
Journal of Advances in Mathematics and Computer Science

33(5): 1-7, 2019; Article no.JAMCS.50977

ISSN: 2456-9968

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

On Nonsingularity of RSFPLR Circulant Matrices

Xiyou Cui1 and Nan Jiang2∗

1Library, Shandong Normal University, Jinan, Shandong, 250014, China.
2Linyi University, Linyi 276000, China.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved
the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2019/v33i530191
Editor(s):

(1) Kai-Long Hsiao, Associate Professor at Taiwan ShoufuUniversity in Taiwan.
Reviewers:

(1) Francisco Bulnes, TESCHA, Mexico.
(2) Sie Long Kek, University Tun Hussein Onn Malaysia, Malaysia.
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Abstract

In this paper, we discuss the non-singularity of a row skew first-plus-last right (RSFPLR)
circulant matrices with the first row (a1, a2, . . . , an), which is determined by entries of the
first row. First, the sufficient condition for the matrix to be nonsingular is that, there exists
an element ai0 belonging to the first row, whose absolute value is greater than the sum of
the corresponding power of 2 and the absolute values of the remaining (n − 1) elements, that
is, |ai0 | >

∑n
i=1,i̸=i0

2i−i0 |ai|. Moreover, we derive other sufficient conditions for judging the
non-singularity of the matrix.
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1 Introduction

The circulant matrices have in recent years been extended in many directions. The f(x)-circulant
matrices are natural extension of circulant matrices, and can be found in [1–12]. The f(x)-circulant
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matrix has a wide application, especially on the generalized cyclic codes [8]. The properties and
structures of the (xn − x + 1)- circulant matrices [9–12], which are called row skew first-plus-last
right (RSFPLR) circulant matrices, are better than those of the general f(x)-circulant matrices, so
there are good methods for discriminations its non-singularity.

Firstly, we introduce the RSFPLR circulant matrix in the following definition.

Definition 1.1. [10,11] A matrix A=RSFPLRcircfr(a1, a2, . . . , an) of the form

A =



a1 a2 a3 . . . an−1 an

−an a1 + an a2

. . .
. . . an−1

−an−1 −an + an−1

. . .
. . .

. . .
...

...
...

. . .
. . .

. . . a3

−a3 −a4 + a3

. . .
. . .

. . . a2

−a2 −a3 + a2 −a4 + a3 . . . −an + an−1 a1 + an


n×n

(1.1)

is called a RSFPLR circulant matrix with the first row (a1, a2, . . . , an).

Note that the RSFPLR circulant matrix is a (xn − x+ 1)-circulant matrix [9–12].

Let Θ(−1,1) be the basic RSFPLR circulant matrix, denoted by

Θ(−1,1) =



0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 1
−1 1 0 . . . 0


n×n

. (1.2)

It is easily verified that g(x) = xn − x + 1 has no repeated roots in its splitting field and g(x) =
xn − x+1 is both the minimal polynomial and the characteristic polynomial of the matrix Θ(−1,1).

In addition, a matrix A can be written in the form

A = f
(
Θ(−1,1)

)
=

n∑
i=1

aiΘ
i−1
(−1,1) (1.3)

if and only if A is a RSFPLR circulant matrix, where the polynomial f(x) =
∑n

i=1 aix
i−1 is called

the representer of the RSFPLR circulant matrix A. It is clear that A is a RSFPLR circulant matrix
if and only if A commutes with the Θ(−1,1), that is,

AΘ(−1,1) = Θ(−1,1)A. (1.4)

Secondly, based on [1], we deduce the following lemma.

Lemma 1.1. Let A = RSFPLRcircfr(a1, a2, . . . , an) be a RSFPLR circulant matrix with the first
row (a1, a2, . . . , an). Then A is singular if and only if there exists j0(1 ≤ j0 ≤ n) such that
f(ωj0) = 0, where f(x) =

∑n
i=1 aix

i−1.
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2 Main Results

Let A = RSFPLRcircfr(a1, a2, . . . , an) be a RSFPLR circulant matrix with the first row
(a1, a2, . . . , an). We discuss the non-singularity on matrix A under different conditions in this
section. At the same time, several corollaries are derived.

Theorem 2.1. Let A = RSFPLRcircfr(a1, a2, . . . , an) be given as in (1.1). If there exists an
ai0 ∈ {a1, a2, . . . , an}, such that

|ai0 | >
n∑

i=1,i ̸=i0

2i−i0 |ai|, i = 1, ..., n, i ̸= i0, (2.1)

then A is nonsingular.

Proof. If A is singular, then by Lemma 1.1, there exists j0(1 ≤ j0 ≤ n), such that

f(ωj0) =
n∑

i=1

ai(ωj0)
i = 0.

So

ai0(ωj0)
i0 = −

n∑
i=1,i̸=i0

ai(ωj0)
i.

Taking the absolute value of the above equation

|ai0(ωj0)
i0 | = |

n∑
i=1,i̸=i0

ai(ωj0)
i| ≤

n∑
i=1,i ̸=i0

|ai||ωj0 |
i,

we have

|ai0 | ≤
n∑

i=1,i̸=i0

|ai||ωj0 |
i−i0 .

Note that ωj0 are the roots of the characteristic polynomial g(x) = xn − x+ 1 for matrix Θ(−1,1),
i.e. (ωj0)

n − ωj0 + 1 = 0. So we get from [13, Corollary 6.1.5] that

|ωj0 | ≤ 2.

Hence

|ai0 | ≤
n∑

i=1,i̸=i0

2i−i0 |ai|,

which contradicts to inequality (2.1). Therefore, A is nonsingular.

Corollary 2.2. Let A = RSFPLRcircfr(a1, a2, . . . , an) be given as in (1.1). If there exists an
ai0 ∈ {a1, a2, ..., an}, for any i ̸= i0,1 ≤ i ≤ n, such that

|ai0 | > (n− 1)|ai|
n
√
2i−i0 , (2.2)

then A is nonsingular.

Proof. If A is singular, then by Lemma 1.1, there exists j0(1 ≤ j0 ≤ n), such that

f(ωj0) =

n∑
i=1

ai(ωj0)
i = 0.
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So

ai0(ωj0)
i0 = −

n∑
i=1,i̸=i0

ai(ωj0)
i.

Taking the absolute value of the above equation

|ai0(ωj0)
i0 | = |

n∑
i=1,i̸=i0

ai(ωj0)
i| ≤

n∑
i=1,i ̸=i0

|ai||ωj0 |
i,

we get

|ai0 | ≤
n∑

i=1,i̸=i0

|ai||ωj0 |
i−i0 .

Note that ωj0 are the roots of the characteristic polynomial g(x) = xn − x+ 1 for matrix Θ(−1,1),
i.e. (ωj0)

n − ωj0 + 1 = 0. So we get from [13, Corollary 6.1.5] that

|ωj0 | ≤ 2.

Thus

|ai0 | ≤
n∑

i=1,i̸=i0

2i−i0 |ai|.

Hence there exists k0, such that

|ai0 | ≤ (n− 1)|ak0 |
n
√
2k0−i0 ,

which contradicts to inequality (2.2). Therefore, A is nonsingular.

Corollary 2.3. Let A = RSFPLRcircfr(a1, a2, . . . , an) be given as in (1.1). If there exists an
ai0 ∈ {a1, a2, ..., an}, for any i ̸= i0, 1 ≤ i ≤ n, such that

|ai|
|ai0 |

<
1

(n− 1)
n
√
2i−i0

,

then A is nonsingular.

Proof. The proof process similar to Corollary 2.2.

Theorem 2.4. Let A = RSFPLRcircfr(a1, a2, . . . , an) be given as in (1.1). If

|aM | >
n∑

i=1,i ̸=M

2i−M |ai|, (2.3)

then A is nonsingular, where aM = max{|a1|, |a2|, ..., |an|}.

Proof. The proof process similar to Theorem 2.1

Corollary 2.5. Let A = RSFPLRcircfr(a1, a2, . . . , an) be given as in (1.1). If for any i ̸= M ,1 ≤
i ≤ n, such that

|aM | > (n− 1)2i−M |ai|, (2.4)

then A is nonsingular, where aM = max{|a1|, |a2|, ..., |an|}.
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Proof. If A is singular, then by Lemma 1.1, there exists j0(1 ≤ j0 ≤ n), such that

f(ωj0) =

n∑
i=1

ai(ωj0)
i = 0.

So

aM (ωj0)
M = −

n∑
i=1,i ̸=M

ai(ωj0)
i.

Taking the absolute value of the above equation

|aM (ωj0)
M | = |

n∑
i=1i ̸=M

ai(ωj0)
i| ≤

n∑
i=1,i̸=M

|ai||ωj0 |
i,

we have

|aM | ≤
n∑

i=1,i̸=M

|ai||ωj0 |
i−M .

Note that ωj0 are the roots of the characteristic polynomial g(x) = xn − x+ 1 for matrix Θ(−1,1),
i.e. (ωj0)

n − ωj0 + 1 = 0. So we get from [13, Corollary 6.1.5] that

|ωj0 | ≤ 2.

Thus

|aM | ≤
n∑

i=1,i ̸=M

2i−M |ai|

Hence there exists k0, such that

|aM | ≤ (n− 1)2k0−M |ak0 |,

which contradicts to inequality (2.4). Therefore A is nonsingular.

Corollary 2.6. Let A = RSFPLRcircfr(a1, a2, . . . , an) be given as in (1.1). If for any i ̸= M ,1 ≤
i ≤ n, such that

n∑
i=1i ̸=M

|ai|
|aM |2

i−M ,

then A is nonsingular, where aM = max{|a1|, |a2|, ..., |an|}.

Proof. The proof process similar to Corollary 2.5.

Corollary 2.7. Let A = RSFPLRcircfr(a1, a2, . . . , an) be given as in (1.1). If for any i ̸= M ,1 ≤
i ≤ n, such that

|ai|
|aM | <

1

(n− 1)
n
√
2i−M

,

then A is nonsingular, where aM = max{|a1|, |a2|, ..., |an|}.

Proof. The proof process similar to Corollary 2.5.

Theorem 2.8. Let A = RSFPLRcircfr(a1, a2, . . . , an) be given as in (1.1). If there exists an
ai0 ∈ (a1, a2, ..., an), such that

|1− ai0 | <
1

n
, 2|ai| <

1

n
, i = 1, ..., n, i ̸= i0,

then A is nonsingular.
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Proof. Add the n inequalities of the both sides,

|1− ai0 |+
n∑

i=1,i̸=i0

2i−i0 |ai| < 1.

Since
|1− ai0 | ≥ 1− |ai0 |,

we have

|ai0 | >
n∑

i=1,i̸=i0

2i−i0 |ai|. (2.5)

Therefore,the conclusion is clearly established based on Theorem 2.1 and (2.5).

Corollary 2.9. Let A = RSFPLRcircfr(a1, a2, . . . , an) be given as in (1.1). If

|1− aM | < 1

n
, 2|ai| <

1

n
, i = 1, ..., n, i ̸= M,

then A is nonsingular, where aM = max{|a1|, |a2|, ..., |an|}.

Proof. Add the n inequalities of the both sides,

|1− aM |+
n∑

i=1,i̸=M

2i−M |ai| < 1.

Since
|1− aM | ≥ 1− |aM |,

we have

|aM | >
n∑

i=1,i ̸=M

2i−M |ai|.

According to Theorem 2.4, A is nonsingular.

Theorem 2.10. Let A = RSFPLRcircfr(a1, a2, . . . , an) be given as in (1.1). If√√√√n[(1− aM )2 +

n∑
i=1,i̸=M

|ai|222(i−M)] < 1, (2.6)

then A is nonsingular, where aM = max{|a1|, |a2|, ..., |an|}.

Proof. Since√
(1− aM )2 +

∑n
i=1,i̸=M |ai|222(i−M)

n
≥

|1− aM |+
∑n

i=1,i̸=M |ai|2i−M

n
,

we have √√√√n[(1− aM )2 +

n∑
i=1,i̸=M

|ai|222(i−M)] ≥ |1− aM |+
n∑

i=1,i̸=M

|ai|2i−M

≥ 1− |aM |+
n∑

i=1,i̸=M

|ai|2i−M

By the inequality (2.6), we get

|aM | ≥
n∑

i=1,i ̸=M

|ai|2i−M .

According to Theorem 2.4, A is nonsingular.
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