated secret
sharing to accomplish the secure neural network training. In
both scenarios, the participants who own the data are not directly
involved in the computation, but instead distribute the raw data
to the three computing parties in the form of secret shares. In this
paper, we investigate how to use the three-party replicated secret
sharing technique to construct privacy-preserving deep learning
protocols.

2.3 System architecture

This paper targets to privacy-preserving deep learning
(PPDL) for electricity consumer characteristics identification.
Our system architecture is shown in Figure 1. At the core, there
are two types of entities: the retailer and the server. Retailers
are the owner of smart meter data and wish to accomplish the
training of the deep neural network models. Since deep learning
is a data-driven analytics approach, different retailers wish to
work together to ensure the effectiveness of the models. Let
N be the number of retailers. The smart meter dataset of the
nth retailer is denoted by Dn (n ∈ {1,2,…,N}) and the dataset
consisting of all Dn is denoted by D. Traditionally, this can be
achieved through the Machine-Learning-as-a-Service (MLaaS)
architecture, which leverages the power of the computational
servers. Many major companies such as Amazon, Google, or
Microsoft all provide computational services. Since smart meter
data is privacy sensitive, retailers want to ensure confidentiality
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FIGURE 1
System architecture.

while enjoying the benefits of the computational servers. As a
result, retailers are reluctant to supply the smart meter data in
plain text, but the ciphertexts of the smartmeter data are supplied
instead. In addition, it may be impractical to keep all retailers
online at the same time to perform the active data interactions
required by the MPC protocols. Hence, our system should allow
retailers to stay offline after uploading the shares of smart meter
data.

In our system, three servers S0, S1, S2 play the role of
computing parties to ease the burden on retailers. We assume
that government or other social deterrents are sufficient to
make the servers strictly execute the protocol and not collude
with each other. Similar to the popular security designs in
recent years (Mohassel and Rindal, 2018; Wagh et al., 2021),
servers use the lightweight replicated secret sharing techniques
to collaboratively accomplish the secure deep neural network
training. The workflow of our system is as follows. Before deep
neural network training, retailers encrypt their smart meter
data by splitting it into three secret shares, which can form
three unique pairs. Retailers distribute each pair to a server.
With shared smart meter data, servers perform the training of
deep learning models by invoking various secure computation
building blocks, such as dot product, secure comparison and
oblivious selection. The trained model parameters are stored on
the server in the formof secret shares. Retailers or other users can
query the system or download the model parameters directly.

2.4 Security model

Security definition. Our protocol works under a three-party
honest-majority setting in which an adversary A can corrupt at
most one party. We assumeA takes static corruption strategy; it
decideswhich party to corrupt before executing the protocol.The
adversary is semi-honest; it faithfully follows the protocol and
attempts to learn sensitive information from protocol execution.

We use the simulation-based security definition
(Canetti, 2001; Goldreich, 2009; Araki et al., 2016) for three-
party computation (3PC). A 3PC protocol Π computes a
functionality f : ({0,1}*)3→ ({0,1}*)3. For an input tuple x⃗ =
(x0,x1,x2) where party Pi provides xi, the output is f(x⃗) =
( f0(x⃗), f1(x⃗), f2(x⃗), and Pi receives fi(x⃗). Intuitively, Π is secure
if for any corrupted party Pi, there exists a probabilistic
polynomial-time simulator Simi who can generate a view that
is indistinguishable from the one from real-world execution.
Formally, let ViewΠ

i (1
λ, x⃗) be the view of Pi, security is defined as

follows:
Definition 1. A protocol Π securely computes a deterministic

functionality f in the presence of static semi-honest adversaries
if there exist a probabilistic polynomial time simulator Simi
(i ∈ {0,1,2}) generating computationally indistinguishable view:

{Simi (1
λ,xi, fi (x⃗))}

c
≡{ViewΠ

i (1
λ, x⃗)} ,

by only taking Pi’s input xi, output fi(x⃗), and other allowed public
information (e.g., bitlength of inputs, the size of each Dn).

Three-party decision tree evaluation. Our PPDL protocols
are special cases of three-party secure computation. In our
protocols, there are three servers S0, S1 and S2 hold the secret
shares of D. The three servers perform privacy-preserving deep
learning (training and inference) using secret-sharing. Our
protocols allow the servers to learn some public information
during PPDL protocols. In particular, we allow Si to learn
some public information about each D (e.g, the number of
retailers, the size of each Dn), for which we denote as Li(D).
Formally, letFDL(D) → (F0(D),F1(D),F2(D)) be the ideal deep
learning functionality, whereFi(D) contains the shares of model
parameters and public information Li(D). A PPDL protocol Π
securely computes FDL if there exist a PPT simulator Simi such
that for any D:

{Simi (1λ,xi,Fi (D))}
c
≡{ViewΠ

i (1
λ,x)} .

Security in hybrid model. In this paper, we rely on necessary
secure computation protocols (e.g., random bit generation,
domain conversion, secure comparison and dot product) to
design our PPDL protocols. Since security of these secure
components has already been proven secure, we will directly
use their corresponding ideal functionalities in our design. This
approach is known as the hybrid model (Canetti, 2001; Hazay
and Lindell, 2010) and is commonly used in existing works.

3 Three-party MPC protocol

In this paper, we use replicated secret sharing techniques
(Mohassel and Rindal, 2018; Eerikson et al., 2019; Keller and
Sun, 2021) to construct MPC protocols for deep learning, which
can be traced back to Benaloh and Leichter, (1988). We begin by
introducing the basic secret sharing framework and then move
on to high-level building blocks.
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3.1 Secret sharing scheme

Replicated secret sharing is a variant of additive secret
sharing by appending redundant shares. As we mentioned, three
servers S0, S1 and S2 play the role of computing parties to perform
three-party MPC protocols. We denote the next and previous
servers of Si as Si−1, Si+1, i.e., the indices are computed modulo
three. The secret value x is represented as the sum of the three
secret shares: x = x0 + x1 + x2 (mod M), where xi−1 and xi+1 are
sent to Si. Such a 2-out-of-3 replicated secret sharing is denoted
as [x]M . In this paper, we setM = 2l to utilize the properties of the
ring. In general, the computation withM = 2 is known as binary
circuits, while computing with larger moduli is called arithmetic
circuits. In addition, ifM is clear from context, we will omit this
from the sharing notation.

3.2 Generating randomness

Throughout this paper, we require to generate randomness
using pseudo-random generators (PRG). In the initialization
phase, Si and Si+1 share a key of PRG so that they can generate
the same random number ri,i+1. That is, each server will hold two
PRG keys during the protocol. To generate a 3-out-of-3 additive
secret sharing of zero, each server Si compute ri−1,i and ri,i+1 and
set ri,i+1 − ri−1,i as its share. To generate a 2-out-of-3 replicated
secret sharing of a random number, each server Si compute ri−1,i
and ri,i+1 and set (ri−1,i, ri,i+1) as its share.

3.3 Input and open secret values

There are two types of inputting parties in our protocols.
The first type of inputting parties sample and distribute secret
shares from external to the servers, e,g, retailers. The second
are computing parties, i.e. Servers, who need to share secret
values for some building blocks. In our protocols, servers
sample and distribute secret shares based on the method of
Eerikson et al. (2019). If Si wish to share a secret value x, then
xi is set to zero and xi−1 is generated by Si and Si+1 using PRG.
With xi and xi−1, Si can compute xi+1 and send it to Si−1.

Open secrets also have two types of situations. In order
to open a secret value x to retailers or other entities, each
server sends one share to the receiver, who can reconstruct x
by computing x = x0 + x1 + x2 (mod M). To open a secret value
x to all servers, Si send xi+1 to Si+1. We emphasize that the values
revealed to the servers are independent of the dataset or model
parameters. Hence, it does not leak sensitive information.

3.3.1 Linear operations
The additive property of the secret sharing scheme implies

that linear operations can be computed locally. Let c be a public

constant and [x] [y] be shared values. The addition of [x] and [y]
can be computed as [x] + [y] = [x+ y] ≔ (x1 + y1,x2 + y2,x3 + y3).
The same applies to subtraction. In addition, we define [x± c]
as (x1 ± c,x2,x3) to add or subtract a shared value with a public
constant. As for the scalar multiplication c[x], we define as
c[x] = [cx] ≔ (cx0,cx1,cx2).

3.3.2 Multiplication
The multiplication of two secret values [x] and [y] is shown

below:

x ⋅ y = (x0 + x1 + x2) ⋅ (y0 + y1 + y2)

= (x0y0 + x0y1 + x1y0) + (x1y1 + x1y2 + x2y1)

+ (x2y2 + x2y0 + x0y2) (1)

We can obsever that each server can compute one
summand using its own share. Let z = xy = z0 + z1 + z2
and z0 = x1y1 + x1y2 + x2y1, z1 = x2y2 + x2y0 + x0y2,
z2 = x0y0 + x0y1 + x1y0, where zi can be locally computed by Si.
Then, servers perform the operation called re-sharing to hold
two shares as defined. To this end, each server Si need to sends
zi to another server. However, since z0, z1 and z2 are not entirely
randomized, servers need to generate a 3-out-of-3 sharing of
zero to mask them. Let (α0,α1,α2) be a 3-out-of-3 sharing of zero
and Si hold αi. Si computes z′i = zi + αi and sends z′i to Pi+1 to
generate 2-out-of-3 sharing ((xy)i−1, (xy)i+1) = (z

′
i ,z

′
i−1).

4 Building blocks for secure
computation

In this section, wewill describe the building blocks for secure
computation in the RSS setting. To the best of our knowledge, we
are the first to apply these techniques to privacy-preserving deep
learning for electricity consumer characteristics identification.

4.1 Multiplication of fixed-point values

Since computing with floating-point number is extremely
expensive (Aliasgari et al., 2013), decimals are usually
represented as fixed-point numbers in the MPC protocols,
e.g. Catrina and Saxena, (2010). A decimal x is represented
as x = ⌊x ⋅ 2p⌉, where p is a positive integer used to specify
the precision. For the case of addition or subtraction,
the precision of the results will not change. However, the
multiplication of two fixed-point numbers doubles the
precision (x ⋅ 2p) ⋅ (y ⋅ 2p) = xy ⋅ 22p, which causes the precision
to accumulate until it overflowsM. To address this problem, the
previous works have proposed a method known as truncation.
There are three ways to implement truncation.
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• The easiest way is to multiply the result of each
multiplication by 2−p. However, this method can lead to
errors with a certain probability and the absolute value of
the errors is 1. For more details, we refer the readers to
Mohassel and Zhang, (2017).
• The most effective way to reduce the negative impact of
errors is the nearest truncation, which requires to shift the
result by p bits after adding 2p−1 to the integer representation
The nearest truncation can be instantiated by mixed-circuit
computation (Dalskov et al., 2021).
• Catrina and Saxena, (2010) present a solution called
probabilistic truncation that can effectively balance cost
and accuracy. This method utilizes the uniformly selected
randomnumbers. Let xbe the truncated secret value and rbe
a random number. Servers first compute [x+ r] = [x] + [r]
and then perform truncation. Finally, servers remove the
mask r to obtain [x]. For instance, if x = 0.6, then x will
round to 1 with 60% probability. In this work, wemainly use
probabilistic truncation.

4.2 Dot product

The dot product is the core building block of the linear layer.
Let x and y be twom-dimensional vectors. The dot product of. x
and y is shown below:

x ⋅ y =
m

∑
i=1

x(i) ⋅ y(i) =
m

∑
i=1
(x(i)

0 + x
(i)
1 + x

(i)
2 ) ⋅ (y

(i)
0 + x

(i)
1 + y

(i)
2 )

=
m

∑
i=1
(x(i)

0 y(i)0 + x
(i)
0 y(i)1 + x

(i)
1 y(i)0 )

+
m

∑
i=1
(x(i)

1 y(i)1 + x
(i)
1 y(i)2 + x

(i)
2 y(i)1 )

+
m

∑
i=1
(x(i)

2 y(i)2 + x
(i)
2 y(i)0 + x

(i)
0 y(i)2 ) (2)

Intuitively, the dot product of x and y should be reduced to
m parallel multiplications and one summation, which requiresm
re-sharing operations and m truncations. However, it is feasible
to reduce the usage of truncation and resharing by delaying
them to after the summation. Each server can first compute
one of the three sums in the last term locally. Then, all servers
perform re-sharing and truncation on the sums. In this way, the
communication cost of one dot product is the same as a single
multiplication.

4.3 Domain conversion

Recall that we use two different versions of replicated secret
sharing techniques. The first is the arithmetic sharing with M
= 2l, which is more suitable for arithmetic operations such as
addition, multiplication and dot product. The second is the
binary sharing with M = 2, which is more suitable for binary

operations and non-linear operations that need to access the
individual bits directly, such as comparison. For situations that
require both versions, the ideal solution is to construct efficient
building blocks that allow the secret sharing of two versions
to convert to each other. Especially in deep learning, domain
conversion is the bridge between linear layers and nonlinear
layers. For brevity, we use Bit2A and A2B to represent the
conversions in two directions, respectively.

4.3.1 Random bit generation

An efficient solution of Bit2A is to leverage XOR operation,
which can be defined as the function f(x,y) = x+ y− 2 ⋅ x ⋅ y
for x,y ∈ 𝔽p. As we can see, an XOR operation require to
compute one multiplication of secret values, while using the
pre-processed random bits can reduce the XOR operation to
linear operations. Note that these random bits need to be secret-
shared in the arithmetic circuit and no server is aware of their
true value. In order to obtain such random bits, two servers
sample and share a random bit respectively. Let r0 and r1 be
the sample random bits. Then, all servers jointly compute [r] by
[r] = [r0] + [r1] − 2 ⋅ [r0] ⋅ [r1].

4.3.2 Bit2A
With the arithmetic sharing of random bits, Bit2A can be

implemented by the idea of “daBits” (Rotaru and Wood, 2019).
A daBit is a random bit that is shared in both arithmetic and
Boolean circuits. Let r be a random bit and [r] [r]2 be available.
Servers can mask a secret bit b with r and open b⊕ r without
leaking any information. Then, servers can remove the mask r
in arithmetic circuits to obtain [b].

To construct a daBit, servers need to invoke one random bit
generation to obtain [r]. On the other hand, as introduced by
Escudero et al. (2020) [r]2 can be locally generated for powers of
two are compatible. Observe that

i=2

∑
i=0
(ri mod 2) mod 2 = (

i=2

∑
i=0

ri mod 2l) mod 2

= r mod 2 (3)

Hence, servers can locally generate [r]2 by extracting the least
significant bit of [r].

4.3.3 A2B
A2B can be considered as a special case of bit

decomposition. In this paper, we adopt the method proposed by
Araki et al. (2016);Mohassel andRindal, (2018) to performA2B.
Recall that the arithmetic sharing of x is [x] ≔ (x0,x1,x2). We use
[x]B to denote a vector of l binary secret sharing which encodes
x ∈ ℤ2l . We can observe that [x0]B ≔ (x0,0,0), [x1]B ≔ (0,x1,0)
and [x2]B ≔ (0,0,x2) are valid but not random binary sharings.
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Then, servers can compute [x]B = [x0]B + [x1]B + [x2]B in the
binary addition circuit.

4.4 Secure comparison

The comparison is essential for the implementation of a lot
of activation functions, such as ReLU functions, max-pooling
functions and approximate sigmoid functions. The comparison
is defined as b = x

?
<y for x,y ∈ ℤ2l . As introduced by Mohassel

and Rindal, (2018); Keller and Sun, (2021), the most significant
bit (MSB) denotes the sign of a ring element, which implies that
the comparison can be reduced to the MSB extraction of the
difference between the two operands. Given the secret sharings
of x and y, servers first compute the difference a locally by
[a] = [y] − [x] and then convert the arithmetic sharing of a to its
binary sharing. It remains to extract the MSB of a and convert
it to the arithmetic sharing by invoking Bit2A for subsequent
operations.

4.5 Oblivious selection

Oblivious Selection is an essential building block for
segmentation functions. It can avoid participants learning which
branch is selected. Oblivious selection can be reduced to a
polynomial. Taking the 1-out-of-2 oblivious selection as an
example, let x and y represent the branches and b ∈ {0,1}
represent the condition. The oblivious selection can be done
by x+ b ⋅ (y− x). And so on, the oblivious selection with more
branches can be implemented by polynomialswith higher orders.

4.6 Division

Since arithmetic operations are performed on the ring
ℤ2l , we cannot compute the division directly. There are two
main ways to solve this problem: sequential comparison and
numerical methods.The specific method we use is the numerical
method by Catrina and Saxena, (2010), which instantiates
the algorithm of Goldschmidt, (1964) in MPC. This method
iteratively approximates the results by multiplication. Therefore,
the error of the results mainly depends on the usage of iterations.

4.7 Logarithm and exponentiation

Similar to division, logarithm and exponentiation are
implemented by numerical methods (Aly and Smart, 2019). We
use logax and xy to represent the instances of logarithm and
exponentiation, respectively, where x and y are two secret values
and a is an arbitrary public base.

Logax can be reduced to loga2 ⋅ log2x. Then, x is represent as
x = b ⋅ 2c such that log2x can be computed by log2x = log2b+ c,
where b ∈ [ 0.5,1 ) and c ∈ ℤ log2b can be computed by Padé
approximation (Hart, 1978), which is achieved by a division of
polynomials.

Xy can be reduced to xy = 2ylog2x. Computation
exponentiation with base two can be done by 2a = 2⌊a⌋ ⋅ 2a−⌊a⌋,
where the former is achieved by polynomial approximation
and the latter by bit decomposition and multiplication. Let
b = ∑ k≥0bk2

k is an integer with bk ∈ {0,1}, the integer power
of 2 can be computed as follows

2b = 2b=∑k≥0bk2
k
= ∏

k≥0
2bk2

k
= ∏

k≥0
(1+ bk ⋅ (22

k−1)) (4)

The above three operations are approximated by numerical
methods, the accuracies of which depend on the number of
iterations or the truncation method used for multiplication.

5 Building blocks for deep learning

In this section, we will introduce how to construct the
building blocks for deep learning.

5.1 Fully connected layers

A fully connected layer is also called a dense layer, which is
a linear transformation parameterized by the weight W and the
bias b. Let x be the input to a fully connected layer. The output u
can be computed by u =W ⋅ x+ b. The matrix multiplications are
implemented by dot products. To save communication rounds,
all dot products of a matrix multiplication are computed in
parallel.

5.2 Convolution layers

Convolutional layers are the main layers for feature
extraction. Each convolutional layer has a certain number of
kernels (also known as filters). These kernels are represented as
vectors so that the convolution can be performed using only dot
products. Furthermore, these dot products are also computed in
parallel to reduce communication rounds.

5.3 ReLU

ReLU functions (Nair and Hinton, 2010) enhance the
nonlinear relationship between the layers of the neural network,
which can be mathematically defined as follows

ReLU (x) ≔ {
x if x > 0

0 otherwise
(5)
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ReLU functions can be reduced to one comparison and
one oblivious selection. The comparison results of forward
propagation are reused in backward propagation to reduce the
invocations of comparison.

5.4 Softmax

The objective of softmax functions is to present the results of
multi-classification in the form of probabilities. The probability
of the ith class can be computed as follows, and the classification
result is the class corresponding to the maximum probability.

Softmax (x) = exi

∑
j
exj
. (6)

5.5 Sigmoid

Sigmoid is one of the most widely used activation
functions. However, since sigmoid requires costly exponential
operations, previous works usually use segmentation functions
to approximate it. There are two method to approximately
compute sigmoid: 3-piece approximation (Mohassel and
Zhang, 2017) and 5-piece approximation (Hong et al., 2020).
The two piecewise functions are shown below:

3− piece Sigmoid (x) ≔
{{{
{{{
{

0 x < −0.5

x+ 0.5 − 0.5 ≤ x < 0.5

1 x ≥ 0.5

(7)

5− piece Sigmoid (x) ≔

{{{{{{{{{
{{{{{{{{{
{

10−4 x < −5

0.02776 ⋅ x+ 0.145 − 5 < x ≤ −2.5

0.17 ⋅ x+ 0.5 − 2.5 < x ≤ 2.5

0.02776 ⋅ x+ 0.5 2.5 < x ≤ 5

1− 10−4 x ≥ 5
(8)

In this way, sigmoid functions can be implemented by
comparison and oblivious selection In the experiments for binary
classifications, we use the 5-piece sigmoid function.

5.6 Max-pooling

Pooling layers can effectively reduce the size of the parameter
matrix and thus reducing parameters in the final connection
layer. Therefore, adding pooling layers can speed up the
computation and prevent overfitting. In this paper, we mainly
use max-pooling, the functionality of which is to return the
maximum value of a small window. To reduce communication

rounds, the input secret shared values are grouped in the form of
a balanced tree to allowmultiple comparisons to be computed in
parallel.

5.7 Stochastic gradient descent (SGD)

SGD is an efficient approximation algorithm for gradually
searching for a local optimum of a problem. As a widely used
optimization function, SGD has proven to converge to a global
minimum and is usually very fast in practice. In addition, how to
securely compute SGD with MPC has been explored by a series
of studies, which only involves basic arithmetic operations. As
a result, we mainly focus on SGD in this paper. The workflow
of SGD algorithm is as follows: the coefficients are initialized to
random values or all zeros. In each iteration, a coefficient wj is
updated as

wj ≔ wj −
α
B

B

∑
i=1

∂li
∂wj
. (9)

where α is the learning rate, B is the mini-batch size and li is the
loss regarding the ith sample in the mini-batch.

6 Case studies

In this section, we conduct a series of experiments based on
the Irish CER dataset to demonstrate that our protocols not only
efficiently maintain the confidentiality of the raw data, but also
ensure the accuracy of the models.

6.1 Dataset description

We conduct experiments on a public dataset provided
by Commission for Energy Regulation. (2012), which is the
regulator for the electricity and natural gas sectors in Ireland.The
CER dataset contains raw smart meter data of 4,232 residential
consumers. The smart meter data is recorded at an interval of
30 min over a total of 75 weeks. In the data cleansing process,
if the measurements for one of the weeks have missing data,
we will delete the load profiles of this week. Besides, we limit
each week starting on Friday. We select a total of 20,000 weeks of
smart meter data, where the measurements of 17,000 weeks are
used to train the models, and the rest are used to test the model
performance.

In addition to smart meter data, the CER dataset also
contains the characteristics information of the participants,
which is privately collected through the questionnaire. The
surveyed issues are mainly in three categories: the occupant
socio-demographic information (e.g., employment, social class),
consumption habits (e.g., the number of energy-efficient light
bulbs), home appliances (e.g., cooking facility type). We select
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TABLE 2 The characteristics to be studied.

Question No. Consumer Characteristic Question Class Labels Number

300 Age of chief income earner
Young (<35) 436
Medium (356 ̃5) 2819
Old (>65) 953

310 Chief income earner has retired or not
Yes 1285
No 2947

401 Social class of chief income earner
A or B 642
C1 or C2 1840
D or E 1593

410 Have children or not
Yes 1229
No 3003

450 House type
Detached or bunglow 2189
Semi-detached or terraced 1964

453 Age of the house
Old (>30) 2151
New(<30) 2077
Very low (<3) 404

460 Number of bedrooms
low (=3) 1884
High (4) 1470
Very high (>4) 474

4704 Cooking facility type
Electrical 1272
Not electrical 2960

4905 Energy-efficient light bulb proportion
Up to half 2041
Three quarters or more 2191

TABLE 3 Hyperparameters of network A.

Layer Layer Type Hyperparameters Activation function

FC1 Fully Connected
Input size: 7 × 48

ReLU
Neuron number: 128

FC2 Fully Connected
Input size: 128

ReLU
Neuron number: 128

FC3 Fully Connected
Input size: 128

-
Neuron number: 1

O1 Output - Sigmoid

TABLE 4 Hyperparameters of network B.

Layer Layer Type Hyperparameters Activation function

C1 Convolution
Input size: 7 × 48

ReLUKernel size: 3 × 3
Kernel number: 16

C2 Convolution
Input size: 5 × 46

ReLUKernel size: 3 × 3
Kernel number: 16

P1 Max-Pooling Window size: 2 × 2 -
FC1 Fully Connected Neuron number: 32 ReLU
O1 Output - Softmax

nine survey questions for benchmarking, which are listed in
Table 2.

6.2 Setup

We implement privacy-preserving deep learning for
electricity consumer characteristics identification using the
MP-SPDZ framework (Keller, 2020). The framework enables

benchmarking the secure program with a series of generic MPC
protocols. All experiments are run on a commodity desktop
equipped with Intel (R) Core i7-11700K CPU at 3.60 GHz ×
16 running Ubuntu 20.04 on VMware Workstation allocated
with 32 GB memory, ignoring network latework. We set the
batch size to B = 128 and the bit length to l = 64. The learning
rate α is settled for 0.01. The fixed-point values are set to 16-bit
precision with probabilistic truncation. We mainly use the two
neural networks shown in Table 3, 4. Network A is used to train
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TABLE 5 Performance of communication (MB/epoch), computation
(s/epoch) and accuracy (%).

Question No. Communication Computation Accuracy

300 63432 360 70.09
310 10441 24 71.83
401 63432 348 57.33
410 10441 24 74.67
450 10441 23 62.40
453 63432 353 66.53
460 63432 356 54.43
4704 10441 24 66.87
4905 10441 24 63.40

the binary-class classifiers for #310, #410, #450, #4704, #4905,
while Network B is used to train the multi-class classifiers for
#300, #401, #453, #460. The computation costs and accuracies
reported are averaged over ten runs.The accuracies are recorded
at 10 epochs.

6.3 Performance evaluation

Table 5 details the performance of the two deep neural
network models we tested. Network A consists of three fully
connected layers, where the first and second fully connected
layers use the ReLU activation function. For the output layer of
Network A, we set the sigmoid function as activation function.
The computation cost required for Network A is desirable, only
24 s for each epoch.While the communication cost is 10,441 MB
for each epoch. Network B contains two convolutional layers
and one fully connected layer, all of which use the ReLU
activation function. After the second convolution layer, we set a
max-pooling layer with a window size of 2× 2. For the output
layer of Network B, we set the softmax function as activation
function. ComparedwithNetworkA, Network B needs to invoke
more secure comparisons and multiple costly building blocks,
including division, logarithm and exponentiation. So, it requires
more communication and computation costs. The computation
cost required for Network B is around 354 s for each epoch,
while the communication cost is 63,432 MB for each epoch. The
communication and computation costs required are practically
affordable for the resource-rich servers. In addition, the random
bit generation can be performed in the preprocessing phasewhen
servers are idle, so as to reduce the burden on servers to provide
privacy-preserving deep learning services.

Now, we report the average accuracy of the survey questions.
One third of the survey questions have accuracies higher than
70%, which are #300, #310 and #410. The classifiers for these
three survey questions are all trained using network A. The
survey question #410 has the highest accuracy of 74.67%. Only
two survey questions have accuracies less than 60%, which
are #401 and #460. The accuracy of the remaining survey
questions is 60%∼70%. In summary, the accuracy of Network A

is comparable, while Network B needs to be adjusted to improve
the accuracy.

7 Conclusion

We implement privacy-preserving deep learning for
electricity consumer characteristics identification by lightweight
replicated secret sharing techniques, which not only enable to
protect the retailer’s sensitive raw data but also achieve favorable
performance. Our system allows retailers to stay offline after
uploading the shares of smart meter data, and the burden of
computation is transferred to three powerfully equipped servers.
After the training of the models, retailers can enjoy the inference
service provided by servers or download the model parameters
directly. Future work might consider improving the accuracy of
the deep neural network models.
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