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PV cell/module/characteristic array accuracy is mainly influenced by their

circuit elements, based on established circuit characteristics, under varied

radiation and temperature operating conditions. As a result, this study

provides a modified accessible Honey Badger algorithm (HBA) to identify the

trustworthy parameters of diode models for various PV cells and modules.

This approach relies on modifying the 2D chaotic Henon map settings to

improve HBA’s searching ability. A series of experiments are done utilizing

the RTC France cell and SLP080 solar module datasets for the single and

double-diodemodels to validate the performance of the presented technique.

It is also compared to other state-of-the-art methods. Furthermore, a variety

of statistical and non-parametric tests are used. The findings reveal that the

suggested method outperforms competing strategies regarding accuracy,

consistency, and convergence rate. Moreover, the primary outcomes clarify

the superiority of the proposed modified optimizer in determining accurate

parameters that provide a high matching between the estimated and the

measured datasets.

KEYWORDS

PV parameters estimation, honey badger algorithm, chaotic Henon map, single diode circuit,

double diode circuit PV cell, PV characteristics assessment

1 Introduction

Global environmental interests and the persistent increase in energy needs
make advanced renewable energy sources universally acceptable. (Li et al., 2022;
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Xiong et al., 2018; Eid et al., 2021). As a proven start to the
effectiveness of renewable energy, solar power has attracted
intense deliberation in recent years (Herez et al., 2018). The
International Energy Agency has analyzed sustainable energy
and finds that more than half of the power needed in the
world can be provided by solar energy (Mekhilef et al., 2011).
Photovoltaic (PV) methods straight transform solar power
into electricity, and it has become one of the most popular
sustainable energy production schemes (Siecker et al., 2017). To
investigate the dynamic transformation performance of a PV
mode, forming the quality of its primary device, i.e., the PV
cell, is a crucial issue. Numerous methods have been produced
to create PV cells, and the standard widespread procedure
is applying similar circuit prototypes. Amongst them, the
single diode design and double diode design are the generally
utilized circuit designs (Chin et al., 2015). Following choosing
a suitable model construction, getting or selecting proper
construction parameters is another vital concern. A solar cell
model’s precise design and characterization are according to the
obtained parameters in that model (Humada et al., 2016; Chin
and Salam, 2019).

Practically, two single diodes (SD) and double diode (DD)
electrical rotations can adequately represent the solar cell’s style
(Pourmousa et al., 2019; Ridha et al., 2022a). To enhance the
performance of this method, it is essential to mimic its attitude
before launching (Chin et al., 2015). One of the various critical
actions in the modeling rule is the parameter identification that
illustrates the physics paradigm of the solar partition, based
on which it is probable to study the procedure performance
and productivity in various situations (Chin et al., 2016). There
are five unnamed parameters in the SD design and seven
other parameters in the DD design, which must be carefully
determined. Precisely determining the parameters enhances the
effectiveness and power of the solar cells and presents a leading
part in the highest energy point, where the solar cell transfer the
total production energy to the load (Dileep and Singh, 2017).

Various methods have been introduced to manage this
complicated yet essential problem. They can be organized
into two main classes: analytical and optimization methods
(Agushaka et al., 2022; Oyelade et al., 2022). The first method,
principally based on the manufacturers’ key information
points, uses mathematical equalizations to determine the
model parameters. The PV parameter extraction becomes
an optimization problem in the second method, called the
optimization method. It then applies some source points of an
addressed current-voltage (I-V) characteristic curve to obtain
the parameters (Abbassi et al., 2022a). Consequently, they have
gained much attention newly.

In the literature, several efforts are made to handle these
problems (Yan et al., 2019); in Kumar et al., 2020), a novel
search-based optimization method is proposed to extract the
PV parameters. The proposed optimizer is modified to find

more accurate solutions by adding an excellent mathematical
representation with adaptive weights. The achievement of the
presented approach is verified by investigating the determining
results with practical effects. A comprehensive statistical
investigation demonstrates the advantage of the proposed
method. A detailed confusion mutation-based PSO algorithm
is introduced in (Liang et al., 2020). Throughout each update in
the proposed method, the effectiveness of each new position
is assessed and classified as high or low quality. The results
confirmed the advantage of the presented method analyzed
with other well-known methods in using precision, balance,
and speed. In (Chenouard and El-Sehiemy, 2020), a new search
method-based bound algorithm is introduced to determine
the parameters for three PV models. The measured cells’
determined execution factors for I-V and P-V are similar to
the empirical data and competitive with current comparative
methods.

An enhanced optimization-based method, calledMTLBO, is
suggested in (Abdel-Basset et al, 2021) to precisely and probably
obtain the unnamed PV parameters. The improvement here
is to partition each search section into three levels based on
its scoring level. The test results verified the advantage of the
suggestedmethod in extracting the parameters of the PVmodels.
The Chaotic Whale Optimization Algorithm is presented in
(Oliva et al, 2017) to address the PV parameters. The primary
benefit of the offered method is using chaotic theory to calculate
and automatically adjust the original parameters of the used
method. The outcomes confirmed that the suggested method
achieved enhanced precision and accuracy performance. A
reliable and robust method for modeling the PV parameters
problem is presented in (Qais et al, 2019).The principal objective
is to determine the nine-parameter of a three-diode design using
the datasheet parameters provided by all industrial applications.
The suggested technique obtained more satisfactory outcomes
than other similar approaches. It can model any PV design using
the provided datasheet information.

Recently, different intelligent search algorithms have been
presented and operated to solve the PV parameter estimation
problems (Yousri et al, 2020a). Surprisingly, most of these
techniques, such as the Particle Swarm Optimizer, Genetic
Algorithm, Differential Evolution, Harmony Search, andCuckoo
Search Optimizer, are well-recognized between computer
experts and other experts fromdifferent disciplines.Themethods
are adaptable; they evade the local optima trap and give a more
reliable solution than the conventional methods. Moreover,
the methods have several benefits, making them worthy
of addressing any optimization problem. They simulate the
problem-addressing procedures utilized by humans and animals.
In other terms, a particular algorithm may present promising
outcomes when addressing a specific kind of problem. However,
that corresponding algorithm may give a poor achievement
in a different situation (Yang, 2010). Hence, these causes
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have motivated researchers to investigate new optimization
algorithms for PV parameter estimation problems.

The performance of any optimizer relies on its
equilibrium between exploration and exploitation search
(Abualigah et al, 2021b; Abualigah et al, 2021a). Exploration
indicates the diversification of the optimizer’s solutions to
investigate new areas of the search space. In contrast, exploitation
introduces the experience to improve the current solutions by
exploring nearby their best solutions. Honey Badger Algorithm
(HBA) is a newly introduced optimization technique inspired
by the intelligent foraging of honey badger (Hashim et al, 2022).
The search methods of the honey badger with digging strategies
are expressed in the exploration and exploitation stages in
HBA. The new optimizer formulates a different procedure and
various tools for balancing exploration and exploitation. It has a
straightforward structure and contains few control parameters.
Notwithstanding its oversimplified creation, the HBA mainly
outperforms other optimization methods in many test cases
(Ashraf et al, 2022), as in the first proposal. Notwithstanding the
encouraging motivation, a complete literature search shows that
the HBA has yet to be employed for the PV parameters. Recently,
a grouped beetle antennae search (GBAS) algorithm has been
proposed to effectively extract the unknown parameters of the
single, double, and triple diode s PV models (Sun et al, 2021).
The cuckoo search-relevance vector machine (CS-RVM) has
been introduced for providing a PV model with measured data
over a range of environmental conditions (Ban et al, 2021). The
Peafowl optimization algorithmhas been reported for identifying
the double and triple-diode PV models.

According to the previous discussions, this paper introduces
a primary effort to modify the HBA to enhance its performance
while handling the PV cell modeling problem. To this point,
the two-dimensional Henion map is integrated with HBA to
enhance the algorithm’s basic performance in this approach.
Accordingly, it is easy to execute and does not need large trial-
and-errors to harmonize the parameters. The Chaotic version of
HBA (CHBA Alg) is used to select the parameters of PV cells for
two main types; single diode and two diodes. An uncomplicated
style is used to define the optimal parameter settings values to
assure the effective execution of the proposed CHBA. The root-
mean-square error (RMSE) among the PV modules production
is used. The empirical data is taken as standard measures to
decrease the objective function. Moreover, this paper presents
parametric restrictions to restrict the investigation within the
limitations of the pre-known parameters.The acquired outcomes
are assessed and analyzed with other similar algorithms based
on generally used benchmarks for validation. In addition, the
proposed optimizer has also experimented on three PVmodules
for various practical purposes at different levels of irradiance
and heat. The results showed that the version of the proposed
HBA is auspicious, i.e., it produces considerably more precise
solutions than other similar methods. Further, the proposed

CHBA is positively compatible and efficient for empirical
purposes.

The main contribution of this study can be summarized as:

1. Proposed a modified version of HBA using the Hannonmap.
2. Apply the modified version of HBA, named CHBA, to

estimate the parameters of PV in single and double diode
models.

The remaining sections of this paper are presented as follows.
Section 2 presents the problem representation and various PV
models.The proposed parameter extracting-based HBAmethod
is offered in Section 3. Section 4 shows the empirical results
and discussion. Section 5 gives the conclusion and future work
directions.

2 Photovoltaic equivalent circuits

We introduced the essential information of the Photovoltaic
equivalent circuits in this section. The single-diode model
(SDM) and the double-diode model (DDM) are the two
most popular PV models (DDM). For each model, there are
different characteristics and structures as given in Figure 1.
Such as, the SDM is the simplest PV model; however, its
accuracy is less than the efficiency of DDM. DDM emulates
the physical performance of PV at irradiation conditions with
low-level (Kermadi et al, 2020). In addition, the SD has one
diode that generates current and shunts resistance (Rp). In
contrast, there are two diodes in DDM; The diffusion current
and recombination effects are represented by the first and
second diodes, respectively. After that, the combination is
performed in the series way with resistance (Rs), and the
output current (I) is computed using the law of Kirchhoff ’s
current as given in the following formula (Yousri et al, 2020a;
Abbassi et al, 2022b).where a1 stands for the ideality of the diode.
Also, Id1, Io1, and Ip are the diode currents, the saturation diode,
and the leakage shunt, respectively. Vt represents the thermal
voltage that computed at (T in Kelvin) temperature using KT

q
where Boltzmann’s constant k = 1.35*E− 23J/K and the electron
charge is q = 1.6× E− 19C. There are five parameters in Eq. 2
are required to find their optimal value, these parameters are the
Iph, Io1, a1, RS, and RP.

I = Iph − Id1 − Ip (1)

I = Iph − Io1[exp(
V+ IRs

a1Vth
)− 1]−

V+ IRs

Rp
(2)

According to the structure of DDM given in Figure 1B, we can
be seen that DDM is a generalization of SDM by combining a
parallel of the first diode (in SD) with the second diode. This
process emulates the physical effects at the P-N junction, so the
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FIGURE 1
The circuits of PV models.

output current of PV using DDM is given as (Ridha et al, 2022b):

I = Iph − Io1[exp(
q(V+ IRs)

a1kT
)− 1]

− Io2[exp(
q(V+ IRs)

a2kT
)− 1]−

V+ IRs

Rp
(3)

InEq. 3, a1 and a2 stand for the ideality parameters of the first
and second diode, respectively. Io2 is the saturation current.Thus,
there are seven parameters in Eq. 3 are required to be estimated.
These parameters are the Iph, Io1, Io2, a1, a2, Rs, and Rp). [Vp]Vmp
Voltage at maximum power point (MPP) (V) [Vp]Voc Open
circuit voltage (V) [Vp]Imp Current at maximum power point
(MPP) (A) Moreover, the generated photocurrent is calculated
using the radiation value (G) at T as defined in Eq. 4a. Also,
the currents of the reverse saturation for Io1,2 are defined in
Eq. 4b. In addition, the value of Rp is computed using Eq. 4c
and as well as, the open circuit voltage (Voc(T)) at temperature T
(Barth et al, 2016).

Iph(G,T) = Iph(s) ∗ [1+
ki
100
(T− 25)] ⋅ G

Gs
, (4a)

Io1, 2(T) = Io1,2(s) ⋅ (
T
Ts
)
3
⋅ e
(

q⋅Eg
a1,2k
)⋅( 1

Ts
− 1

T
)
, (4b)

Rp(G)
= Rp(s)
⋅ (

Gs

G
) (4c)

Voc(T) = Voc(s) .[1+
kv
100
(T− 25)] (4d)

In Eq. 4, Gs = 1000W/m2 and Ts = 25°C. Rps
, Iphs , Io1,2s ,

and Voc(s) , denote the shunt resistance, photo current, reverse
saturation currents, and open circuit voltage, respectively.
In addition, the ki (%/

◦C) and Kv (%/
◦C) stand for the

temperature coefficient of current and voltage, respectively. Also,
the band-gap energy (Eg) is computed using the band-gap
energy at standard operating conditions (SOC) (i.e., Eg(s)) and
this is formulated in the following formula (Yousri et al, 2021;
Ridha et al, 2022c):

Eg = Eg(s) ⋅ [1− 2.6677× 10
−4 (T− 25)] (5)

[Cp]kiTemperature coefficient of current [Vp]EgBand-gap
energy.

3 Formulation of fitness function

Determining the SDM and DDM parameters is seen as
a nonlinear optimization issue. The root means square error
(RMSE) is the most common objective function used to
perform this procedure. It is calculated using the values of the
estimated (Iest) and measured (Imeas) currents. The Newton-
Raphael method solves nonlinear equations, making the fitness
function more accurate for real applications. It is defined as
(Ćalasan et al, 2020; Yousri et al, 2019a):

Minimize OBJ(Z⃗)

OBJ = √ 1
M

M

∑
i=1
(IMeasi − Iesti (VMeasi , Z⃗))

2

where Z⃗ is designvector

Z⃗ = (z1,z2,z3,Z4,Z5)
T for SDM

Z⃗ = (z1,z2,z3,Z4,Z5,Z6,Z7)
T for DDM

(6)

FIGURE 2
Digging phase.
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FIGURE 3
Henon map (A) Henon attractor, and (B) x, y distributions.

FIGURE 4
flowchart of CHBAlg method.

[Vp]nNumber of parallel strings in the array
[Vp]ImeasMeasured current (A) [Vp]IestEstimated current (A)
[Vp]MLength of the measured dataset [Vp]Z⃗Vector of the
identified parameters. In Eq. 6, Z denotes the vector of the

determined parameters. M stand for the size of the measured
data.

To calculate the estimated current (Iestt+1)value, the
determined parameters are used to solve Eqs 2, 3 based on the
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TABLE 1 The manufacture data of the considered PV cell/module.

Parameters RTC France solar cell SLP080 solar module

Powermax (W) 0.3101 70
Voltagemp (V) 0.459 17.2
Currentmp (A) 0.6755 4.65
Voltageoc (V) 0.536 21.5
Currentsc (A) 0.7605 5.17
Series cells 1 36
NOCT (°C) 45 47
ki (%/°C) 0.036 0.030
kv (%/°C) −0.3739 −0.3100
kp (%/°C) −0.370 −0.500
power tolerance ±5% ±5%

Newton-raphson approach as specified in the following formula
(Ćalasan et al, 2020; Ibrahim et al, 2019; Yousri et al, 2019c):

Iestt+1 = Iestt −
(dI)

(dI
′
)

(7)

where dI and dI’ refers to the difference function of I and its first
derivative. In case of SDM, dI and dI’ are defined as:

dI = Iph − Io1[exp(
V+ IesttRs

a1Vth
)− 1]−

V+ IesttRs

Rp
− Iestt (8)

dI
′
= −Io1

Rs

a1Vth
[exp(

V+ IesttRs

a1Vth
)]−

Rs

Rp
− 1 (9)

By substituting Eqs 8, 9 in Eq. 7, the Iestt is defined as
(Ćalasan et al, 2020; Ibrahim et al, 2019)

Iestt+1 = Iestt

−
Iph − Io1[exp(

V+ IesttRs

a1Vth
)− 1]−

V+ IesttRs

Rp
− Iestt .

−Io1
Rs

a1Vth
[exp(

V+ IesttRs

a1Vth
)]−

Rs

Rp
− 1

(10)

The Iestt+1 for the DDM is defined similarly to the SDM.
However, there are seven parameters.

3.1 Evaluate the accuracy using lambert
form

To justify the accuracy of the developed method to extract
the optimal value of the parameters, the Lambert W function
(LWF) is applied to measure the currents of SDM and DDM.
Therefore, the RMSE has been calculated again for Iest based
on the determined parameters and Imeas. When the difference
(DiffRMSE) between the RMSE (as inEq. 6) andRMSE using LWF
(i.e., RMSELambert) is large, then this indicates the inaccuracy in
determining the parameters. The LWF of SDM is formulated as:

ILambert =
Rp(Ig + Io1 −V)

Rs +Rp
−
a1Vt

Rs
W (δ) , (11a)

δ =
Io1RpRs

a1Vt (Rs +Rp)
exp(

Rp (RsIg +RsIo1 +V)

a1Vt (Rs +Rp)
), (11b)

Moreover, the LWF of DDM (Eq. 2) is formulated as
(Gao et al, 2016; Gude and Jana, 2022; Ridha, 2020):

ILambert =
Rp(Ioh + Io1 + Io2 −V)

Rs +Rp

− r
a1Vt

Rs
W (δ1) − (1− r)

a2Vt

Rs
W (δ2) ,

r =
Io1[exp(

V+ IRs

a1Vt
)− 1]

Io1[exp(
V+ IRs

a1Vt
)− 1]− Io2[exp(

V+ IRs

a2Vt
)− 1]

δ1 =
Io1RsRp

ra1Vt (Rs +Rp)
exp(

Rp (RsIg +RsIo1/r+V)

a1Vt (Rs +Rp)
)

δ2 =
Io2RsRp

(1− r)a2Vt (Rs +Rp)

× exp(
Rp (RsIg +RsIo2/(1− r) +V)

a2Vt (Rs +Rp)
),

(12)

[Vp]ILambertCalculated current via Lambert form.
In Eq. 12, ILambert is the output current generated based on

LWF. Therefore, RMSELambert is evaluated using the following
formula:

RMSELambert = √
1
M

M

∑
i=1
(Imeasi − ILamberti)

2 (13)

[Vp] mNumber of modules in string.

4 Chaotic honey badger algorithm

The two-dimensional Henion map is integrated with HBA to
enhance the algorithm’s basic performance in this approach.The
descriptions and controlled equations of the proposed algorithm
are summarized as follows:

4.1 Honey badger algorithm

The structural properties of the Honey Badger Algorithm
(HBA) are detailed in this section. The HBA is one of the
most basic optimization techniques derived from honey badger
mammal behavior when looking for food. The honey badger
utilizes two tactics to catch its meal: to employ his sniffing ability;
the second is to excavate to capture the prey.Themammal follows
honeyguide birds in the second technique to locate and access
the hives. The first method was given the term digging phase,
whereas the second principle was given the name honey phase
by the algorithm developers (Hashim et al, 2022).Themammal’s
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TABLE 2 The obtained results by CHBAAlg, and other techniques in the case of SDM andDDMof the RTC cell.

Statically metrics WSRT

CHBAlg vs. others

Cond/Alg Best Worst Average Median Variance Std R+ R− p-value ho

SDM CHBAAlg 0.00077301 0.00078398 0.00077619 0.00077508 1.0857e-11 3.295e-06 — — — —
HBAAlg 0.00077322 0.0020833 0.0010721 0.00085199 1.4892e-07 0.00038591 310 15 7.2245e-05 1
AOAlg 0.025838 0.13818 0.072948 0.069389 0.00084789 0.029118 325 0 1.229e-05 1
EFOAlg 0.00079124 0.0014354 0.00099223 0.00097659 2.5026e-08 0.0001582 325 0 1.229e-05 1
BMOAlg 0.00077817 0.002171 0.0013234 0.0012874 1.852e-07 0.00043035 325 0 1.229e-05 1
CapSAAlg 0.00096009 0.0026484 0.0018895 0.0020833 1.4902e-07 0.00038603 325 0 1.229e-05 1
RFSOAlg 0.0021177 0.013458 0.0050678 0.0034187 1.4695e-05 0.0038334 325 0 1.229e-05 1

DDM CHBAAlg 0.00074329 0.00079827 0.0007737 0.00077364 1.9746e-10 1.4052e-05 — — — —
HBAAlg 0.00074197 0.0039785 0.0012654 0.0012478 4.5434e-07 0.00067405 298 27 0.00026647 1
AOAlg 0.020189 0.12443 0.073902 0.079246 0.00078095 0.027945 325 0 1.229e-05 1
EFOAlg 0.00086828 0.0014667 0.0010438 0.001023 2.1998e-08 0.00014832 325 0 1.229e-05 1
BMOAlg 0.00077644 0.011716 0.0025072 0.0020833 4.075e-06 0.0020187 325 0 1.229e-05 1
CapSAAlg 0.0011631 0.0027489 0.0022754 0.0022568 1.5088e-07 0.00038844 325 0 1.229e-05 1
RFSOAlg 0.0021895 0.013931 0.0051489 0.0033068 1.497e-05 0.003869 325 0 1.229e-05 1

mobility is governed by its odor awareness; when the strength of
the smell is strong, the mammal’s mobility will indeed be fast,
and vice versa (Hashim et al, 2022).TheHBA’s primary steps and
regulated equations are summarized as follows:

• Initialization step: The first candidate solution is calculated
utilizing upper (UB) and lower (LB) limits of the problem
space in this phase.The initial solutions are thus randomized
sets that may be derived by using the following Eq. (14).

Ui = LB+ r1 (1,D) × (UB− LB) , i = 1,2,…,N. (14)

whereU is the solutions framework andN represents the number
of candidate solutions (honey badgers).

• Updating the candidates’ positions: In this stage, the
candidates’ locations Unew are modified strategy, for
example, employed, which is either digging or honey phases.
• Digging phase: The movements of the search candidates in
this phase are determined by the strength of the predator’s
smell and the distance between both the honey badger
(agent) and the prey. As seen in Figure 2, the honey badger
digs in a circularly polarized shape. The equation for its
motion is given below:

Unew = prey+ Fg× β× In× prey+ Fg× r3
× (prey−Ui) × (cos2πr4) × (1− cos2πr5)

(15)

where β is a metric of the mammal’s capacity to catch food,
Hashim et al. (2022) considered the possible values of β is 6. The
r3,4,5 are arbitrary variables in the range of 0–1 drawn from a
uniformly distributed, In is the intensity. The indicator for the

direction of the search is the Fg, and it is generated as follows:

Fg = {
1 if r6 ≤ 0.5
−1 if else

(16)

• Honey phase: honey badgers use this approach to modify
their place concerning the honey guide bird while searching
for beehives. Hashim et al. (2022) defined the honey phase
using the following equation:

Unew = prey+ Fg× r7 × σ× (prey−Ui) (17)

where r7 is a random number having values between 0 and 1.

• Modeling Intensity In: because the honey badger
mammal’s behaviour is regulated by its smell awareness,
Hashim et al. (2022) created the following expression for
the smell intensity Ini of the victim by each ith candidate:

Ini = r2 ×
(Ui −Ui+1)

2

4π(prey−Ui)
(18)

where prey is the prey’s position and r2 is a random number in
the range [0 1].

• Modeling the density variable (σ): the σ is defined by
Hashim et al. (2022) as a controller for transmission
between the exploration and exploitation phases. To
reduce the randomness with time, the developers
(Hashim et al, 2022) supposed that β is a regression function
during the iterations, as shown below:

σ = C× exp( −Iter
Itermax
) (19)
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Inputs: Agents size N, number of iterations

Maxt.

Outputs: The optimal solutions.

Step 1: Calculate the first set of N

solutions U with dimension d (i.e., number

of unknown variables).

Compute the fitness function of Eq. 13 and

the corresponded swarm matrix as the best

solutions (prey).

while (Iter ≤ Itermax) do

Upgrade the value of the decreasing factor

through Eq. 19.

for (i = 1 to N) do

Compute the intensity through Eq. (18).

if r < 0.5 then

Upgrade the location of Unew through Eq. 15.

else

Upgrade the location of Unew through Eq. 17.

end if

Evaluate the new solutions and compute the

Fitt+1 and assign Fitmaxt+1.

if Fitt+1 ≤ Fitt then

Set Ui = Unew and Fitt = Fitt+1.

end if

if Fitmaxt+1 ≤ Fitmaxt then

Set Ubest = Unew and Fitmaxt = Fitmaxt+1.

end if

end for

end while

Send the recommended solution

Algorithm 1. Steps of HBA.

where Iter and Itermax refer to the current and the total number
of iterations, C is constant that was recommended to be 2.

• Escaping from local solutions: the algorithm developers
(Hashim et al, 2022) used an alert (Fg) to indicate the
search direction for avoiding becoming tethered to local
solutions.

Based on the previous description, the Algorithm 1
describes the main structure of the HBA.

4.2 Two-dimensional henon map

In general, the 2D Henon map is one of the most popular
discrete-time dynamical systems that simulates the chaotic
behavior (Hénon, 1976). The Hénon map is a discrete-time
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TABLE 6 Statistical quantities for the fetched results by CHBAAlg, and other concurrent in case ofmodeling SDM andDDMmodels of the SLP080 solar
module.

Statically metrics WSRT

CHBAlg vs. others

Cond/Alg Best Worst Average Median Variance Std R+ R− p-value ho

SDM CHBAAlg 0.023392 0.023392 0.023392 0.023392 7.9264e-33 8.903e-17 — — — —
HBAAlg 0.023392 0.44059 0.12484 0.023392 0.028345 0.16836 298 27 0.00025802 1
AOAlg 0.16912 0.21765 0.20326 0.20826 0.00018413 0.013569 325 0 1.229e-05 1
EFOAlg 0.024689 0.053095 0.031056 0.030356 3.2708e-05 0.0057191 325 0 1.229e-05 1
BMOAlg 0.023392 0.35481 0.052486 0.027194 0.0057344 0.075726 325 0 1.229e-05 1
CapSAAlg 0.023392 0.17768 0.042544 0.023393 0.0017895 0.042303 325 0 1.229e-05 1
RFSOAlg 0.023605 0.040702 0.027383 0.024326 2.372e-05 0.0048704 325 0 1.229e-05 1

DDM CHBAAlg 0.023103 0.023392 0.023195 0.023103 1.7173e-08 0.00013105 — — — —
HBAAlg 0.023103 0.44059 0.162 0.023393 0.038693 0.19671 302 23 0.00017378 1
AOAlg 0.16824 0.24955 0.20778 0.20901 0.00027504 0.016584 325 0 1.229e-05 1
EFOAlg 0.023734 0.045585 0.031438 0.031118 2.6068e-05 0.0051057 325 0 1.229e-05 1
BMOAlg 0.023103 0.98215 0.14168 0.047953 0.067234 0.2593 321 4 2.0013e-05 1
CapSAALg 0.023103 0.16424 0.031352 0.023106 0.00092534 0.030419 217 108 0.14253 0
RFSOAlg 0.024021 0.051499 0.030561 0.026743 5.9008e-05 0.0076817 325 0 1.229e-05 1

dynamical system that is also known as the Hénon-Pomeau
attractor/map. It is one of the most well-studied instances of
chaotic behavior in dynamical systems. A point (xn, yn) in the
plane is mapped to a new point using the Hénon map. Michel
Hénon introduced the map as a simplified version of the Lorenz
model’s Poincaré section. In the classical map, an initial plane
point will either approach or diverge to infinity from a set of
points known as the Hénon weird attractor. The Hénon attractor
is a fractal that is smooth in one direction and has a Cantor
set in the opposite. Moreover, the main difference between 2D
Henon map and others is that it (i.e., 2D Henon) has better
pseudo-randomness (Song and Ding, 2014; Bucolo et al, 2022).
In addition to, the properties such as uniform non-variation
of density variable, and Lyapunov exponent. This support our
motivation to apply the 2D Henon map to PV parameter
estimation.

The mathematical equation of the Henon map is given as in
Eq. 20 and its distribution can be depicted in Figure 3:

{
xt+1 = 1− 1.4 ⋅ x2t + yt
yt+1 = 0.3 ⋅ xt

(20)

4.3 Proposed chaotic honey badger
algorithm

The two-dimensional Henon map is applied to adjust
the parameters of C and β of Eq. (21), respectively to
enhance the performance of the basic HBA optimizer. The
updated values of the C and β follow the equation shown

below:

C (t) = 4 ∗ yt+1
β (t) = 7 ∗ xt+1

(21)

where xt+1 and yt+1 are vectors of the Henon map, t is the
current iteration. The 4 and 7 are used to normalize the Henon
map vectors to be in the same recommended range by the
HBA developer. In section A of the basic HBA, the developers
selected the β and C have values of 6 and 2. In the CHBA,
the 4 and 7 are selected to provide a wide variety for the
variables β and C throughout the iteration numbers in the
intervals of [0 7], and [0 4], respectively. The initialization of
a Henon map during implementation is 0 (x (1) = 0; y (1) =
0). The attractor of the map has been depicted in Figure 3. The
flowchart of the proposed CHBAlg based on the PV parameters
estimation process is depicted in Algorithm 2 and the flowchart
of Figure 4. Then the digging phase and density variable will be
modeled as

Unew = prey+ Fg× β (t) × In× prey+ Fg× r3 × (prey−Ui) (22)

×(cos2πr4) × (1− cos2πr5)

σ = C (t) × exp( −Iter
Itermax
) (23)

5 Simulations and discussions

In this section, the proposed CHBA algorithm is examined
with three different PV cell/modules to identify the SD and
DD PV models’ parameters. The proposed optimizer is
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Inputs: Agents size N, number of iterations

Maxt, the dataset of the I, V of the

considered PV cell/module.

Outputs: The optimal solutions.

Step 1: Calculate the first set of N

solutions U with dimension d (i.e., the

number of unknown variables which are 5 and

7 for SDM and DDM, respectively).

Compute the fitness function of Eq. 13 and

the corresponded swarm matrix as the best

solutions (prey).

Calculate C, and β based on Hanon map using

Eq. 21 with dimensions of 1* Itermax).

while (Iter ≤ Itermax) do

Upgrade the value of the decreasing factor

through Eq. (23).

for (i = 1 to N) do

Compute the intensity through Eq. (18).

if r < 0.5 then

Upgrade the location of Unew through

Eq. (22).

else

Upgrade the location of Unew through

Eq. (17).

end if

Evaluate the new solutions and compute the

Fitt+1 and assign Fitmaxt+1.

if Fitt+1 ≤ Fitt then

Set Ui = Unew and Fitt = Fitt+1.

end if

if Fitmaxt+1 ≤ Fitmaxt then

Set Ubest = Unew and Fitmaxt = Fitmaxt+1.

end if

end for

end while

Send the recommended solution

Algorithm 2. Pseudo code of CHBA.

compared with a set of recently developed algorithms including
barnacles mating optimizer (BMO) (Sulaiman et al, 2020), red
fox optimization algorithm (RFSO) (Połap and Woźniak, 2021),
electric fish optimizer (EFO) (Yilmaz and Sen, 2020), capuchin
search algorithm (CapSA) (Braik et al, 2021), and Aquila
optimizer (AO) (Abualigah et al, 2021c) to provide a massive
comparison with recent set of meta-heuristics. For unbiased
comparison, the conducted algorithms are implemented for
30 independent runs with the number of iterations and
population size of 500 and 30, respectively. The number of
iterations is selected based on several separate runs, showing

thatmost of the considered algorithms converged around the 500
iterations.

The electric specifications of the considered PV cell and PV
module are reported in Table 1.

5.1 Experimental series 1: RTC France
silicon solar cell

In this part, the performance of the CHBAlg method is
computed using 26 (V-I) measured pairs for a commercial RTC
France silicon solar cell at 33°C and 1000W/m2. Table 4 shows
the parameters of SDM and DDM detected using CHBAlg
and other algorithms. The fitness value (RMSE) is used as the
main performance metric to evaluate the accuracy of these
algorithms. Furthermore, the performance of the determined
parameters is assessed by using Lambert forms for SDM and
DDM to calculate the RMSElambert and then measure the
deviation (DiffRMSE) between the RMSElambert and the obtained
RMSE. In the case of the DiffRMSE is large, this indicates
inefficient estimated parameters. In addition, the absolute error
at MPP (AEMPP) is presented in Table 5 for a more thorough
investigation.

In the two test scenarios, RMSE and DiffRMSE using
CHBAAlg are smaller than other approaches (HBAAlg,
RFSOAlg, BMOAlg, EFOAlg, CapSAAlg, AOAlg), as shown in
Table 4 (i.e., SDM and DDM). This demonstrates the developed
CHBAAlg approach’s excellent performance and establishes
its superiority over other approaches. The CHBAAlg’s AEMPP
values indicate its consistency in accurately modeling the PV
solar cell. Different statistical measurements are utilized to
analyze CHBAAlg’s performance further, as given in Table 2.
The Wilcoxon signed-rank test (WSRT) is used to determine
whether or not the difference between the CHBAAlg and other
approaches is significant, with a significance level of 0.05. It can
be seen from the tabled findings that CHBAAlg takes first place
according to worst, best, average, and median. Furthermore,
its stability is superior to that of other approaches. Traditional
HBAAlg can produce outstanding results than the different
algorithms. As demonstrated in Table 2, the RMSE and DiffRMSE
of CHBAlg are lower than those of other methods (HBAAlg,
RFSOAlg, BMOAlg, EFOAlg, CapSAAlg, and AOAlg) for SDM
andDDMmodels.This proves the developedCHBAlg approach’s
superiority over other methods by demonstrating its exceptional
performance. The AEMPP values of the CHBAlg and HBA show
that they are consistent in precisely modeling the PV solar
cell. The least RMSE reveals the high accuracy of the identified
parameters as the proposed CHBAlg provides the least RMSE;
hence it can determine highly accurate results.The average value
of the RMSE affirms that the CHBAlg has the highest rank in its
reliability as the average RMSE is very close to the best-fetched
one. Thereby, the STD of CHBAlg is in the range of 1× 10–5;
meanwhile, the HBA and other algorithms have STD in fields of
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FIGURE 5
Behaviour of competitive techniques using SDM of RTC solar cell.

3× 10–4. For the non-parametric statistical analysis, as shown
in Table 6, CHBAlg takes the top rank based on the worst, best,
median, and average, as seen in the tabular results. Furthermore,
it has a higher level of stability than other approaches. Traditional
HBAAlg can outperform different algorithms according to the
results, and in the best case, it has nearly the same accuracy in
Table 3 as CHBAAlg.

Figures 5, 6 show the current-voltage (V-I), power-voltage
(V-P) characteristics, absolute error curve between estimated and
measured datasets, the Mean convergence speed of the proposed
optimizer compared the state-of-the-art, and the RMSE over 25
runs using SDM and DDM models of RTC France solar cells,
respectively, to confirm the certainty of the identified parameters.
The following conclusions may be drawn from these graphs: the

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2022.1011887
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Almodfer et al. 10.3389/fenrg.2022.1011887

FIGURE 6
Behaviour of competitive techniques using DDM of RTC solar cell.

specified parameters by CHBAlg (Viewed as CHBA, for brief)
give a tight match between the measured and identified sets
which affirms the accuracy of the identified parameters. The
absolute error (AE) curves in Figure 5C, Figure 6C for SDM and
DDM models, respectively, the observed AE values between the
estimated and measured dataset are less than 0.02 throughout
most of the dataset pairs. Accordingly, AE curves indicate the
high performance of the developed method to estimate the

efficient parameters. On the other hand, the AO optimizer
shows a high deviation between the measured and the estimated
datasets; hence it has a minor rank in handling this optimization
problem.Aswell as from themean convergence curve ofCHBAlg
(viewed as CHBA, for brief) in Figure 5D, Figure 6D, it can be
noticed that it can converge to high-quality solutions with faster
performance than other methods. Meanwhile, the AO and RFSO
are not recommended for solving the PVmodeling optimization
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FIGURE 7
Behaviour of competitive techniques using SDM of SLP080 solar module.

problem. On the other hand, the HBA converges to fewer quality
solutions than HBA and EFO; hence it takes the third rank.
Finally, the RMSE boxplots in Figure 5E, Figure 6E show that
CHBAlg (Viewed as CHBA, for brief) is very stable in SDM
and DDM models. In contrast, AO is the worst method in both
models.

For comparing with recent literature, the following
Table 4 lists the identified parameters RMSE, DiffRMSE

and AEMPP by the recently published techniques including
Archimedes Optimization Algorithm (AOA), marine
predator algorithm (MPA), EPSO (Yousri et al., 2020b),
HCLPSO (Yousri et al., 2019b), PGJAYA (Yu et al., 2019),
CWOA (Xiong et al., 2018), PSO-WOA (Xiong et al., 2018),
STLBO (Yu et al., 2017), ELPSO (Jordehi, 2018), HFAPS(Beigi
and Maroosi, 2018), MLBSA (Yu et al., 2018), TVACPSO
(Jordehi, 2016), CPSO (Jordehi, 2016), GA (Jordehi, 2017),
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FIGURE 8
Behaviour of competitive techniques using DDM of SLP080 solar module.

CSA (Kang et al., 2018) and ICSA (Kang et al., 2018). The
results show that, however, there are other algorithms has
the same best RMSE, whereas the proposed optimizer has
superiority in achieving minimum AE at the maximum
power point. The execution time by all the algorithms
is collected as well to highlight all the features of the
proposed algorithm. The optimizer has the least execution
time.

5.2 Experimental series 2: SLP080 solar
module

In this section, the developedmethod’s performance is tested
using a set of twenty-one (V-I) measured pairings for SLP080-
12 M module at OAC (G = 1,000 W/m2, and Tamb = 25 °C)
(Agwa et al, 2020). The allocated parameters of SDM and DDM
by CHBAlg and other techniques are listed in Table 5, with
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the RMSE value as the major measure for the correctness of
the results. In addition, the performance of the determined
parameters is assessed by computing the RMSElambert for SDM
and DDM models and calculating DiffRMSE). Moreover, for a
more detailed study, the absolute error at MPP (AEMPP) is shown
in Table 5.

As demonstrated in Table 5, the RMSE and DiffRMSE of
CHBAlg are lower than those of other methods (HBAAlg,
RFSOAlg, BMOAlg, EFOAlg, CapSAAlg, AOAlg) for SDM and
DDM models. This proves the developed CHBAlg approach’s
superiority over other methods by demonstrating its exceptional
performance. The AEMPP values of the CHBAlg and HBA show
that they are consistent in precisely modeling the PV solar
cell. The least RMSE reveals the high accuracy of the identified
parameters as the proposed CHBAlg provides the least RMSE;
hence it can determine highly accurate results.The average value
of the RMSE affirms that the CHBAlg has the highest rank in its
reliability as the average RMSE is very close to the best-fetched
one. Thereby, the STD of CHBAlg is in the range of 1× 10–17

and 1× 10–4, for SDM and DDM, respectively; meanwhile, the
HBA and other algorithms have STD in ranges of a× 10–1 and
a× 10–3. For the non-parametric statistical analysis, as shown
in Table 6, CHBAlg takes the top rank based on the worst, best,
median, and average, as seen in the tabular results. Furthermore,
it has a higher level of stability than other approaches. Traditional
HBAAlg can outperform different algorithms according to the
results, and in the best case, it has nearly the same accuracy as
CHBAAlg.

The quality measures of the identified parameters have
been measured via drawing the V-I and V-P characteristics,
and absolute error curves using the proposed optimizer results
and the state of the art as shown in Figures 7, 8 for SDM
and DDM, respectively. Moreover, the proposed algorithm
convergence speed compared with state-of-the-art and RMSE
among the total number of runs, respectively, for SDM and
DDM models of SLP080 solar module are displayed in the
figures to confirm the certainty of the identified parameters.
These curves can be used to draw the following conclusions:
The determined parameters using CHBAlg (Viewed as CHBA,
for brief) produce a close match between the measured and
determined data sets. Figure 7C, Figure 8C show absolute error
curves for the SDM and DDM, and it can be noticed that
the worst algorithm is AOAlg (Viewed as AO, for brief).
However, CHBAlg (Viewed as CHBA, for brief) is the best one.
In comparison to the other techniques, CHBAAlg’s (Viewed
as CHBA, for brief) mean convergence rate in Figure 7D,
Figure 8D is the smallest one, and it is significant. Moreover,
from the boxplots of RMSE in Figure 7E, Figure 8E, it can
be noticed that CHBAlg (Viewed as CHBA, for brief) is very
stable in determining the parameters in the case of SDM and
DDM models. Although AOAlg (Viewed as AO, for brief) is
the weakest algorithm in both models, BMOAlg and CapSAAlg

(Viewed as BMO, CapSA, for brief) come in second and third,
respectively.

6 Conclusion and future work

This paper presented amodified version of theHoney Badger
Algorithm (HBA) for identifying unknown parameters in PV
models with single and double diodes. The proposed method,
named chaotic HBA (CHBA), depended on modified HBA
using the chaotic 2D Henon map to enhance its ability to find
the optimal solution. Under various radiation and temperature
settings, the proposed CHBAlg method was tested using two
different PV cells/modules: RTC solar cells and SLP080 solar
modules.

The accuracy of the developed CHBAlg approach is
demonstrated by comparing the acquired findings towell-known
state-of-the-art methodologies. The proposed CHBAlg yielded
more precise and improved results than the basic HBA in the two
situations, with RMSE values of 7.737e-4 and 0.023103 for RTC
and SLP080, respectively, in the case of DDM. The RMSE of the
CHBA, in the case of SDM, is 7.8398e-4 and 0.023392 for RTC
and SLP080, respectively. The consistency of the CHBA’s results
was the most notable feature besides the accuracy. As a result,
the presented method may be considered a promising search
method for identifying the PV models’ unknown parameters
in terms of data fitting, precision, and convergence rate. Hence
it is evident that the integrated operators with the basic HBA
have established their performance and improved the balance
between exploration and exploitation.

The proposed method can be applied to various disciplines
in the future, such as fuel cells, design issues, machine learning,
cloud computing, feature selection, data mining problems, Big
Data problems, and other applications.

For the future target, the gradient/Lagrangian-based
methods will be integrated for processing the PV modeling
optimization problem.
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