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ABSTRACT 
 

Sediment modeling plays a crucial role in sustainable water resources planning, development, and 
management. Techniques like the Multilayer Perceptron (MLP), Co-active Neuro-Fuzzy Inference 
System (CANFIS), and Multiple Linear Regression (MLR) have proven effective for sediment 
modeling and forecasting. This study aimed to develop and assess the applicability of MLP, 
CANFIS, and MLR models by training and testing them during the monsoon season (June to 
September) for the Hurdag watershed in the Damodar-Barakar basin, located in Hazaribagh district, 
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Jharkhand, India. Daily rainfall, runoff (or streamflow), and sediment concentration data from 1997 
to 2006 were used, with the data split into two sets: training set (1997–2004) and a testing set 
(2005–2006). The analysis was conducted using NeuroSolution 5.0 software and Microsoft Excel 
for performance evaluation indices. The best input combinations for sediment yield simulation were 
identified, and 10 optimal models were selected from 31 different input combinations. These input 
combinations were applied to the network for training using the back propagation algorithm for MLP 
and Gaussian and generalized bell membership functions for CANFIS models. Multiple networks 
were trained individually, with the most accurate predictions during testing being chosen as the best 
models. The models’ performance was evaluated using statistical indices such as root mean 
squared error (RMSE), coefficient of efficiency (CE), and correlation coefficient (r). The results 
showed that MLP and CANFIS models performed best in predicting sediment concentration for the 
Hurdag watershed, whereas MLR models showed poor performance for the given dataset. 
Specifically, sediment concentration for the current day could be modeled using current day rainfall 
and runoff data (MLP-7), while runoff could be simulated using the previous day's rainfall data 
(MLP-2). 

 

 
Keywords: Soft computing; CANFIS; MLP; MLR; sedimentation prediction. 

 
1. INTRODUCTION 

 
Water is a vital and invaluable resource provided 
by nature, essential for life on Earth in forms 
such as rain, snow, rivers, and oceans. Rainfall, 
a key component of the hydrological cycle, is 
challenging to understand and model due to the 
complexity of atmospheric processes. Life on 
Earth is unimaginable without water. India 
receives about 4000 km³ of annual precipitation, 
with 75% occurring as monsoon rainfall, primarily 
from the south-west monsoon between June and 
September (Ministry of Water Resources, 1999). 
The north-east monsoon also contributes, 
especially in Tamil Nadu from October to 
November. In urban areas, rainfall significantly 
impacts sewer systems, waterlogging, traffic, and 
other activities. Advances in computer 
technology and GIS have enhanced the spatial 
interpolation of precipitation data, improving our 
ability to analyze and manage this critical 
resource. 

 
Artificial neural networks (ANNs) have recently 
emerged as the most effective method for rainfall 
forecasting (Haykin, 1999, Rajurkar, et al., 2004). 
ANNs are non-linear mapping structures that 
mimic the human brain's learning process, 
making them powerful tools for modeling 
complex, noisy, and imprecise data, even when 
the underlying relationships are unknown. During 
the training process, ANNs identify and learn 
patterns between input data and target values, 
enabling them to predict outcomes for new data 
sets (Zhang, 2000). This approach yields reliable 
results without needing detailed information on 
catchment characteristics. ANNs combine linear 

and non-linear concepts in model building and 
can function in both dynamic and memory-less 
systems. In hydrology, ANNs are used for 
modeling daily rainfall-runoff, runoff-sediment 
yield, and assessing the ecological and 
hydrological impacts of climate change on 
streamflow, sediment transport, and groundwater 
quality (Maier and Dandy, 2000). 
 
The Multi-layer Perceptron (MLP) is the most 
widely used ANN architecture today. An MLP 
consists of three layers: input, hidden, and 
output. Each neuron in the network computes an 
output by combining weighted inputs and 
applying a nonlinear activation function. In 
hydrological modeling, MLP has been 
extensively applied due to its ability to model 
complex relationships. The network processes 
data in one direction, from the input layer through 
the hidden layer to the output layer. Training 
involves adjusting the weights connecting 
neurons through error backpropagation, where 
the network learns from a series of training 
examples to model the relationship between 
predictors and predictands. 
 
The conventional CANFIS model is an extension 
of the original ANFIS model, allowing for multiple 
input-output pairs. The core structure of CANFIS 
is similar to ANFIS, where a fuzzy neuron with a 
membership function (MF) is used to build the 
model. Several types of MFs can be employed, 
such as triangular, trapezoidal, sigmoidal, 
Gaussian, z-shape, pi, and general bell 
functions. The CANFIS model also normalizes 
output variables within the 0-1 range. Its 
architecture combines the output of MFs with the 
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neural network target, aligning closely with the 
standard ANFIS process. 
 
An approach to modelling the linear                
correlations between one dependent variable (Y) 
and two or more independent variables (X1, 
X2,.........Xn) is called multiple linear regressions 
(MLR). 
 
Given the foregoing, this study was conducted to 
train, test, and validate the Sediment models for 
the watersheds of the Damodar-Barakar basin in 
the Hazaribagh district of Jharkhand state, India, 
using multiple linear regressions (MLR) and soft 
computing techniques (MLP,CANFIS based 
ANN).  

2. MATERIALS AND METHODS 
 

2.1 Study Area 
 

As seen in Fig. 1, the study's chosen region is 
the Hurdag watershed of the Damodar-Barakar 
basin in the Hazaribagh district of Jharkhand 
state, India, which has an area of 23.04 km2 [6]. 
The Hurdag watershed is located between 
latitudes 230 47' 35'' and 230 52' 8'' N and 
longitudes 850 30' 30'' and 850 39' 45" E. The 
Central Water Commission (CWC), the India 
Meteorological Department (IMD), and the Soil 
and Water Conservation Division of the Damodar 
Valley Corporation, located in Hazaribagh, 
Jharkhand, provided the hydrological data 
(rainfall, discharge, and sediment yield). 

 

 

 
 

Fig. 1. Location map of the study area 
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Land use and land cover data are crucial for 
effective watershed planning and management. 
The area features diverse land cover types, 
including forests, vegetation-covered and bare 
lowlands, non-agricultural lands, settlements, 
uplands, wastelands, and water bodies. Due to 
the uneven terrain, cultivation occurs on terraced 
slopes and lowlands, with paddy grown in some 
areas and Rabi crops benefiting from high water 
availability. The construction of small check 
dams has converted much of the mono-cropped 
land into double-cropped areas. The watershed 
also has gully-eroded lands, and the primary tree 
species include Sal, Sisam, Mahua, Mango, and 
Eucalyptus. Settlements are dispersed 
throughout the area. The Soil Conservation 
Department, DVC, Hazaribagh, and Jharkhand 
created the watershed soil map. In the 
watershed, sandy clay loam makes up 56.9% of 
the soil (Singh and Kumar, 2016). 

 
The study's watersheds are located in 
Jharkhand's Hazaribag district, within the Tilaiya 
catchment of the Damodar River valley, about 25 
km from Hazaribag and 35 km from Tilaiya 
reservoir. The main river, Kothuwatari, joins the 
Mohaghat River and flows into the Barakar River. 
The area features diverse landscapes, from 
flatlands to steep hills, with elevations between 
385 and 655 meters. The watershed is 
characterized by undulating uplands, dissected 
valleys, and significant erosion, including sheet, 
rill, and gully erosion. 

 
The region receives an average annual rainfall of 
about 1240 mm, primarily between June and 
September, with occasional showers in 

December-January and heavy rains in May. 
Temperatures range from a maximum of 43°C in 
April-May to a minimum of 2.4°C in January. 
Winters are cold, while summers are hot and 
humid, with annual humidity between 66% and 
77%. Daily rainfall, runoff, and sediment data 
were collected during the monsoon season 
(June-September) from 1997 to 2006 for the 
Hurdag watershed (Singh and Kumar, 2016). 
 

2.2 ANN Based MLP Model 
 

The concept of Artificial Neural Networks (ANNs) 
originated in 1943 when Warren McCulloch and 
Walter Pitts proposed a model based on the 
human brain, a natural neural network with 
billions of interconnected neurons (McCulloch 
and Pitts, 1943). Neurons receive signals 
through dendrites, process them, and transmit 
electric signals along axons (Zurada, 1992). 
Inspired by this, the ANN model was developed, 
where artificial neurons, or perceptrons, mimic 
biological neurons. The model learns from input 
data to reproduce outcomes. In the ANN model, 
there are three key components: 
 

I. Synapses: The strength of the connection 
between an input and a neurone is 
represented by the weights that represent 
the synapses of the neurone.  

II.  Adder: This activity, also known as a 
linear combination, is what really happens 
inside the neurone cell. It consists of 
adding up all of the inputs that have been 
adjusted for their individual weights. 

III. Activation function: This mechanism 
regulates the magnitude of a neuron's 
output.  

 

 
 

Fig. 2. A basic overview of MLP 
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Table 1. Input-output combinations for MLP model for sediment concentration simulation at 
Hurdag watershed 

 

Model No. Input-Output Variables  Model No. Input-Output Variables  

MLP,CANFIS-1 St =  f(Rt) MLP,CANFIS-17 St=  f(Rt, St-1) 
MLP,CANFIS-2 St =  f(Rt-1) MLP,CANFIS-18 St=  f(Rt-1, St-1) 
MLP,CANFIS-3 St =  f(Rt, Rt-1) MLP,CANFIS-19 St=  f(Rt, Rt-1, St-1) 
MLP,CANFIS-4 St=  f(Qt) MLP,CANFIS-20 St=  f(Qt, St-1) 
MLP,CANFIS-5 St=  f(Qt-1) MLP,CANFIS-21 St=  f(Qt-1, St-1) 
MLP,CANFIS-6 St=  f(Qt, Qt-1) MLP,CANFIS-22 St=  f(Qt, Qt-1, St-1) 
MLP,CANFIS-7 St=  f(Rt, Qt) MLP,CANFIS-23 St=  f(Rt, Qt, St-1) 
MLP,CANFIS-8 St=  f(Rt, Qt-1) MLP,CANFIS-24 St=  f(Rt, Qt-1, St-1) 
MLP,CANFIS-9 St=  f(Rt, Qt,Qt-1) MLP,CANFIS-25 St=  f(Rt, Qt, Qt-1, St-1) 
MLP,CANFIS-10 St=  f(Rt-1, Qt) MLP,CANFIS-26 St=  f(Rt-1, Qt, St-1) 
MLP,CANFIS-11 St=  f(Rt-1,Qt-1) MLP,CANFIS-27 St=  f(Rt-1, Qt-1, St-1) 
MLP,CANFIS-12 St=  f(Rt-1,Qt, Qt-1) MLP,CANFIS-28 St=  f(Rt-1, Qt , Qt-1, St-1) 
MLP,CANFIS-13 St=  f(Rt, Rt-1, Qt) MLP,CANFIS-29 St=  f(Rt, Rt-1, Qt , St-1) 
MLP,CANFIS-14 St=  f(Rt,Rt-1, Qt-1) MLP,CANFIS-30 St=  f(Rt, Rt-1, Qt-1, St-1) 
MLP,CANFIS-15 St=  f(Rt, Rt-1, Qt,Qt-1) MLP,CANFIS-31 St=  f(Rt, Rt-1, Qt, Qt-1, St-1) 
MLP,CANFIS-16 St=  f(St-1)   

 

 
 

Fig. 3. A basic overview of CANFIS structure (Saemi and Ahmadi 2008) 
 

2.3 Co-Active Neuro-Fuzzy Inference 
System  

 

The co-active neuro-fuzzy inference system 
(CANFIS), a generalized form of ANFIS, 
integrates neural networks with fuzzy inference 
systems to approximate nonlinear functions. Its 
strength lies in pattern-dependent weights 
between the fuzzy association and consequent 
layers (Jang, et al., 1997). CANFIS uses fuzzy 
neurons that apply membership functions (e.g., 
triangular, Gaussian, sigmoidal) to inputs, with a 
normalization axon adjusting outputs within a set 
range. The system also includes a modular 
network that applies functional rules to inputs, 
with a combiner axon linking membership 
function outputs to modular network outputs. 

2.4 Multiple Linear Regressions 
 
The association between a dependent variable 
and two or more explanatory factors using a 
linear function is known as the multiple linear 
regression (MLR) model. A linear equation is 
chosen to represent the connection between the 
n independent variables (X1, X2,.... Xn) and the 
dependent variable Y. This regression equation 
may be expressed as follows (Malik and Kumar, 
2015): 

 
𝑌 = 𝑎0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑛𝑋𝑛       (2.1) 

 
where; 
 𝑎0 ,  𝑏1 ,𝑏2 . . .  . .𝑏𝑛,, are regression coefficients. 
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Table 2. Input-output combinations for MLR models for sediment concentration simulation at 
Hurdag watersheds 

 

Model No. Input-Output Variables* 

MLR-1 St = a1 + b1Rt 
MLR-2 St = a2 + b2Rt-1 
MLR-3 St = a3 + b3Rt + b3

′ Rt-1 
MLR-4 St = a4 + c1Qt 
MLR-5 St = a5 + c2Qt-1 
MLR-6 St = a6 + c3Qt + c3

′ Qt-1 
MLR-7 St = a7 + b4Rt + c4Qt 
MLR-8 St = a8 + b5Rt + c5Qt-1 
MLR-9 St = a9 + b6Rt + c6Qt + c6

′ Qt-1 
MLR-10 St = a10 + b7Rt-1 + c7Qt 
MLR-11 St = a11 + b8Rt-1 + c8Qt-1 
MLR-12 St = a12 +b9Rt-1 + c9Qt + c9

′ Qt-1 
MLR-13 St = a13 +b10Rt + b10

′ Rt-1 + c10Qt 
MLR-14 St = a14 +b11Rt + b11

′ Rt-1 + c11Qt-1 
MLR-15 St = a15 + b12Rt + b12

′ Rt-1 + c12Qt + c12
′ Qt-1 

MLR-16 St = a16 + d1St-1 
MLR-17 St = a17 + b13Rt + d2St-1 
MLR-18 St = a18 + b14Rt-1 + d3St-1 
MLR-19 St = a19 + b15Rt + b15

′ Rt-1 + d4St-1) 
MLR-20 St = a20 + c13Qt + d5St-1 
MLR-21 St = a21 + c14Qt-1 + d6St-1 
MLR-22 St = a22 + c15Qt + c15

′ Qt-1 + d7St-1 
MLR-23 St = a23 + b16Rt + c16Qt + d8St-1 
MLR-24 St = a24 + b17Rt + c17Qt-1 + d9St-1 
MLR-25 St = a25 + b18Rt + c18Qt + c18

′ Qt-1 + d10 St-1 
MLR-26 St = a26+ b19Rt-1 + c19Qt + d11St-1 
MLR-27 St = a27+ b20Rt-1 + c20Qt-1 + d12St-1 
MLR-28 St = a28+ b21Rt-1 + c21Qt + c21

′ Qt-1 + d13St-1 
MLR-29 St = a29+ b22Rt + b22

′ Rt-1 + c22Qt + d14 St-1 
MLR-30 St = a30+ b23Rt + b23

′ Rt-1 + c23Qt-1 + d15St-1 
MLR-31 St = a31+ b24Rt + b24

′ Rt-1 + c24Qt + c24
′ Qt-1 + d16St-1 

*ai, bi, 𝑏𝑖
′, ci, 𝑐𝑖

′ and di are regression coefficients (i = 1, 2,…., 31) 
 

Table 3. Training variables and their assigned values for CANFIS and MLP models 
 

Training variables Assigned values for CANFIS Assigned values for MLP 

Membership function  Gaussian, Bell - 
MFs per input 2 to 6 - 
Fuzzy model TSK - 
Activation function Tanh Tanh 
Learning rule Delta-Bar-Delta Delta-Bar-Delta 
Epoch 1000 1000 
Training threshold 0.001 0.001 

 

2.5 Training and Testing of MLP and 
MLR Models 

 
The daily rainfall and sediment concentration 
(SC) data were divided into two sets: a training 
set spanning from 1997 to 2004, and a testing 
set spanning from 2005 to 2006 Hurdag 
watersheds. Utilising the back propagation 
technique for MLP, training was carried out on 

the network of a chosen architecture utilising the 
input pairs from the training data set (Table 3). 
 

2.6 Performance Evaluation 
 

Both qualitative and quantitative performance will 
be used to assess the models' performances that 
were constructed for this project. While the 
models' quantitative performance will be 
confirmed by estimating the values of statistical 
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and hydrological indices like the correlation 
coefficient (CC), root mean square error (RMSE), 
coefficient of efficiency (CE), and coefficient of 
determination (R2), the models' qualitative 
performance will be assessed through visual 
observation (Aamir et al., 2019). 
 

2.6.1 Correlation coefficient (r) 
 

This is a number that represents the linear 
relationship between two variables; it ranges 
from -1.0 to +1.0. The correlation coefficient is 
equal to one if the two variables have a perfect 
linear connection with a positive slope (Singh et 
al., 2019). However, it takes a lot of work to 
calculate the measure from bigger observations. 
Karl Pearson's Correlation Coefficient between 
the observed and projected discharge is seen in 
equation 2.2. 
 

r = 
∑ (Xoi − Xo̅̅ ̅̅ )(Ypi − Yp̅̅ ̅̅ )N

i=1

√∑ (Xoi − Xo̅̅ ̅̅ )2 ∑ (Ypi − Yp̅̅ ̅̅ )2N
i=1

N
i=1

                   (2.2) 

 

Where, Xo
̅̅ ̅ and Yp

̅̅ ̅  are the mean of observed and 

predicted values, respectively. 
A positive r indicates that the observed and 
predicted values tend to go up and down 
together (Ozer, 1985). 
 

2.6.2 Root Mean Square Error (RMSE) 
 

An overall level of agreement between the 
observed and simulated datasets is provided by 
this metric. With zero serving as the value for a 
perfect model, it has no upper bound. Although it 
can only be used to compare the prediction 
errors of many models for a given variable, 
RMSE is a useful metric for assessing accuracy 
(Wilby,1998). The RMSE between actual and 
expected values is displayed in Equation 2.3. 
 

RMSE = √
1

N
∑ (Xoi −  Xpi)

2N
i=1                   (2.3) 

 

Where, Xoi and Ypi are the observed and 
predicted values for ith datasets and N is the total 
number of observations. 
 

2.6.3 Coefficient of Efficiency (CE) 
 

To assess the goodness of fit between observed 
and predicted values of runoff simulation, the CE 
was suggested by Nash and Sutcliffe (1970). The 
coefficient of efficiency is computed by the 
following equation; 
 

CE = [1 − 
∑ (Xoi − Ypi)2N

i=1

∑ (Xoi − Xo̅̅ ̅̅ )2N
i=1

]                           (2.4) 

2.6.4 Coefficient of determination (R2) 
 
It is a measurement used to explain how much 
variability of one factor can be caused by its 
relationship to another related factor (Barrett, 
1974). This correction, is known as “goodness of 
fit” is represented as a value between 0.0 and 
1.0 (Ozer, 1985). 
 

 𝐑𝟐 =  
𝑺𝑺𝑹

𝑺𝑺𝑻
                                  (2.5) 

 
Where,  
SSR = Sum of squared regression 
SST = Total variation in data 
 

3. RESULTS AND DISCUSSION 
 

3.1 Sediment Modeling Using MLP and 
CANFIS 

 
MLP and CANFIS models were used to simulate 
sediment concentration (SC) based on 
combinations of current and previous days’ 
rainfall, runoff, and prior day's SC.Ten models 
were selected for further analysis, and their 
performance was evaluated using RMSE, CE, 
and correlation coefficient (r). Results showed 
poor performance in MLP-25 and CANFIS-25 
during testing due to hysteresis between SC and 
streamflow, where SC is higher during the rising 
stage of the hydrograph than the falling stage. 
Improvement is expected by including previous 
day’s SC in the input. An improvement in the 
simulation performance is expected by adding 
the previous day’s SC values into the input 
combinations, since the measurements of 
streamflow and SC are taken together at the 
same cross-section of the river (Alp and 
Cigizoglu, 2005).  
 
As shown in Table 4, the RMSE for the ten 
selected MLP models during training ranged from 
0.397 to 0.414 g/l, while for testing it ranged from 
0.139 to 0.159 g/l. The coefficient of efficiency 
(CE) varied between 0.435 and 0.483 for 
training, and between 0.782 and 0.886 for 
testing. The correlation coefficient (r) ranged 
from 0.663 to 0.692 during training and from 
0.927 to 0.990 during testing. Similarly, Table 5 
shows that for the CANFIS models, the RMSE 
ranged from 0.305 to 0.413 g/l during training 
and from 0.118 to 0.175 g/l during testing. CE 
values ranged from 0.436 to 0.528 for training 
and from 0.737 to 0.881 for testing. The 
correlation coefficient (r) for CANFIS models was 
between 0.660 and 0.727 during training and 
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0.921 to 0.982 during testing. The higher CE and 
r values during testing indicate good 
generalization by both MLP and CANFIS models. 
Based on lower RMSE (0.115) and higher CE 
(0.886) and r (0.990) during testing, MLP-7 and 
CANFIS-7 were the best performing models, 

suggesting the current day’s sediment 
concentration (SC) can be predicted using the 
current day's rainfall and runoff data. MLP-10 
and CANFIS-10 also performed well, indicating 
SC depends on the previous day's rainfall and 
current day's runoff. 

 

Table 4. Statistical indices for selected MLP sediment models during training and testing 
phase for Hurdag watershed 

 

ModelNo. Structure Training Testing 

RMSE CE r RMSE CE r 

MLP-7 2-10-1 0.414 0.435 0.663 0.115 0.886 0.990 
MLP-10 2-8-1 0.411 0.443 0.666 0.117 0.882 0.977 
MLP-17 2-2-1 0.402 0.474 0.682 0.139 0.832 0.933 
MLP-20 2-2-1 0.402 0.466 0.683 0.139 0.832 0.945 
MLP-21 2-6-1 0.398 0.476 0.690 0.145 0.818 0.935 
MLP-22 3-2-1 0.398 0.477 0.691 0.141 0.829 0.939 
MLP-25 4-6-1 0.405 0.458 0.685 0.159 0.782 0.927 
MLP-26 3-2-1 0.397 0.485 0.692 0.144 0.824 0.942 
MLP-27 3-2-1 0.398 0.478 0.691 0.144 0.820 0.940 
MLP-28 4-2-1 0.402 0.466 0.683 0.144 0.822 0.936 

 

Table 5. Statistical indices for selected CANFIS sediment models during training and testing 
phase for Hurdag watershed 

 

Model No. MF per 
input 

Training Testing 

RMSE CE r RMSE CE r 

CANFIS-7 Gauss-6 0.402 0.466 0.684 0.118 0.881 0.982 
CANFIS-10 Gauss-2 0.413 0.436 0.660 0.131 0.852 0.979 
CANFIS-17 Gauss-4 0.378 0.528 0.727 0.142 0.825 0.921 
CANFIS-20 Gauss-3 0.390 0.497 0.707 0.159 0.783 0.933 
CANFIS-21 Gauss-3 0.391 0.495 0.704 0.133 0.847 0.939 
CANFIS-22 Gauss-2 0.398 0.477 0.690 0.147 0.814 0.934 
CANFIS-25 Gauss-3 0.305 0.485 0.698 0.175 0.737 0.916 
CANFIS-26 Gauss-3 0.397 0.479 0.692 0.149 0.807 0.945 
CANFIS-27 Gauss-2 0.395 0.484 0.696 0.153 0.799 0.932 
CANFIS-28 Gauss-3 0.391 0.494 0.704 0.155 0.794 0.932 

 

 
 

Fig. 4. Comparison of observed (So) and predicted (Sp) SC values and corresponding scatter 
plot in testing period by MLP-7 model for Hurdag watershed 
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Fig. 5. Comparison of observed (So) and predicted (Sp) SC values and corresponding scatter 
plot in testing period by MLP-10 model for Hurdag watershed 

 

 
 

Fig. 6. Comparison of observed (So) and predicted (Sp) SC values and corresponding scatter 
plot in testing period by CANFIS-7 model for Hurdag watershed 

 

 
 

Fig. 7. Comparison of observed (So) and predicted (Sp) SC values and corresponding scatter 
plot in testing period by CANFIS-10 model for Hurdag watershed 
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Table 6. Statistical indices for selected MLR sediment models during testing phase for Hurdag 
watershed 

 

Model No. Regression equation Statistical index 

RMSE CE r 

MLR-7 St  = 0.354 + 0.096 Qt + 0.011Rt 0.281 0.327 0.632 
MLR-10 St  = 0.364 + 0.116Qt + 0.007Rt-1 0.296 0.250 0.597 
MLR-17 St  = 0.150 + 0.007Rt + 0.602St-1 0.251 0.457 0.688 
MLR-20 St  = 0.140 + 0.077Qt + 0.608St-1 0.269 0.376 0.619 
MLR-21 St  = 0.184 - 0.008Qt- 1 + 0.639St-1 0.286 0.299 0.561 
MLR-22 St = 0.151 + 0.098Qt - 0.051Qt-1 + 0.628St-1 0.270 0.373 0.617 
MLR-25 St  = 0.134 + 0.086Qt - 0.052Qt-1 + 0.005R + 0.608St-1 0.250 0.464 0.689 
MLR-26 St  = 0.141 + 0.077Qt - 0.0003Rt-1 + 0.610St-1 0.275 0.353 0.594 
MLR-27 St  = 0.183 - 0.009Qt-1 + 0.0006Rt-1 + 0.636St-1 0.285 0.301 0.564 
MLR-28 St  = 0.149 + 0.098Q - 0.052Qt-1 + 0.0006Rt-1 + 0.626St-1 0.269 0.376 0.620 

 

 
 

Fig. 8. Comparison of observed (So) and predicted (Sp) SC values and corresponding scatter 
plot in testing period by MLR-7 model for Hurdag watershed 

 

 
 

Fig. 9. Comparison of observed (So) and predicted (Sp) SC values and corresponding scatter 
plot in testing period by MLR-10 model for Hurdag watershed 

 

0

0.5

1

1.5

2

2.5

1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6

2
1

1

2
2

6

2
4

1

SC
 (

g/
l)

Days

So Sp R² = 0.399

0

1

2

3

0 1 2 3

S p
(g

/l
)

So (g/l)

0

0.5

1

1.5

2

2.5

1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6

2
1

1

2
2

6

2
4

1

SC
 (

g/
l)

Days

So Sp R² = 0.357

0

1

2

3

0 1 2 3

S p
(g

/l
)

So (g/l)



 
 
 
 

Singh et al.; Adv. Res., vol. 25, no. 6, pp. 41-53, 2024; Article no.AIR.124077 
 
 

 
51 

 

The temporal variation of observed (So) and 
predicted (Sp) SC values simulated by the MLP-7 
and CANFIS-7 models for testing period are 
compared using SC graph and corresponding 
scatter plot as shown in Figs. 4 and 5 for MLP 
models, and Figs. 6 and 7 for CANFIS models. 
These SC graphs indicate that all the models, in 
general, under-predict the peak values and over 
predict the lowest values of SC. The scatter plot 
also indicates that the simulated and observed 
sediment concentration during testing or 
validation period match very closely for MLP-7 
model with R2 value of 0.980 and CANFIS-7 
model with R2 value of 0.965. 
 

3.2 Sediment Modelling Using MLR 
 
Equations simulating the silt concentration of 
today were developed using the conventional 
statistical method known as MLR (Malik and 
Kumar, 2015). The input-output relationships for 
MLR models were developed using the input-
output combinations of several MLR models 
(Table 2) for the research region. The 
performance evaluation index values for the 
various MLR models evaluated based on the 
RMSE, CE, and r values throughout the testing 
period are shown in Table 6. RMSE, CE, and r 
ranged from 0.250 to 0.296 g/l, 0.561 to 0.689, 
and MLR-7, MLR-10, MLR-17, MLR-20, MLR-21, 
MLR-22, MLR-25, MLR-26, MLR-27, and MLR-
28 were the ten models that were chosen.It 
provides the generated input-output equations for 
these models. Based on the statistical criteria of 
the lowest RMSE and the highest (but not 
statistically significant) values of r and CE, the 
MLR-25 model was determined to be the best-
performing model, closely followed by                       
the MLR-17 model. As a result, the rainfall and 
runoff of the present day as well as the                    
runoff and SC of the previous day determine the 
SC for the current day, according to the best-
performing MLR-25 model.As the value of 
correlation coefficient of MLR-25 gives the best 
result. 

 
The MLR models' simulated observed (So) and 
predicted (Sp) SC values for the testing period 
are compared using a SC graph and matching 
scatter-plot, as illustrated in Figs 8 and 9. These 
models generally underpredict the peak SC, a 
finding also supported by the scatter plots. The 
very low values of CE and r throughout the 
testing period plainly suggested that the MLR 
models were not appropriate for the prediction of 
SC for the studied watersheds. 

 

3.3 Discussion 
 
Sedimentation simulation is a crucial aspect of 
watershed management, especially in regions 
like the Hurdag watershed in the Damodar-
Barakar basin, where sediment transport 
influences water quality, reservoir storage 
capacity, and overall hydrological dynamics. The 
objective of this study was to formulate Artificial 
Neural Network (ANN)-based Multi-Layer 
Perceptron (MLP), Co-Active Neuro-                      
Fuzzy Inference System (CANFIS), and Multiple 
Linear Regression (MLR) models to                    
simulate sediment yield and to evaluate the 
performance of these models using various 
statistical indices. 
 
The models were trained using rainfall, runoff, 
and sediment data from 1995-2001 and tested 
on data from 2002-2003. Performance was 
evaluated using Root Mean Square Error 
(RMSE), Coefficient of Efficiency (CE), and 
Correlation Coefficient (r). Both MLP and 
CANFIS showed superior predictive accuracy, 
with lower RMSE and higher CE and r values 
compared to MLR. While MLR performed 
adequately during training, it failed to generalize 
well to unseen data, highlighting its limitations in 
simulating sediment yield (Agarwal, 2002, 
Agarwal et al, 2006, Agarwal, et al., 2003). 
 
The observed (So) and predicted (Sp) sediment 
concentration (SC) values for the testing period, 
simulated by MLP-7 and CANFIS-7 models, are 
compared through SC graphs and scatter plots 
(Figs. 4 – 7). The SC graphs show that both 
models tend to under-predict peak values and 
over-predict the lowest values. The scatter plots 
reveal a strong match between observed and 
predicted SC values, with MLP-7 achieving an R² 
of 0.980 and CANFIS-7 an R² of 0.965 during the 
validation period. 
 
The observed (So) and predicted (Sp) sediment 
concentration (SC) values from MLR models for 
the testing period, presented in SC graphs and 
scatter plots (Figs. 8 – 9), show that the models 
generally under-predict peak SC. The low CE 
and r values during testing confirm that MLR 
models are not suitable for accurate SC 
prediction in the study watersheds (Aqil, et al., 
2007, Rumelhart and McClelland, 1986, Werbos, 
1974). 
 
The results confirm that MLP and CANFIS are 
better suited for sediment yield simulation in the 
Hurdag watershed, offering more accurate and 
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reliable predictions than MLR. These advanced 
techniques can significantly improve sediment 
management and hydrological forecasting in 
similar watersheds. 

 
4. CONCLUSION 
 
In this study, we attempted to forecast the daily 
Sedimentation on the basis of Multi Layer 
Perceptron (MLP), Co-Active Neuro-Fuzzy 
Inference System (CANFIS) and Multi Linear 
Regression (MLR) techniques for the Hurdag 
watershed in the Damodar-Barakar basin, 
located in Hazaribagh district, Jharkhand, India. 

 
The performance of models was evaluated 
qualitatively by visual observation and various 
statistical and hydrological indices viz.root mean 
square error (RMSE), correlation coefficient (r) 
and coefficient of efficiency (CE). The model 
having higher values of correlation coefficient 
and coefficient of efficiency and low value of 
mean square error is consider as the best fit 
model. 

 
The following conclusions were drawn from the 
results in this study: 

 
▪ The MLP model used to simulate silt 

concentration by providing input values for 
the runoff and rainfall of the current day; 
similarly, runoff can be simulated by 
providing input parameters for the rainfall 
of the day before. 

▪ The results obtained on the basis of 
statistical indices (RMSE, CE, r and R2) 
indicates that the MLP and CANFIS model 
in general gave consistently better 
performance than the MLR models 

▪ It was abundantly obvious that the MLR 
model suited the dataset under 
investigation extremely poorly. 
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