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Determining the optimal well location is a challenging task because the effects of geological
and engineering variables on reservoir performance are often highly nonlinear and
multimodal. The computational requirements for this problem based on automatic
optimization are extensive, as many functional evaluations are required, each of which
requires a complete reservoir simulation. Therefore, reducing the optimization time and
improving the optimization effect is the key to promote the wide application of automatic
optimization technology. In this study, we present a technique that combines the genetic
algorithm (GA) with the helper method, productivity potential maps (PPMs) (GA + PPMs), to
improve the effect of well placement optimization. The PPMs are generated by three typical
methods: analysis method, numerical simulation method, and fuzzy system method.
Numerical tests are carried out on three well placement methods in the PUNQ-S3 oilfield,
namely, the original well placement and well placement proposed by GA and GA + PPMs
plans. The result shows that generating the PPMs by an analytical method is the best
choice. The cumulative oil production (COP) generated by GA + PPMs increased by
20.95% and 8.09%, respectively, compared with the original well scheme and GA well
scheme, which demonstrates that the initial well location determined by reservoir
engineers based on the PPMs has a significant impact on GA performance. Overall,
the combination of GA and productivity potential maps is promising for this
challenging task.

Keywords: automatic optimization, well location optimization, genetic algorithm, productivity potential maps,
PUNQ-S3 model, numerical simulation

1 INTRODUCTION

The determination of optimum well placement is one of the key issues in the development of oil and
gas fields, whether it is the development of green fields or the management of brown fields (Ariadji
et al., 2014). The problem in finding optimum numbers and locations of wells where the
maximization of net present value (NPV) or the cumulative oil production (COP) is sought
while minimizing costs and accommodating operating limits and other constraints is recognized
as a nonlinear optimization problem with integer parameters (Cullick et al., 2005). The key step into
handling this optimization problem is to find a pragmatic way to solve it. In general, intuition alone
cannot determine the best well location because geological and engineering variables are associated
with uncertainty and are often highly correlated. As well placement planning plays a critical role in
return on investment, well placement decisions can be challenging for drilling and reservoir
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engineers. But fortunately, we could use the concept of automatic
well placement optimization, which usually by means of reservoir
model and mathematical optimization algorithm, to solve this
complexity problem. However, almost 99% of CPU consumption
is spent on the objective function evaluation based on numerical
simulator (Yeten, 2003). Therefore, improving the optimization
efficiency of automatic well placement optimization has been a
difficult and challenging research direction for many scholars,
which mainly includes reducing the optimization time and
improving the optimization effect.

Da Cruz et al. (1999) first proposed the concept of PPMs in
the area of well location optimization. This map is constructed
in a way that measures whether a particular part of the
reservoir is suitable for oil production or water injection.
According to Da Cruz, this map allows us to determine the
location of the wells, and give the uncertainty of the geology
and the risk profile for decision makers. In the PPMs, reservoir
engineers bring together static reservoir description data (such
as permeability, porosity, and fluid viscosity), as well as
dynamic reservoir production information (such as oil
saturation and reservoir pressure). Typically, the generation
of PPMs is based on reservoir numerical simulation models.
There are several achievements in the literature that the
utilization of PPMs guide the process of well placement
optimization (Badru and Dissertation, 2003; Nakajima and
Schiozer, 2003; Cottini-Loureiro and Araujo, 2005; Maschio
et al., 2008).

According to literature research, many intelligent algorithms
have been used in automatic well location optimization, including
simulated annealing algorithm, genetic algorithm (GA),
covariance matrix adaptation evolution strategy, and particle
swarm optimization algorithm (Holland, 1975; Beckner and
Song, 1995; Salmachi et al., 2013; Lu and Reynolds, 2019;
Wang et al., 2007; Onwunalu and Durlofsky, 2010; Ding et al.,
2020; Wang et al., 2012; Humphries and Haynes, 2015; Xu et al.,
2018; Karkevandi-Talkhooncheh et al., 2018; Rostami et al., 2018;
Rostami and Baghban, 2018; Ding et al., 2019; Wang et al., 2021;
Mahdaviara et al., 2021). Readers can derive much information
from a review article by Islam et al. (2020) on the application of
artificial intelligence optimization techniques to well location
optimization problems. Among them, GA is the most
frequently used optimization algorithm because of its better
performance. GA is a computational model that simulates the
biological evolution process of natural selection and genetic
mechanism of Darwin’s biological evolution. It is a method to
search the optimal solution by simulating the natural evolution
process. GAs have been applied in various areas of petroleum
industry, from optimizing pipe diameter, determining pressure
distribution, to corrosion detection, and including well location
problems. However, GA is typically used as an integrated unit for
reservoir simulators when determining the well location
(Bittencourt and Horne, 1997; Montes et al., 2001; Guyaguler
and Horne, 2001; Yeten et al., 2002; Morales et al., 2010; Salmachi
et al., 2013). In this case, the well location given by the GA in each
iteration needs to be evaluated using the results of a reservoir
simulator, especially for large or complex reservoirs, which can
take a considerable amount of time. Since GA is an iterative

algorithm which is sensitive to initial values, this work will
provide an initialization method with the help of productivity
potential maps (PPMs) to solve this issue.

To the best of our knowledge, this is the first time that a
combination of GA and PPMs for well placement optimization in
the current literature is used (Islam et al., 2020). The purpose of
this work is to select the appropriate generation method of PPMs
and compare the effect of GA using PPM initialization and
random initialization in well placement optimization. The
organizational framework of this work is as follows: we first
describe GA, productivity potential maps (PPMs), and well
location optimization method in the combination of GA and
PPMs in Sections 2. Then, the PUNQ-S3 numerical model in the
case study in Section 3 is used to verify the proposed method.
Finally, we made a brief summary in the “Concluding remarks".

2 METHODOLOGY

2.1 Genetic Algorithm (GA)
GA starts from a randomly generated population representing the
set of possible potential solutions to the problem. In this work,
random initializations will be replaced with the help of PPMs.
The strategy of “survival of the fittest” is used to select relatively
superior individuals as fathers, and then perform the genetic
operation between the fathers. According to different problem
situations, the decision variables will also be subject to different
constraints of the problem. GA is mainly composed of genetic
factor, chromosome, and population. Among them, genetic factor
can be used as any decision variable, and the chromosome is
regarded as the main carrier of genetic material which is a
collection of many genetic factors. Therefore, the objective
evaluation function of solving the issue could be abstracted as
a function of chromosome, and the population can be defined as a
collection of individual chromosomes (Kinnear, 1994).

The essence of genetic basic operation is a kind of simulated
genetic operation of biological evolution, which generates initial
group through coding in order to realize the species, and the
individuals in the population can be operated according to the
fitness value by basic genetic operation and the optimization
process of “survival of the fittest”. It usually consists of three basic
operations: selection, crossover, and mutation (Goldberg, 1989).

2.1.1 Selection
Selection operation is used to identify individuals in a population
who perform down-step crossover or recombination operations
and the number of offspring that the selected individuals will
produce. The first step is to calculate the fitness and make the
actual selection according to the size of their fitness for parental
selection. In this work, roulette wheel selection (RWS) will be
chosen as the selection strategy (Simon, 2013).

RWS, also known as proportional selection, is a simple
selection strategy. The probability of an individual being
selected is proportional to the size of its fitness, which will be
converted into the probability of being selected in proportion.
The wheel is divided into k fans because the operation will carry
out k rounds of selection, and a uniform random number
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between 0 and 1 is generated for each round. Therefore, there will
be k random numbers, which will be used as a pointer to
determine the selected individuals. In fact, this process is
equivalent to rotating the wheel k times, so as to obtain k
pointer positions when the wheel stops. When the pointer
stops in a sector, the individual represented by that sector is
selected as follows:

a) Solving individual fitness f(i � 1, 2,/, N), and N is the
population size.

b) Calculate the probability P(xi) of each individual being
inherited to the next generation:

P(xi) � f(xi)/∑N
j�1
f(xj) (1)

c The cumulative probability qi of each individual xj:

qi � ∑N
j�1
P(xj) (2)

2.1.2 Crossover
Crossover also known as gene recombination, is an operation in
which the genetic structure of two paternal samples is mated and
recombined to produce a new sample. The purpose of this
operation is to generate new excellent individuals in the
offspring, and at the same time, improve the global search
ability of the algorithm. Due to the different representations of
individual codes, single-point crossover will be used in this work.
Single-point crossover refers that the value range of the crossover
point K is [1, Nvar-1], where Nvar is the number of variables
contained in an individual and is used as a demarcation point for
variable transformation. Take the crossover of individuals with
the number of individual variables being 8 as an example. Assume
that the crossover operation is performed at 5, as shown in
Figure 1.

2.1.3 Mutation
The variation performed by offspring after crossover operation is
actually the transformation of offspring gene individuals by small
step size or probability perturbation. The probability of individual
variable change is inversely proportional to the number

(dimension) of the variable, but has no relationship with
population size. Generally, the value of the step of variation
should not be too large. If the value is too large, the diversity of the
population will be reduced or even lost, and the searching ability
will also degenerate.

2.2 Productivity Potential Maps (PPMs)
It is considered that the convergence speed of GA at initial
position is slow, PPMs is introduced in order to improve the
efficiency of GA. Now, several methods have been proposed to
calculate the productivity potential maps (Nakajima and
Schiozer, 2003; Filho, 2005; Ding et al., 2019). Here we
introduce some of the most promising methods and make
some comparisons. According to the maps, it is easy for
reservoir engineers to identify the most productivity potential
regions.

2.2.1 Analysis Method
Based on the material balance and Darcy’s law, Nakajima and
Schiozer (2003) proposed an analysis way to generate
productivity potential field. The productivity potential is
calculated in Eq. 3:

Ji,j,k(t) � [So,i,j,k(t) − Sor].[Po,i,j,k(t) − Pmin].LnKi,j,k.Lnri,j,k.ϕi,j,k

(3)
where Ji,j,k(t) is the productivity potential at the grid block (i, j, k)
at time t; So,i,j,k(t) is original oil saturation at the grid block (i, j,
k); Sor is the residual oil saturation at the grid block (i, j, k);
Po,i,j,k(t) is the oil pressure at the grid block (i, j, k); Pmin is
minimum well bottomhole pressure; Ki,j,k is the permeability at
the grid block (i, j, k); ri,j,k is the distance from the grid block (i, j,
k) to the closest boundary; and ϕi,j,k is the porosity at the grid
block (i, j, k).

However, the above productivity potential method proposed
by Nakajima and Schiozer (2003) do not consider the negative
impact of bottom water and gas ceiling on the field development.
Practice has proved that water cone and gas channeling will
seriously affect the normal development of oil and gas, resulting
in the decline of oil and gas production. Therefore, the effect of
bottom water and gas ceiling needs to be considered. Therefore,
the revised productivity potential value is described as follows
(Ding et al., 2019):

Ji,j,k(t) � [So,i,j,k(t) − Sor].[Po,i,j,k(t)
− Pmin].LnKi,j,k.Lnri,j,k.hwoc,i,j,k.ϕi,j,k.hgoc,i,j,k (4)

where hwoc,i,j,k is the distance from the grid block (i, j, k) to the
closest oil-water interface; and hgoc,i,j,k is the distance from the
grid block (i, j, k) to the nearest gas-oil interface.

2.2.2 Numerical Simulation Method
This method distributes wells evenly on a grid with the goal of
covering the entire reservoir area. Two kinds of wells which are
production wells and injection wells will be added to the reservoir
grids (Filho, 2005). When engineers design a production strategy
for an oilfield, water injection is usually used to keep-up pressure

FIGURE 1 | Illustration of single-point crossover.
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and increase reservoir production. Injection-production balance
should be ensured throughout the simulation process. After the
simulation, we can get the accumulative oil production of the grid
where the production well is located, and the accumulative oil
production of other rest grids can be obtained by a geostatistical
method called the ordinary Kriging method. The normalized
cumulative oil production is the productivity potential of the grid.
Figure 2 shows the well placement in this method.

2.2.3 Fuzzy System Method
Problems associated with decision making, such as well
placement, can be complex and difficult to solve
quantitatively. In recent years, fuzzy logic has been widely
used to solve these kinds of problems. The advantage of fuzzy
systems is that there is no need for computational models or
mathematical equations to control the relationship between
the input parameters and output, because the relationship is
defined by simple rules based on the expert knowledge and
experience (Nakajima and Schiozer, 2003). The basic steps of a
fuzzy system are as follows:

① Combined sensitivity analysis with reservoir and crude
oil feature, and the parameter needs to be evaluated can
be determined. The common parameters are including
oil saturation, porosity, permeability, distance to the
nearest oil-water interface and net thickness of the
pay zone.

② To calculate the weight of index, we usually adopt expert
experience and the analytic hierarchy process.

③ After calculating the membership of each grid block, we
can comprehensively evaluate the scores of each grid
block. And then we can know the productivity index of
every layer.

2.3 Well Placement Optimization Coupling
GA With PPMs
2.3.1 Objective Function Evaluation and Constrains
In this problem, cumulative oil production (COP) is taken as the
objective function. The COP is calculated by the cumulative

annual oil production from the results of reservoir numerical
simulation, as shown below:

COP � ∑T
n�1

Qn
oil (5)

where T is the total production time, a; and Qn
oil is the oil

production in nth year, m3.
If (xi, yi) is defined as the locations of well i and j, i, j = 1,2, . . . ,

nw , i≠j. There are three constraints during optimization:

① Minimum distance R between
wells:

�������������������
(xi − xj)2 + (yi − yj)2

√
≥R (6)

② The coordinates of all wells should be integers: xi, yi ∈ Z+ (7)
③ All wells should be deployed in active grid

cells: xL ≤xi ≤xU (8)

FIGURE 2 | Illustration of well placement in evaluating the productivity
potential by using the numerical simulation method.

FIGURE 3 | Optimizing well placement procedure proposed by GA and
PPMs.
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yL ≤yi ≤yU (9)
For optimization problems with boundary constraints,

applying GA directly may make some seeds leave the feasible
region of the search space. In response to these unworkable
solutions, we introduced penal measures; That is, if seeds are
located outside an invalid grid or boundary, we pull these seeds
back to the grids which are mostly close to the boundary.

2.3.2 Initializing the Seeds for GA
Given that GA is a stochastic global optimization method,
most promising well locations are assigned to the initial seeds
in order to help the GA can search the optimization well
locations more efficiently. The promising well sites are selected
by engineers according to the PPMs generated by the above
three methods.

2.3.3 GA Coupling With PPMs Steps
First, we use the analysis method, numerical simulation method,
and fuzzy systemmethod to generate PPMs. Based on these maps,
select some well sites as initial seeds.

Second, call simulation runs for about 20 years to calculate the
COP objective function.

Third, determine whether the maximum number of
iterations is satisfied. If the conditions are not met, go to
step fourth.

Fourth, through the basic genetic operations (selection,
crossover, and mutation) to get better populations.

Fifth, if the well locations proposed by the GA is not match, the
constraint of minimum distance between wells, the program
would randomly assign another location.

Sixth, repeat steps second,third, fourth, fifth until the
termination criterion is met.

Figure 3 illustrates the optimizing well placement procedure
proposed by the GA and PPMs.

3 CASE STUDY

3.1 Model Description
The PUNQ-S3 case comes from a reservoir engineering study
of an actual field example provided by Elf Exploration
Production. Several studies have been published
demonstrating novel techniques on the PUNQ-S3 reservoir
model (Wang et al., 2016; Ding et al., 2019). The numerical
simulation model consists of 19 × 28 × 5 grid blocks, of which
1,761 blocks are active. The grid block size is set to 180 m ×
180 m × 4.4 m, and the net to gross thickness ratio is set to 1.
The reservoir has been modelled with corner point geometry.
Three-dimensional horizontal permeability field are
presented in Figure 4. The average matrix porosity and
horizontal permeability are 13.9% and 269.37 mD,
respectively. The structure at the top shows the field
connecting the north and west with a fairly strong aquifer.
A stingy crest is located at the center of the dome-like
structure. The initial oil and gas saturation is set at 0.8
and the initial reservoir pressure is set at 236.51 bar.
Water, oil, and gas coexist and flow without capillary
pressure. The saturation ternary diagram is shown in
Figure 5. The original field development plan consisted of
10 producing wells. The model gets its pressure support from
a relatively strong aquifer and is bounded by a fault moving
from east to south. There are no injection wells because the
strong aquifer is connected to the field. The production wells
are operated at a fixed bottom hole pressure (BHP) of 140 bar.
The simulated reservoir life is 20 years. For this field, there are

FIGURE 4 | Three-dimensional horizontal permeability field of the PUNQ-S3 case.
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about C10
352 ≈ 7.1 × 1018 well plans. Therefore, the optimal well

layout scheme cannot be obtained by manual trial and error
method.

3.2 Selection of Production Potential Maps
The production potential maps (PPMs) produced by the three
methods above which are analysis method, numerical simulation

method, and fuzzy system method has been shown in Figure 6,
respectively. From the maps, we can know that region A is the
most promising area since it has the relative high production
index shown by all three methods. In order to choose the most
accurate map for initialization. We also do some comparison
among these methods by drilling 10 wells in the top 30%
production index area in each map. The locations of these 10

FIGURE 5 | Saturation ternary diagram of the PUNQ-S3 case.

FIGURE 6 | Production potential maps produced by (A) analysis method, (B) fuzzy system method, and (C) numerical simulation method.
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wells are shown in Figure 6 as the blank black circles. Unlike
conventional well patterns, these wells are typically located in
premium zones and are not in a conventional area pattern.
Figure 7 is a statistical histogram of cumulative production
proposed by the three methods and original well placement.
From the results, we can know the analysis method is more
reliable than the others. The cumulative oil production of the
analysis method is 4.5×106 m3, which is 15.38%, 4.65%, and
7.14% higher than the results of fuzzy system method,

numerical simulation method, and original well placement,
thus we assign the well locations in Figure 6(a) as the initial
seeds for the GA in the following case study.

3.3 Optimization of 10 Production Wells
In this section, 10 production wells will be optimized by the
proposed method. Each well has the coordinate (x, y), thus the
total number of variables to be optimized in this case is 20. The GA
standalone and original well plan will be added as the comparison.

FIGURE 7 | Comparison of well location results between the three methods and the original well plan.

FIGURE 8 | Curve of the cumulative oil production changing with the number of iterations proposed by GA + PPMs, GA, and original plan.
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The population size of GA is 50, and the probability of crossover and
mutation are all set to 0.9. Maximum number of generations is 100
and minimum distance is two grids.

Each optimization is repeated 3 times to consider the
stochastic nature of GA and their average results are used to
compare the performance. Figure 8 is the average cumulative oil
production produced by GA + PPMs, GA, and original well plan.
As shown in Figure 8, the GA + PPMs based well location
achieves the highest COP, demonstrating that the initial well
locations determined by the reservoir engineer based on the
PPMs is critical to the final performance of the GA. We can
obtain a relatively high oil production even without iterations
with the help of PPMs. we can also learn that the well plan
proposed by GA + PPMs is 20.95% higher than the original well
placement, 8.09% higher than the well plan proposed by the GA
standalone. Figure 9 shows the optimal well locations obtained by
GA + PPMs method. It is clear that these producing wells are
often located in areas with a high production potential, and the
well pattern does not appear to have any regular form which
indirectly demonstrates the effectiveness of the application of
PPMs. Taken in total, it can conclude that GA + PPMs is a reliable
method to optimize the well placement.

4 CONCLUDING REMARKS

In this work, we applied GA coupled with production potential
maps (PPMs) for efficient well placement optimization problems.

The threemethods namely analysismethod, numerical simulation,
and fuzzy system are used to generate production potential maps. The
simulation results show that the analysis method is more effective
than the other methods in guiding the well placement.

Although the reservoir engineer came up with a better well
placement plan based on PPMs, the GA’s proposed well
placement plan significantly improved the cumulative oil
production with the help of PPMs. Practice shows that the
initial well location determined by engineers according to
PPMs is crucial to the final performance of GA. This method
can be easily combined with any optimization algorithm.
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