4(2): 1-10, 2019; Article no.AJACR.51710 ISSN: 2582-0273

# Ultrasound Assisted Sonochemical Decomposition of Methyl Orange in the Presence of H<sub>2</sub>O<sub>2</sub> and CCl<sub>4</sub>

J. Ara<sup>1</sup>, M. Ashifuzzaman<sup>2</sup>, M. J. Hossain<sup>3</sup>, S. M. A. Razzak<sup>1</sup>, S. Monira<sup>1</sup>, J. Alauddin<sup>1</sup>, M. A. A. Mashud<sup>4</sup> and M. H. Uddin<sup>5\*</sup>

<sup>1</sup>Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia - 7003, Bangladesh.

<sup>2</sup>Department of Physics, Government M. M. College, National University, Dhaka-Mymensingh Highway, Bangladesh.

<sup>3</sup>Department of Chemical Engineering, Faculty of Engineering and Technology, Jessore University of Science and Technology, Jessore - 7408, Bangladesh.

<sup>4</sup>Department of Electrical and Electronic Engineering, Biophysics and Biomedicine Research Lab, Islamic University, Kushtia - 7003, Bangladesh.

<sup>5</sup>Department of Applied Chemistry and Chemical Engineering, Biophysics and Biomedicine Research Lab, Islamic University, Kushtia - 7003, Bangladesh.

## Authors' contributions

This work was carried out in collaboration among all authors. Authors JA, MA, MJH and MHU designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors SMAR, SM, JA and MAAM managed the analyses of the study and also managed the literature searches. All authors read and approved the final manuscript.

#### Article Information

DOI: 10.9734/AJACR/2019/v4i230107 <u>Editor(s):</u> (1) Dr. Angélica Machi Lazarin, Professor, Department of Chemistry, State University of Maringá, Brazil. <u>Reviewers:</u> (1) Mairton Gomes da Silva, Federal University of Recôncavo of Bahia (UFRB), Brazil. (2) Ioana Stanciu, University of Bucharest, Romania. (3) Fatma Kandemirli, Kastamonu University, Turkey. Complete Peer review History: <u>http://www.sdiarticle4.com/review-history/51710</u>

> Received 01 August 2019 Accepted 05 October 2019 Published 20 November 2019

Original Research Article

## ABSTRACT

Methyl orange (MO) is an orange azoic dye; which has transition range from 3.1 to 4.4. Sonochemical decomposition of methyl orange in the presence of  $H_2O_2$  and  $CCl_4$  has given effective result to reclaim water from the effluents released by the industries. The aim of this research was to investigate the effective condition for the decomposition of MO in the presence or absence of additives. For this, 50 mg/L solution of MO was sonicated in the presence and absence of different additives. It was clearly confirmed that the rates of sonochemical decomposition of MO

\*Corresponding author: Email: uddindrhelal@gmail.com;

increased with increasing the concentration in both cases of  $H_2O_2$  and  $CCI_4$ . The combination of advanced oxidation processes (AOPs) namely hydrogen per-oxide and carbon tetra-chloride with sonolysis harvests the decomposition of wide spectrum of organic contaminants. The combination of sonolysis with  $H_2O_2$  and  $CCI_4$  enhances the production of non-selective radicals to improve the decomposition process. The AOPs is technically feasible and also economic. Based on the results, it was suggested that the rate of MO decomposition can be effectively enhanced by the sonolysis of  $CCI_4$  and also for  $H_2O_2$ . It was possible to include order- MO+200 µL  $H_2O_2 > MO+100 µL H_2O_2 > MO+20 µL H_2O_2 > MO; MO+200 µL <math>CCI_4 > MO+100 µL CCI_4 > MO+20 µL CCI_4 > MO.$ 

Keywords: Methyl orange; sonolysis; radical reaction.

## **1. INTRODUCTION**

Energy, food and water are interconnected & within the nation, water is essential for all social and economic developments. In the oncoming years, worldwide crisis may arise for energy, food, and water [1]. The percentage of increasing in concentration of organic contaminants in surface water has been observed by the past two decades [2,3]. The removal of hazardous substances from industrial waste streams and the process of remediation of contaminants in groundwater, rock and soil is a major problem in the Asian countries [4]. As diseases spread through water which becomes unsuitable for usages in day to day life in human beings, for the usages of polluted water, water borne diseases spread throughout the world and in the awkward case, it causes the mortality of children [5,6].

Contamination of soil and groundwater from industrial waste streams is a serious health problem. Traditional techniques to remove contaminants from soil: including landfilling, air stripping/carbon adsorption, incineration, biological activity and chemical treatment. Incineration, adsorption and landfilling merely transfer the contaminant to another phase or location (i.e., a pollution shift) and produce a potentially dangerous and toxic secondary disposal requirement. То numerous environmental factors biodegradation is very sensitive, is slow, produces unpredictable results often. and is uneconomical for highly concentrated waste effluents. Current developments in environmental technologies involving chemical oxidation have the potential to treat all types of organic and inorganic contaminants (volatile, semi-volatile and nonvolatile). Those processes, which all are oxygen based, are usually termed as advanced oxidation processes (AOPs).

An AOPs can define as the oxidation process that generally generates hydroxyl radicals in

sufficient quantity to affect water treatment. Complete mineralization can be entailed by the oxidative processes, implying that the final products of degradation reactions are carbon dioxide, short-chain organic acids, and inorganic ions, typically less toxic and favorable to biodegradation. The AOPs generally use a combination of oxidation agents ( $O_3$ ,  $H_2O_2$ ), irradiation (ultraviolet, ultrasound) and catalysts (TiO<sub>2</sub>) as a means of generating the excited hydroxyl or hydroxyl radicals, which are more powerful oxidants than molecular  $O_3$  or  $H_2O_2$  [7-17].

Recent advances in AOPs include environmental sonochemistry, which involves the application of ultrasound to induce in situ cavitation to destroy or accelerate the destruction of liquid-phase contaminants [18,19]. Some reactions involved in AOPs are found in Table 1 [20,21]. Cavitation is the nucleation, growth, and sudden collapse of gas or vapor-filled micro-bubbles formed from acoustical wave-induced compression or refraction in a body of liquid [19]. The number of reacted molecules per unit of ultrasonic energy is marked as the sonochemical efficiency value. For hazardous organic dye the degradation of methyl orange used as model in the presence of additives such as  $H_2O_2$ ,  $CCI_4$  was carried out. Because methyl orange (MO) is a pH indicator and due to its clear color change it is very often used in titrations. MO changes color at the pH of a mid-strength acid and is usually used in titrations for acids. Unlike a so called universal indicator, MO does not have a full spectrum of color change, but has a sharper end point. The structure of the MO can be observed in Fig. 1.

## 1.1 Fundamental Theory of Sonochemistry

The study of sonochemistry is concerned with understanding the effect of sonic waves and wave properties on chemical systems. The chemical effects of ultrasound do not come from a direct interaction with molecular species. Studies have shown that no direct coupling of the acoustic field with chemical species on a molecular level can account for sonochemistry or sonoluminescence. Instead, sonochemistry arises from acoustic cavitation: the formation, growth, and implosive collapse of bubbles in a liquid. This is demonstrated in phenomena such as ultrasound, sonication, sonoluminescence, and sonic cavitation. The attractiveness of sonochemistry in environmental engineering seems to stem from three major facts.

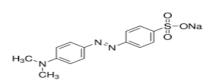



Fig. 1. Structure of methyl orange

Firstly, sonochemistry can cause real chemical changes to a solution without the necessity of adding any other compounds. Secondly, sonochemistry is often conducted at low or ambient temperatures and pressures; thus, no heating or pressurization is required. These two features simplify enormously the design and operation of reactors. Thirdly, in many cases, the peculiar nature of sonochemical reactions offers Ara et al.; AJACR, 4(2): 1-10, 2019; Article no.AJACR.51710

alternative pathways, providing a faster or environmentally safer degradation of contaminants. Some sonochemical syntheses have also been successfully scaled up to plant size, providing convenient advantages such as lower operation costs and shorter times of operation compared to traditional techniques. The present challenge for sonochemists and acoustical physicists in the field of environmental remediation is to provide cost- effective sonochemical solutions to large-scale problems. Sonochemistry proceeds because the passing of acoustical waves of large amplitude, called finite amplitude waves, through solutions causes cavitation. Cavitation can be generated when large pressure differentials are applied in a flowing liquid (hydro dynamical cavitation), or by means of an electromechanical transducer, piezo electrical or magnetostrictive, in contact with the fluid (acoustical cavitation) according to Fig. 2.

The aim of this research was to investigate the effective condition for the decomposition of MO in the presence or absence of additives. In addition, was to make comparison the percentage of dye molecule degradation on ultrasound with and without additives such as  $H_2O_2$ , CCl<sub>4</sub> at room temperature will be made.

#### Table 1. Some reactions involved in advanced oxidation processes

| Sonolysis                                                                                                                             | $H_2O + ))) \rightarrow OH + OH^-$                                                                   |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                       | $H_2O_+))) \rightarrow (1/2)H_2 + (1/2)H_2O_2$                                                       |  |  |
| Fenton reactions                                                                                                                      | $Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH + OH^-$                                                   |  |  |
| Sonophotocatalysis (with H <sub>2</sub> O <sub>2</sub> )                                                                              | $H_2O +))) \rightarrow OH + OH^-$                                                                    |  |  |
| (a) Water sonolysis                                                                                                                   | $H_2O$ +))) $\rightarrow (1/2)H_2 + (1/2)H_2O_2$                                                     |  |  |
| (b) Reaction of $H_2O_2$ with H atoms (formed from water sonolysis)                                                                   | $H_2O_2 + H \rightarrow OH + H_2O$                                                                   |  |  |
| (c) Photolytic dissociation of $H_2O_2$                                                                                               | $H_2O_2 + hu \rightarrow 2OH$                                                                        |  |  |
| (d) Reaction of H <sub>2</sub> O <sub>2</sub> with superoxides (formed in<br>the presence of TiO <sub>2</sub> and under UV radiation) | $H_2O_2 + O_2^{-} \rightarrow OH + OH^{-} + O_2$                                                     |  |  |
| (e) Reaction of H <sub>2</sub> O <sub>2</sub> with electrons (conduction band                                                         | $H_2O_2 + e^- \rightarrow OH + OH^-$                                                                 |  |  |
| electrons are generated from semi-conductor                                                                                           | $O_3 + OH \rightarrow OH$                                                                            |  |  |
| photocatalyst under UV irradiation).                                                                                                  | $UV + H_2O_2 + O_3$                                                                                  |  |  |
| Ozone + sonolysis                                                                                                                     | $H_2O + ))) \rightarrow OH + OH^-$                                                                   |  |  |
|                                                                                                                                       | $H_2O+))) \rightarrow (1/2) H_2 + (1/2)$                                                             |  |  |
|                                                                                                                                       | $H_2O_2 + O_3 + ))) \rightarrow O_2(g) + O(^3P)(g)$                                                  |  |  |
|                                                                                                                                       | O ( <sup>3</sup> P) (g) + H₂O (g)→ 2 OH                                                              |  |  |
| Semiconductor photo-catalysis (TiO <sub>2</sub> -                                                                                     | $TiO_2 + hu \rightarrow TiO_2^- + OH (or TiO_2^+)$                                                   |  |  |
| Semiconductor)                                                                                                                        | $\text{TiO}_2^- + \text{O}_2 + \text{H}^+ \rightarrow \text{TiO}_2 + \text{H}_2\text{O} + \text{OH}$ |  |  |
|                                                                                                                                       | $\text{TiO}_2^- + 2\text{H}^+ \rightarrow \text{TiO}_2 + \text{H}_2$                                 |  |  |
|                                                                                                                                       | $H^+ + H_2O \rightarrow OH + H^+$                                                                    |  |  |

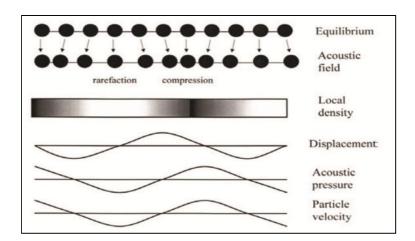



Fig. 2. Propagation of a one-dimensional ultrasound wave [C.E. Brennen, et al. Journal of fluid mechanics, 355 (1998) 255-283]

## 2. EXPERIMENTAL METHODOLOGY

Hydrogen peroxide, methyl orange and carbon tetracholoride were purchased from Merck KGaA 64271 Damstdt, Germany. All the chemicals were reagent grade and used as received. An ultrasonicator model soniclean 250HT, 50-60 Hz was used to decompose dye molecule in aqueous medium. The schematic diagram of the experimental setup to shown in the Fig. 3. A conical flask with a total volume of 100 mL of 50 mg/L sample solution was used for ultrasonic irradiation under air at room temperature around 24°C. The sonicated solution was extracting every (0, 3, 7 and 10 min) by a glass syringe (1 mL) without exposing the sample to air. The glass vessel was flat bottomed and was mounted at a constant position (4.0 mm from the oscillator). The sonicated solutions were analysed by a UV-Vis spectrophotometer (Shimadzu UV-1650).

## 2.1 Calorimetrically Measurement of Temperature Change with Sonication Time

A technique for quantitatively evaluating an ultrasonic reaction field has been investigated. Ultrasonic power is one of the important factors for sonochemistry. Calorimetry is one of the most frequently used methods for measuring the actual ultrasonic power input for a solution. Equation (1) gives the calculated ultrasonic output power (P).

$$P = (dT/dt) C_{p}M$$
(1)

Where,

 $C_p$  is heat capacity of water (4.178 kj/mole) M is mass of water (100 gm) dT is temperature of the sample solution (°C) dt is ultrasonic irradiation time/s.



Fig. 3. Schematic diagram of the experimental set-up

| Observation | Sonication time (sec) | Initial<br>temperature (°C) | Final<br>temperature (°C) | Temperature<br>change (°C) | Actual<br>power<br>(Watt) |
|-------------|-----------------------|-----------------------------|---------------------------|----------------------------|---------------------------|
| 1           | 30                    | 24.7                        | 25.0                      | 0.3                        | 4.180                     |
| 2           | 60                    | 25.0                        | 25.4                      | 0.4                        | 2.787                     |
| 3           | 90                    | 25.4                        | 25.9                      | 0.5                        | 2.322                     |
| 4           | 120                   | 25.9                        | 26.5                      | 0.6                        | 2.090                     |
| 5           | 150                   | 26.5                        | 27.2                      | 0.7                        | 1.951                     |
| 6           | 180                   | 27.2                        | 28                        | 0.8                        | 1.858                     |

Table 2. Measurement of temperature change during sonication

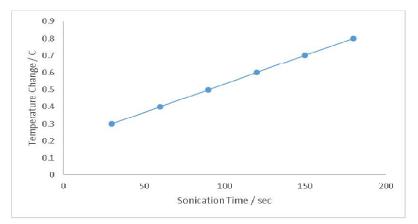



Fig. 4. The change of temperature with increasing sonication time

#### 3. RESULTS AND DISCUSSION

#### 3.1 Sonochemical Decomposition of Methyl Orange

Sonication experiments were conducted with Methyl Orange solutions to study the decomposition of 50 mg/L dye solution at room temperature. Fig. 5 represents the effect of sonolytic decomposition of MO in aqueous solution.

As it can be seen from Fig. 5, the concentration of MO decreased gradually as the sonication time increased. So, it can be said that, MO degrades gradually with the increase in sonication time. When no sonication occurred the concentration of MO was 0.153 mM. After sonicating for 5, 10 and 15min, the concentration decreased gradually. Also, the rate constant was obtained 0.003.

#### 3.1.1 Sonochemical decomposition of methyl orange in presence of different concentration of H<sub>2</sub>O<sub>2</sub>

One of the most popular advanced oxidation processes (AOPs) methods for decomposition of

organic compounds is the oxidation with  $H_2O_2$ . In the presence of  $H_2O_2$  is a key parameter for dye decomposition in AOPs technique, depending on its concentration and nature of reductants H<sub>2</sub>O<sub>2</sub> increase the formation rate of hydroxyl radicals in two ways. Firstly, the reduction of  $H_2O_2$  at the conduction band would produce hydroxyl radicals. Secondly, the self-decomposition as a result of ultrasound irritation would also produce hydroxyl radicals. Generally, the decolorization rate of dye increases as the H<sub>2</sub>O<sub>2</sub> concentration increases until an optimal concentration is achieved [22]. Recently, ultrasound irradiation was described as a possible generation of highly active OH, HOO' and H' radicals [23]. However, at high concentration, H<sub>2</sub>O<sub>2</sub> can also become a scavenger of valence bond holes and OH radicals causing less dye to be degraded. The effect of ultrasonic irradiation combined with H<sub>2</sub>O<sub>2</sub> is observed only when free radical attack is the controlling mechanism. In order to investigate effect induced from the addition of the different concentration of H2O2, the sonolytic degradation of 100 mL of MO solution was performed. The concentration of  $H_2O_2$ used are 20 µL, 100 µL, and 200 µL of H<sub>2</sub>O<sub>2</sub> solution. These results are illustrated in Fig. 6.

#### 3.1.2 Comparison of sonochemical decomposition of Methyl Orange (MO) with and without different concentrations of H<sub>2</sub>O<sub>2</sub>

In the presence of ultrasound, the decomposition of MO without  $H_2O_2$  increased. But when  $H_2O_2$ added to the solution of MO, it enhances the rate of decomposition of MO. The higher the concentration  $H_2O_2$ , the rate of decomposition of MO also increases Fig. 7.

According to this Fig. 7 shows the increase in the concentration of  $H_2O_2$ , increasing the rate of decomposition of MO and follows the trend of

sequences below; MO + 200  $\mu$ L H<sub>2</sub>O<sub>2</sub> > MO + 100  $\mu$ L H<sub>2</sub>O<sub>2</sub> > MO + 20  $\mu$ L H<sub>2</sub>O<sub>2</sub> > MO. Sonochemical decomposition of MO in the presence of different concentrations of H<sub>2</sub>O<sub>2</sub> are MO + 20  $\mu$ L H<sub>2</sub>O<sub>2</sub> is 0.005, MO + 100  $\mu$ L H<sub>2</sub>O<sub>2</sub> is 0.016 and MO + 200  $\mu$ L H<sub>2</sub>O<sub>2</sub> is 0.021 Fig. 7.

## 3.1.3 Sonochemical decomposition of methyl orange in presence of different concentration of CCL<sub>4</sub>

In order to investigate the effects induced from the addition of different concentration of  $CCI_4$ , the sonolytic decomposition of 100mL of MO solution was performed. Here the concentration of  $CCI_4$ 



Fig. 5. Sonochemical decomposition of methyl orange in the absence of additives

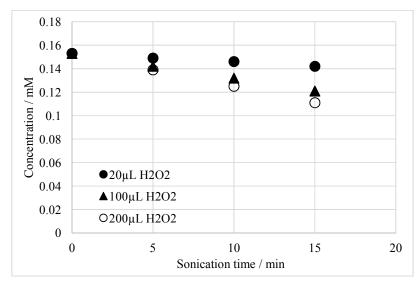



Fig. 6. Sonochemical decomposition of methyl orange in the presence of different concentrations of  $H_2O_2$ 

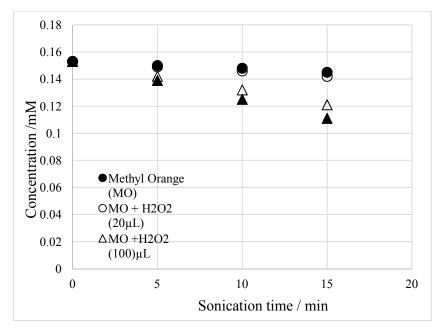



Fig. 7. Comparison of sonochemical decomposition of MO with and without different concentrations of  $H_2O_2$ 

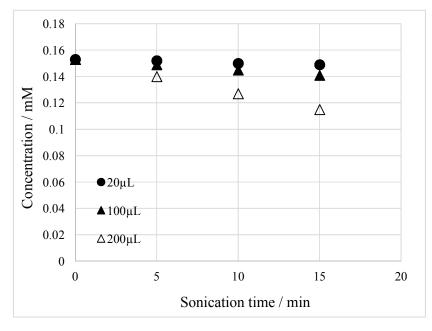



Fig. 8. Sonochemical decomposition of methyl orange in the presence of different concentrations of CCl<sub>4</sub>

used are 20  $\mu L,$  100  $\mu L$  and 200  $\mu L$  respectively. These results are illustrated in Fig. 8.

The rate of dye decomposition increases with the increasing of concentration of CCl<sub>4</sub>. Recently, it has been reported that the analysis for the rate of the sonochemical decomposition of organic

compounds in water can be colorimetrically performed to understand the sonochemical efficiency, where the rate of the sonochemical decomposition is suggested to be reasonably correspondent to the yield of  $H_2O_2$ . For examples, porphyrins [24] are so far used for the model compounds. These methods would be

convenient for the analysis of the sonochemical efficiency under an ultrasonic irradiation condition. Our results suggested that the sonochemical decomposition of MO in the presence of  $CCl_4$  would be useful to evaluate the sonochemical efficiency, because the rate of the MO decomposition can be effectively enhanced by the sonolysis of  $CCl_4$ .

#### 3.1.4 Comparison of decomposition of Methyl Orange (MO) with and without different concentration of CCI<sub>4</sub>

In this study, it was found that the rate of the MO decomposition could be enhanced by the addition of  $CCl_4$ . This reason could be qualitatively explained by the sonochemical decomposition of  $CCl_4$  to form various types of active species, which can react with MO molecules. It has been reported that the sonolysis of  $CCl_4$  in water occurs as seen in Equations below [25, 26]:

$$\begin{array}{l} \mathsf{CCI}_4 \rightarrow \mathsf{CCI}_3 + \mathsf{CI} \\ \mathsf{CCI}_3 \rightarrow : \mathsf{CCI}_2 + \mathsf{CI} \\ \mathsf{2}^{\mathsf{C}}\mathsf{CCI}_3 \rightarrow \mathsf{C}_2\mathsf{CI}_6 \\ \mathsf{2}:\mathsf{CCI}_2 \rightarrow \mathsf{C}_2\mathsf{CI}_4 \\ \mathsf{2}^{\mathsf{C}}\mathsf{CI} \rightarrow \mathsf{CI}_2 \\ \mathsf{CI}_2 + \mathsf{H}_2\mathsf{O} \rightarrow \mathsf{HCI} + \mathsf{HCIO} \end{array}$$

In the presence of ultrasound, the decomposition of MO without  $CCl_4$  increased. But when  $CCl_4$ added to the solution of MO, it enhances the rate of decomposition of MO. The higher the concentration  $CCl_4$ , the rate of decomposition of MO also increases. Based on the obtained results, it was suggested that the enhancement effect was dependent on the ultrasonic irradiation condition. This would be due to that the cavitation phenomenon induced by ultrasonic irradiation is sensitively affected by the experimental conditions such as ultrasound frequency and power, volume of solution, etc. For example, a change in the ultrasound frequency may affect one or many of the following factors [24,26,27]: (1) the temperature and pressure inside the collapsing cavitation bubbles.(2) the number and distribution of bubbles, (3) the size and lifetime of bubbles, (4) the dynamics and symmetry (shape) of the bubble collapse, (5) the effect of organic additive on bubble temperature, (6) the effect of intermediates and products, etc. It is guite difficult to quantify the individual effects of these factors, since they are interdependent and it is almost impossible to control one factor without affecting the others. In addition, the rate of the decomposition would be affected by the geometrical placement of the instrumental components such as the shape of the reaction cell, the volume of the sample solution, the size of the used ultrasonic oscillator, etc. According to, increase in concentration of CCl<sub>4</sub>, the increasing rate of decomposition of MO can be written as (Fig. 9): MO+200 µL CCl₄ > MO+100  $\mu$ L CCl<sub>4</sub> > MO+20  $\mu$ L CCl<sub>4</sub> > MO. In addition, sonochemical decomposition of MO in the presence of different concentrations of CCI<sub>4</sub> are MO + 20 µL CCl<sub>4</sub> is 0.002, MO + 100 µL CCl<sub>4</sub> is 0.005 and MO + 200 µL CCl<sub>4</sub> is 0.019 Fig. 9.

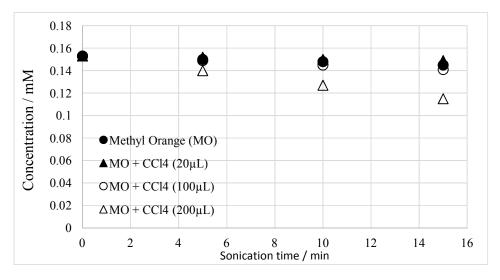



Fig. 9. Comparison of sonochemical decomposition of MO with and without different concentrations of CCl<sub>4</sub>

## 4. CONCLUSION

Sonochemical decomposition of methyl orange (MO) was studied in the absence and presence of different concentrations of H<sub>2</sub>O<sub>2</sub> and CCl<sub>4</sub>. MO molecule can be effectively removed from water by sonolysis. This study exhibits that the sonochemical decomposition occurs mainly through reactions with hydroxyl and chloride radicals. It was found that the initial decomposition of MO molecule increased. But by the addition of  $CCI_4$  and also for  $H_2O_2$ , the rates of sonochemical decomposition of MO were enhanced. This process is technically feasible & also economic. Eventually reached to a conclusion. According to, increase in concentration of CCl<sub>4</sub>, the increasing rate of decomposition of MO can be written as: MO + 200 μL CCl<sub>4</sub> > MO + 100 μL CCl<sub>4</sub> > MO + 20 μL  $CCI_4 > MO$ . Similarly for  $H_2O_2$  the increasing rate of decomposition of MO can be written as: MO + 200  $\mu$ L H<sub>2</sub>O<sub>2</sub> > MO + 100  $\mu$ L H<sub>2</sub>O<sub>2</sub> > MO + 20  $\mu$ L  $H_2O_2 > MO$ .

## **COMPETING INTERESTS**

Authors have declared that no competing interests exist.

## REFERENCES

- 1. Olsson G. Water and energy: Conflicts and connections. Water. 2012;21:12-4.
- Eikebrokk B, Vogt RD, Liltved H. NOM increase in Northern European source waters; discussion of possible causes & impacts on coagulation/contact filtration processes.Water Sci Technol: Water Supply. 2004(4):47-54.
- Korth A, Fiebiger C, Bornmann K, Schmidt W. NOM increase in drinking water resorvoirs – relevance for drinking water production. Water Science Technol: Water Supply. 2004;(4):55-60.
- 4. Bolton, J.R. Ultraviolet Applications Handbook; Boltons Photoscience Inc. Ayr, ON, Canada; 1999.
- Ustun AP, Corvalan C. Preventing disease through healthy environments:towards an estimate of the environmental burden of disease. Geneva, Switzerland: WHO Publishers; 2006;1-104
- Batterman S. Eisenberg J. Hardin R, Kruk ME. Lemons MC, Michalak AM, et al. Sustainable control of water-related infectious diseases: A review and proposal

for interdisciplinary health-based systems research. Environ Health Perspect. 2009; 117:1023-32.

- Kasprzyk-Horden B, Ziolek M, Nawrocki J. Catalytic ozonation & methods of enhancing molecular ozone reactions in water treatment. Appl. Catal., B. 2003; 40:639-669.
- Neyens E, Baeyens. A review of classic Fenton's peroxidation as an advanced oxidation technique. J. Hazard. Mater.2003;B98:33-50.
- Chemical degradation methods for wastes & pollutants: Environmental & industrial applications; Tarr, M. A., Ed.; Marcel Dekker: New York; 2003.
- Bolton JR. Ultraviolet applications handbook; Boltons photoscience Inc.: Ayr, ON, Canada; 1999.
- Ollis DF, Pelizzetti E, Serpone N. Photocatalyzed destruction of water contaminants. Environ. Sci. Technol. 1991; 25:1523-1529.
- Venkatadri R, Peters RW. Chemical oxidation technologies: Ultraviolet light/hydrogen peroxide, Fenton's reagent, and titanium dioxide-assisted photocatalysis. Hazardous Waste and Hazardous Materials. 1993;10(2):107–149, 1993.
- 13. Kasprzyk-Horden B, Ziolek M, Nawrocki J. Appl. Catal. B. 2003;40:639-669.
- 14. Hoffmann MR, Hua I, Hochemer R, Ultrason. Sonochem. 1996;3:S163-S172.
- 15. Jain VK. Environ. Sci. Technol.1993;27: 806-808.
- Shaw RW, Brill TB, Clifford AA, Eckert CA, Franck EU. Chem. Eng. News. 1991;23-35.
- 17. Thomson TB, Modell M. Hazard. Waste.1984;4:453-467.
- Adewuyi YG. Sonochemistry: Environmental science & engineering applications. Ind. Eng. Chem.Res.2001; 40:4681-4715.
- 19. Ince NH, Tezcanli G, Belen RK, Apikyan IG. Appl. Catal., B. 2001;29:167-176.
- Joseph CG, Puma GL, Bono A, Krishnaiah D. Sonophotocatalysis in advanced oxidation process; a short review. Ultrason sonochem. 2009;16:583-90.
- 21. Ince NH, Tezcanli G, Belen RK, Apikyan IG. Appl. Catal., B. 2001;49:145-53.
- Mahmoodi NM, Arami M, Yousefi N, Limaee N, Salman Tabrizi. Decolorization & aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the

Ara et al.; AJACR, 4(2): 1-10, 2019; Article no.AJACR.51710

presence of H2O2 utilizing TiO2 as a photo-catalyst , Chem. Eng. J. 2005;112: 191-196.

- 23. Suslik KS. Sonochemistry, Science.1990; 247:1439-1445.
- Okitsu K, Ashokkumar M, Grieser F. Sonochemical synthesis of gold nanoparticles in water: effects of ultrasound frequency. J. Phys. Chem. B 2005b;109:20673–20675.
- 25. Hua I, Hoffmann MR. Kinetics and mechanism of the sonolytic degradation of

CCl4: Intermediates and byproducts. Environ. Sci. Technol. 1996;30:864–871.

- 26. OkitsuK, Kawasaki K, Nanzai B, Takenaka N, Bandow H. Effect of carbon tetrachloride on sonochemical decomposition of methyl orange in water, chemosphere.2008;71:36–42.
- Sunartio D, Ashokkumar M, Grieser F. Study of the coalescence of acoustic bubbles as a function of frequency, power, and watersoluble additives. J. Am. Chem. Soc. 2007;129:6031–6036.

© 2019 Ara et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://www.sdiarticle4.com/review-history/51710