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Abstract
The quasi-likelihood information criteria (QIC) developed based on the Kullback-Leibler cross-entropy
principles is famously used in generalized estimating equations modelling to select a working correlation
structure that is vital in improving efficiency of estimates. However, many studies have shown that its
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use favors over-parameterized correlation structures. In this paper, we suggest a modification to the
penalty term of the original QIC by adding a weighting factor built using the number of correlation and
regression parameters as cost components. This is aimed at improving its selection rates of a parsimonious
correlation matrix structure. Using a simulation study, the performance of the modified QIC was established
to be better than that of the original QIC, EAIC and EBIC. Further, it was found out that as the number
of repeated measures and degree of correlation became larger, the proposed method gained more power
in choosing the correct matrix. The new method was illustrated using the data for Mother’s Stress and
Children’s Morbidity study.

Keywords: Generalized estimating equations; weighted euclidean squared distance; working correlation matrix;
parsimony; quasi-likelihood information criteria.

2010 Mathematics Subject Classification: 62B10, 62J12, 62P10.

1 Introduction
The method of generalized estimating equations (GEE) [1], that has the advantage of only requiring the
estimation of the mean and variance for the response variable and a provisional correlation matrix is commonly
used in biomedical, ecological, economic and other statistical research and applications in which the within-
subject responses are correlated to obtain GEE estimates that are assumed to be robust to misspecification
of the correlation matrix [1, 2]. However, it has been established that the assumption of robustness to mis-
specification of working correlation structure of the sandwich variance estimator does not hold in all situations
[3]. Hence, the asymptotic relative efficiency of the GEE estimator could be enhanced by the correct specification
of the working correlation structure [3, 4, 5, 6].

The quasi-likelihood information criterion (QIC) developed by [7], is frequently used in choosing both covariates
and a working correlation matrix in GEE modeling. Simulation studies have however established success rates
of less than 50% when QIC is used in choosing a working correlation structure if the selection set is not limited
to parsimonious correlation structures only as in [7]. For instance, studies by [8], [9] and [10] established that
QIC often selects over-parameterized correlation structures at the expense of parsimonious ones hence fails to
identify the correct correlation matrix. This results in the use of a mis-specified correlation structure with
eventual less efficient GEE estimates [3]. These views were corroborated by [11] who pointed out that the
use of over-parameterized correlation structures results in models with higher mean square error (MSE) values
compared to cases where parsimonious structures are used.

In efforts to address the shortcomings of QIC, [12] proposed the correlation information criteria (CIC) that uses
only the penalty term of QIC while [13] proposed the replacement of the quasi-likelihood with an empirical-
likelihood and proposed the empirical Akaike information criteria (EAIC) and the empirical Bayesian information
criteria (EBIC) which they applied successfully for the selection of the correlation structure in GEE. Through
simulations they established superior performance of their proposed criteria compared to QIC and CIC.

In this study, we integrate a tuning parameter into the bias correction term of [7]’s QIC so as to penalize
simultaneously for both the regression and correlation parameters. This resultant criteria is expected to penalize
both the correlation structure that estimates many parameters and that which despite being parsimonious result
in a poor-fitting model hence picking out from a selection set the best parsimonious structure. The performance
of the new method is established using simulation studies and is compared to that of the original QIC, CIC,
EAIC and EBIC.

The rest of the paper is organized as follows: Section 2 provides a review of the GEE method while section 3
presents [7]’s QIC and the proposed method. section 4 presents a simulation study investigating the performance
of the proposed method compared to other criteria. In section 5, we apply the proposed method to Mother’s
Stress and Children’s Morbidity data. Section 6 provides conclusions of the study.
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2 Generalized Estimating Equations
Let yit be the ith individual response on measurement t (t = 1, . . . ,mi) and i = 1...n such that, the ith subject’s
data consist of a mi × 1 response vector yi = (yi1, .., yimi)

T and a p × 1 covariate vector Xi = (Xi1, .., Xip)
T .

The density function of yit takes the form of exponential family whose log-likelihood function is

`(yit; θit, φ) =

n∑
i=1

{
yitθit − b(θit)

φ
+ c(yit, φ)

}
,

where θit is the canonical parameter, φ is the scale parameter and a(.), b(.) and c(.) are known functions such
that b′(θit) = µit relate to Xit through a known link function. That is, g(µit) = XT

itβ, where β = (β1, . . . , βp)
T

and φb′′(θit) = V ar(yit) = φV (µit), where V (.) is the variance function of µit. As indicated by [14], φ is
estimated by:

φ̂ =
1

N − 1

N∑
i=1

mi∑
t=1

(yit − µit)2

V (µit)
, N =

n∑
i=1

mi (2.1a)

and

∂(`(yit; θit, φ)

∂βj
=

n∑
i=1

yi − µi
a(φ)V (µi)

· (∂µi
∂βj

) (2.1b)

Definition 2.1. By replacing the log-likelihood in equation (2.1b) by the log-quasi-likelihood, the GEE estimates
β̂G are obtained by iteratively solving the following system of equations using Fisher scoring algorithm [1].

U(β̂, R(α) =

n∑
i=1

DT
i Vi(yi − µi) = 0, (2.2)

where Vi = A
−1/2
i Ri(α)A

−1/2
i , Di = ∂µi/∂β

T , Ai = Diag{V (µi1, . . . , V (µimi)}, and µi = g−1(XT
i β). Considering

the model-based covariance matrix I(β̂I |y)|p×p and the sandwich variance estimate Σ(βR), then

√
n(β̂G − β) ∼MVN(0,Σ(βR)),

where

Σ(βR) = I(β̂I |y)−1J(β̂R|y)I(β̂I |y), (2.3)

I(β̂I |y) =
1

n

n∑
i=1

DT
i V
−1
i Di, J(β̂R|y) =

1

n

n∑
i=1

DT
i V
−1
i (yi − µi)(yi − µi)TDi

Remark 2.1. As n becomes larger,
∑n
i=1(yi − µi)(yi − µi)T /n → Cov(Yi), and if Ri(α) is correctly specified,

Vi = Cov(Yi) [4] such that

J(β̂R|y)− I(βI |y)
p→ 0, {I(β̂I |y)− I(βI |y)} p→ 0

and

{J(β̂R|y)}{I(βI |y)}−1 = Ip×p ⇒ Σ(β̂R)→ I(β̂I |y)−1

where I is an identity matrix. This implies that the lower bound on the variance of the unbiased GEE estimators
is attained. [6] further established that, if g(−1)(XT

itβ), V (µit) and g(·) are correctly specified, J(β̂R|y) in equation
(2.3) overrides the impact of using a mis-specified correlation matrix and results to consistent regression estimates
for large n. However, a mis-specified structure yields inconsistent correlation parameter estimate (α̂) which in
turn affects the efficiency of the GEE estimates.

45



Nyabwanga et al.; J. Adv. Math. Com. Sci., vol. 39, no. 8, pp. 43-56, 2024; Article no.JAMCS.120449

3 QIC and the Proposed Penalty Adjusted QIC

3.1 Quasi-likelihood information criteria
[7] considered the extension of AIC to the GEE framework and came up with the quasi-likelihood information
criteria QICR defined as

QICR = −2Q(β̂R|y, I, (Y,X)) + 2tr{I(β̂I |y)Σ(β̂R)}, (3.1)

where βR is the GEE estimator obtained using a working correlation structure R(α). The optimal correlation
matrix is that which minimizes the QIC value [15]

Remark 3.1. The quasi-likelihood term −2Q(β̂R|y; I, (Y,X)) [16], is evaluated at β = ˆβ(R) under independence
correlation assumption.

Remark 3.2. The quantity 2tr{I(β̂I |y)Σ(β̂R)} is the bias correction for over-complexity whereby Σ(β̂R) contains
information on the postulated correlation structure.

Remark 3.3. The log-quasi-likelihood function and I(β̂I |y) are estimated using the independent working correlation
thus makes QICR efficient when the correlation parameters estimated are fewer [17]. However, when the
correlation matrix estimates many parameters just like in the case of the unstructured correlation in which
m(m−1)/2 correlation parameters are estimated, the corresponding traces that measure model complexity tend
to be under-estimated. Hence, there is a higher likelihood of selecting a more complex structure compared to a
parsimonious one [8]. This implies that the ability of QICR to sufficiently penalize for complexity declines as
the number of correlation parameters q approaches m(m− 1)/2. This explains the assertions by [8] that QICR

was biased towards selecting the unstructured correlation matrix and caution by [11] on the use of QICR in
choosing a correlation structure for longitudinal data since it has a higher likelihood of picking the most complex
matrix as the best regardless of what the true structure is hence a violation to the Occam’s razor principle. This
is also in line with recommendations by [18] that estimation of correlation parameters should be penalized when
selecting a working structure since the use of complex correlation structures causes variance inflation.

Simpler models capture the underlying structure better hence have superior predictive performance. We therefore
propose a modification to the bias correction term of QIC so as mitigate its appetite for complex correlation
structures and improve its selection rates of the true parsimonious working correlation structure.

3.2 The proposed penalty adjusted quasi-likelihood information criteria
We denote the penalty adjusted QIC as QICm2(R) and write the new method as:

QICm2(R) = −2Q(β̂R|y; I, (Y,X) + 2λtr{I(β̂I |y)Σ(β̂R)}, (3.2)

where λ = f(p, q) is the tuning parameter based on the weighted Euclidean distance from the origin using p and
q as cost components. p is the number of regression parameters while q is the number of correlation parameters.

Definition 3.1. Let R = {Ri} i = 1 . . . S be the set of S working correlation structures whose set of correlation
parameters qi = {0, 1, ..., 0.5m(m − 1)}. Further, let M = {Mj}, j = 1...p be the set of regression models that
are a subset of the full model with p regressors. The weighted Euclidean distance from the origin of (p, q) is:

d (p, q) =
√
{wp2 + (1− w)q2}, w = [0, 1]

Definition 3.2. Considering the transformations:
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{
p∗ = k

p
, Mk ⊂Mp, k = 1..p− 1 : 0 ≤ p∗ ≤ 1

q∗ = qi
qmax

, qmax = 0.5m(m− 1) : 0 ≤ q∗ ≤ 1

then;

d (p∗, q∗) =
√
{wp∗2 + (1− w)q∗2}, w = [0, 1] (3.3)

To obtain λ, we first consider the penalization adopted by [19] in which the penalty term of the original QIC is
multiplied by 2p and then set w = 0 for Equation (3.3) so that

2λtr{I(β̂I |y)Σ(β̂R)} = 4ptr{I(β̂I |y)Σ(β̂R)}+ 2q
m(m−1

tr{I(β̂I |y)Σ(β̂R)}

= 2
{

2p+ q
m(m−1

}
tr{I(β̂I |y)Σ(β̂R)} (3.4)

Hence,

λ = 2p+
q

m(m− 1)
, p > 0, q ≥ 0,m > 1 (3.5)

The proposed method is given by

QICm2(R) = −2Q(β̂R|y; I, (Y,X)) + 2

{
2p+

q

m(m− 1)

}
tr{I(β̂I |y)Σ(β̂R)}, (3.6)

where I(β̂I |y) =
∑n
i=1D

T
i A
−1
i Di such that

Σ(β̂R) = {I(β̂I |y)}−1

{
1

n

n∑
i=1

DT
i V
−1
i (Yi − µi)(Yi − µi)TV −1

i Di

}
{I(β̂I |y)}−1

Remark 3.4. If the working correlation matrix is independence, then the QICm2(R) above reduces to

QICm2(R) = −2Q(β̂R|y; I, (Y,X)) + 4p tr{I(β̂I |y)Σ(β̂R)} (3.7)

Remark 3.5. For a correctly specified model with p covariates, QICm2(R) has a stronger penalty term than
QIC(R) since λ > 1; hence, a smaller probability of selecting over-parameterized correlation structures. As m
increases, q

m(m−1)
→ 0. Therefore, QICm2(R) performs better in selecting the correct parsimonious correlation

matrix.

4 Simulation Study

4.1 Simulation design
We considered the same model used by [7] and [3] in which the binary response vector yi = (yi1, . . . , yit)

T ,
i = 1, . . . , n and t = 1, . . . ,m was assumed to be Bernoulli while the covariates x1it ∼ Bernoulli(0.5) and
x2it = t− 1 hence,
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logit{E(yi|x1it, x2it)} = β0 + β1x1it + β2x2it

for i = 1...n, t = 1...m

β0 = 0.25 = −β1 = −β2 (4.1)

The simulation sample sizes and measurements per subject considered were n = {50, 100, 200, 500} and m =
{3, 5} respectively. Low and medium correlation levels of 0.2 and 0.5, respectively, were considered for the AR(1)
and compound symmetry structures [20]. This was useful in determining the effect of the level of correlation on
the selection probability of a true correlation structure. We considered the correlation structures below:

i. Independent: R0 = Diag(1, . . . , 1).

ii. Compound Symmetry: R0 = (1− α)Im + αΛm for m = {3, 5} and α = {0.2, 0.5}; where Im is a m ×m
identity matrix, and Λm is a m×m matrix of 1’s.

iii. AR(1): R0 = {(α)|j−k|}1≤j,k≤m for m = {3, 5} and α = {0.2, 0.5}.
iv. Toeplitz: For m = 3 and m = 5, we respectively use

R0 =

 1 0.50 0.35
0.50 1 0.50
0.35 0.50 1

 and R0 =


1 0.50 0.35 0.30 0.25

0.50 1 0.50 0.35 0.30
0.35 0.50 1 0.50 0.35
0.30 0.35 0.50 1 0.50
0.25 0.30 0.35 0.50 1


[3] and [7] considered AR(1), compound symmetry and independent correlation matrices in their simulation.
The inclusion of Toeplitz matrix allows for the assessment of the ability of our criteria to impose penalty on the
number of correlation parameters estimated. Simulations based on 1,000 replications were used to establish the
performance of QICm2(R) compared to EAIC and EBIC [13], CIC [12] and the original QIC [7].

Motivated by [21], we considered the Selection probability of the true structure fR0i

1000
such that the Probability

of selecting a mispecified structure is 1− { f
R0i

1000
} and mean squared error of prediction (MSEP)

MSEP =
1

1, 000

1,000∑
K=1

n∑
i=1

(µ̂
(K)
i,R∗
− µi)V −1

i (µ̂
(K)
i,R∗
− µi)T , (4.2)

in evaluating the performance of the selection criteria. fR0i is the frequency of selection of the ith true correlation
structure R0 and µ̂

(K)
i,R∗

is the estimator of µi = g−1(XT
i β) under the correlation structure selected by each

criteria.

4.2 Simulation results
For independent correlation structure the proposed criteria QICm2(R) selects the true independent correlation
structure with probabilities of 0.921, 0.991, 1.000 and 1.000 for samples of 50, 100, 200 and 500, respectively
(Table 1). This implies that QICm2(R) selected the true independent structure with a probability of 1 for
larger sample sizes. The selection probabilities of EAIC and EBIC were above 0.700 and increased with the
the increase in sample size to 0.936 and 0.999, respectively, for sample sizes of 500. The other criteria QIC
and CIC instead choose the Toeplitz structure which estimates ′m− 1′ correlation parameters. Their selection
probabilities were however less than 50%. For the sample sizes considered, QICm2(R) outperformed both EAIC
and EBIC in choosing the true independent structure. We further observed that the estimation accuracy of the
GEE model with the independent structure which is the true structure is better than that of the GEE model
under the Toeplitz structure preferred by QIC and CIC.
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Table 1.True independent structure selection frequency out of 1,000 replications and
corresponding MSEP

m=3 m=5
n Citeria IN CS AR(1) TOEP MSEP IN CS AR(1) TOEP MSEP
50 EAIC 726 112 108 54 1.116 727 124 106 13 1.114

QIC 196 180 205 419 1.127 166 337 299 198 1.127
QICm2(R) 921 30 42 7 1.109 952 12 27 9 1.011

CIC 248 194 231 327 1.123 197 197 126 380 1.126
EBIC 893 50 49 8 1.108 959 9 32 0 1.102

100 EAIC 712 117 115 60 1.100 882 30 75 13 1.100
QIC 187 204 186 423 1.123 175 329 306 190 1.126

QICm2(R) 991 3 5 1 1.004 987 2 11 0 1.001
CIC 240 184 194 382 1.121 152 225 230 393 1.122
EBIC 940 30 25 5 1.009 980 3 17 0 1.003

200 EAIC 711 121 114 54 .994 877 38 80 5 .990
QIC 172 204 198 426 1.123 170 321 305 355 1.125

QICm2(R) 1000 0 0 0 .903 1000 0 0 0 .900
CIC 252 194 200 354 1.117 200 240 189 371 1.121
EBIC 951 26 19 0 .984 992 9 32 0 .935

500 EAIC 936 33 31 0 .983 892 43 56 9 .980
QIC 236 201 224 339 1.122 177 298 199 326 1.125

QICm2(R) 1000 0 0 0 .823 1000 0 0 0 .808
CIC 253 183 226 338 1.119 208 208 171 413 1.120
EBIC 999 0 1 0 .823 1000 0 0 0 .808

When the true working correlation structure was compound symmetry with a weak correlation of α = 0.2 which
is in the lower third, [20] and fewer number of measurements per subjects m = 3, simulation results in Table
2 show that QICm2(R) failed to select the correct structure and instead prefered the independent structure.
The results buttress findings by [22] that when the correlation between responses is weak, β̂ obtained using
the independence structure is more efficient. Likewise, as observed by [23], under this circumstance, the robust
estimates for working independence and compound symmetry correlation will both be correct. This is true since
the difference in MSEP of models under the two structures was marginal. Both EAIC and EBIC outperformed
QICm2(R) in this setting and selected the true compound symmetry structure with higher probabilities.

However, increasing the number of measurements per subject to five, resulted to QICm2(R) outperforming all
the other criteria in selecting the true structure. This can be attributed to assertions by [23] that increasing the
number of measurements per subject makes the true correlation structure distinct hence easily identifiable by a
selection criteria.

When the degree of correlation is increased to 0.5 (in the upper third, [20]), QICm2(R) selects the compound
symmetry structure with probabilities of 0.732, 0.871, 0.965 and 0.987 for the respective sample sizes of 50, 100,
200 and 500 (Table 3). These are comparable to EAIC and EBIC whose respective probabilities are 0.750, 0.818,
0.851 and 0.861 for EAIC and 0.835, 0.923, 0.977 and 0.989 for EBIC. QIC and CIC still selected the Toeplitz
structure with higher probabilities rather than the true structure regardless of the increase in α. Just like
EAIC and EBIC, the probability of QICm2(R) selecting the true compound symmetry structure asymptotically
approaches one as n → ∞ and it was more than twice that of the original QIC. The results indicate that by
increasing α or m, QICm2(R) overcomes its poor performance in selecting the compound symmetry structure
when α is weak and measurements per subject (m) are small. Selection of the true compound symmetry structure
equally minimized the MSEP values.

49



Nyabwanga et al.; J. Adv. Math. Com. Sci., vol. 39, no. 8, pp. 43-56, 2024; Article no.JAMCS.120449

Table 2. Compound symmetry structure (α = 0.2) selection Frequency from 1,000 independent
replications and corresponding MSEP

m=3 m=5
n Citeria IN CS AR(1) TOEP MSEP IN CS AR(1) TOEP MSEP
50 EAIC 156 538 209 97 1.118 189 536 180 95 1.114

QIC 165 235 189 391 1.122 186 292 180 397 1.121
QICm2(R) 609 235 120 32 1.120 212 666 113 9 1.074

CIC 274 189 239 307 1.127 223 398 158 256 1.126
EBIC 332 469 169 30 1.120 277 512 165 146 1.120

100 EAIC 37 675 188 100 1.062 42 613 179 166 1.063
QIC 158 302 156 389 1.121 153 351 84 412 1.121

QICm2(R) 712 219 65 4 1.105 116 807 74 3 1.001
CIC 264 190 233 313 1.126 223 398 156 233 1.139
EBIC 131 676 168 25 1.062 137 660 171 22 1.066

200 EAIC 1 784 130 85 1.070 0 702 94 204 1.055
QIC 116 341 102 441 1.122 162 447 66 325 1.122

QICm2(R) 758 202 40 0 1.101 52 920 28 0 1.000
CIC 210 246 241 303 1.122 233 415 155 197 1.122
EBIC 11 844 131 14 1.049 14 857 112 17 1.051

500 EAIC 0 852 11 137 1.027 0 704 4 292 1.098
QIC 121 329 80 470 1.107 129 489 64 318 1.108

QICm2(R) 865 129 6 0 1.108 8 988 4 0 1.000
CIC 131 283 214 372 1.107 158 549 147 146 1.108
EBIC 0 970 27 3 1.011 0 948 39 13 1.081

Table 3. Frequency of selection of true compound symmetry structure (α = 0.5) from 1,000
independent replications and corresponding MSEP

m=3 m=5
n Citeria IN CS AR(1) TOEP MSEP IN CS AR(1) TOEP MSEP
50 EAIC 0 750 103 147 1.018 9 828 111 52 1.018

QIC 157 732 188 51 1.047 0 861 139 0 1.003
CIC 185 186 327 302 1.215 137 343 135 385 1.166
EBIC 0 835 104 51 1.051 0 859 141 0 1.010

100 EAIC 0 818 36 146 1.018 0 890 85 25 1.000
QIC 131 367 92 410 1.231 134 444 195 227 1.179

QICm2(R) 12 871 102 15 1.000 0 951 49 0 .900
CIC 128 231 295 346 1.271 195 491 157 157 1.155
EBIC 0 923 50 27 1.006 0 914 86 0 1.000

200 EAIC 0 851 1 148 1.009 0 971 0 29 .998
QIC 124 379 78 419 1.231 160 506 123 211 1.201

QICm2(R) 4 965 29 2 .990 0 987 13 0 .988
CIC 72 325 211 392 1.219 98 580 186 136 1.150
EBIC 0 977 6 17 1.000 0 1000 0 0 .918

500 EAIC 0 816 0 184 1.011 0 990 0 10 .975
QIC 147 373 73 407 1.218 123 576 10 299 1.153

QICm2(R) 4 987 9 0 .977 0 1000 0 0 .891
CIC 10 410 154 426 1.216 29 655 150 166 1.110
EBIC 0 989 0 11 .978 0 1000 0 0 .890
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When the true correlation structure was AR(1), simulation results in Tables 4 and 5 show that for a weak degree
of correlation of α = 0.2 with a smaller number of measurements per subject m = 3, QICm2(R) failed to select
the true structure and instead preferred the independent structure for the data and its selection probabilities
for the true AR(1) structure decreased with increase in the sample size. This selection, resulted to a model with
lower predictive performance compared to when the true AR(1) structure was used. On the other hand, EAIC
and EBIC performed better than the other criteria and their selection probabilities increased with the sample
size. QIC and CIC selected the Toeplitz structure rather than the true structure and the resultant model had the
lowest predictive performance. The results further showed that, for the same weak correlation, the performance
of our proposed criteria in selecting the true AR(1) structure was superior to that of EAIC and EBIC when m
is increased to 5. Also, by increasing α to 0.5, the performance of QICm2(R) was comparable to or exceeded
that of EAIC and EBIC. For sufficiently large n and m, QICm2(R) selected the true AR(1) structure with a
probability of one.

When the true correlation structure was Toeplitz, simulation results in Table 6, show that QICm2(R) fails
to select the Toeplitz structure even with the increase in n or m. Instead it preferred a parsimonious AR(1)
structure. Likewise, for sample sizes of 50 and 100 both EAIC and EBIC selected the AR(1) structure instead
of the Toeplitz structure. However, for sample sizes greater than 200 the consistency of EAIC and EBIC in
selecting an over-parameterized structure starts to set in. The results justifies the study objective in which we
sought to improve on the penalty term of QIC to aid in the selection of parsimonious correlation structures in
GEE.

Table 4. AR(1) (α = 0.2) structure Selection Frequency from 1,000 independent replications and
corresponding MSEP

m=3 m=5
n Citeria IN CS AR(1) TOEP MSEP IN CS AR(1) TOEP MSEP
50 EAIC 237 210 465 88 1.109 282 70 464 184 1.109

QIC 152 195 247 406 1.264 156 176 334 334 1.205
QICm2(R) 669 69 244 18 1.118 237 104 642 17 1.103

CIC 271 192 214 323 1.222 142 107 329 422 1.200
EBIC 455 147 373 25 1.199 399 34 518 49 1.117

100 EAIC 68 1186 627 119 1.067 0 11 705 284 1.029
QIC 140 171 297 392 1.219 61 154 470 315 1.215

QICm2(R) 726 39 234 1 1.109 2 21 975 3 1.002
CIC 247 186 220 347 1.220 48 102 584 266 1.166
EBIC 236 152 589 23 1.167 0 21 914 65 1.009

200 EAIC 1 136 854 9 1.046 26 63 687 204 1.068
QIC 106 188 311 395 1.201 91 140 486 283 1.200

QICm2(R) 808 13 179 0 1.109 99 46 845 0 1.000
CIC 190 214 279 317 1.210 92 105 532 261 1.161
EBIC 32 130 838 0 1.016 62 60 831 37 1.018

500 EAIC 0 38 957 5 1.001 0 16 852 32 1.011
QIC 92 153 338 417 1.204 71 127 516 286 1.195

QICm2(R) 907 0 93 0 1.103 13 3 984 1 1.001
CIC 127 176 296 401 1.114 53 62 552 333 1.106
EBIC 0 38 962 0 1.001 0 26 984 0 1.001

5 Application: Mother’s Stress and Children’s Morbidity Study
We apply our proposed criteria to the Mother’s Stress and Children’s Morbidity (MSCM) data. The data was
considered by [24] and contains 2,004 observations on 13 variables for 167 mothers and children who enrolled in
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Table 5. fAR(1) (α = 0.5) structure selection frequency from 1,000 independent replications and
corresponding MSEP

m=3 m=5
n Citeria IN CS AR(1) TOEP MSEP IN CS AR(1) TOEP MSEP
50 EAIC 0 140 722 138 1.031 0 42 700 258 1.020

QIC 99 211 324 366 1.124 99 130 351 420 1.121
QICm2(R) 29 181 768 22 1.031 16 74 873 37 1.020

CIC 190 199 275 336 1.124 220 133 338 309 1.121
EBIC 0 141 789 70 1.019 0 69 830 101 1.010

100 EAIC 0 43 828 129 1.017 0 10 736 254 1.010
QIC 109 205 293 393 1.120 52 127 443 380 1.114

QICm2(R) 4 119 876 1 1.017 0 30 970 0 1.001
CIC 122 243 304 331 1.119 150 121 429 300 1.113
EBIC 0 53 910 37 1.007 0 20 940 40 1.000

200 EAIC 0 0 835 165 1.017 0 0 770 230 1.010
QIC 93 177 317 413 1.120 70 92 513 325 1.111

QICm2(R) 4 50 946 0 1.009 0 0 1000 0 .891
CIC 66 211 339 384 1.122 78 99 513 310 1.107
EBIC 0 6 979 15 1.003 0 9 983 8 .992

500 EAIC 0 0 846 154 1.000 0 0 790 210 1.006
QIC 105 189 333 373 1.195 60 196 474 270 1.194

QICm2(R) 0 20 980 0 .910 0 0 1000 0 .871
CIC 13 110 418 459 1.181 66 123 503 308 1.177
EBIC 0 0 985 15 .990 0 0 988 12 .958

Table 6.Toeplitz structure selection frquency and the corresponding MSEP

m=3 m=5
n Citeria IN CS AR(1) TOEP MSEP IN CS AR(1) TOEP MSEP
50 EAIC 0 435 529 36 1.109 0 70 381 612 1.109

QIC 120 289 254 337 1.264 143 196 233 428 1.205
QICm2(R) 41 404 549 6 1.118 5 190 805 0 1.103

CIC 175 260 337 228 1.222 190 143 286 381 1.200
EBIC 1 441 539 19 1.199 0 381 619 0 1.117

100 EAIC 0 352 549 99 1.067 0 288 591 121 1.029
QIC 120 277 211 392 1.219 140 254 205 401 1.215

QICm2(R) 11 426 563 0 1.109 0 125 875 0 1.002
CIC 160 288 346 206 1.220 63 292 312 333 1.166
EBIC 0 393 606 1 1.167 0 287 701 12 1.009

200 EAIC 0 160 328 512 1.046 0 78 570 352 1.068
QIC 127 271 130 472 1.201 112 288 109 491 1.200

QICm2(R) 6 461 533 0 1.109 0 90 910 0 1.000
CIC 72 302 389 237 1.210 90 287 173 450 1.161
EBIC 0 406 586 0 1.016 0 278 722 0 1.018

500 EAIC 0 1 70 929 1.001 0 29 200 771 1.011
QIC 133 260 138 469 1.204 90 230 169 511 1.195

QICm2(R) 7 355 638 0 1.103 0 120 880 0 1.001
CIC 10 254 319 417 1.114 30 231 149 590 1.106
EBIC 0 63 339 598 1.001 0 180 790 30 1.001

52



Nyabwanga et al.; J. Adv. Math. Com. Sci., vol. 39, no. 8, pp. 43-56, 2024; Article no.JAMCS.120449

the study. The study variables were mother’s stress, children’s illness status, mother’s marriage status, mother’s
highest education level, mother’s employment status, health status of children at baseline(chlth), health status
of mother at baeline(mhlth), children’s race, household size(housize), average mother’s stress of the 1-16 days
(bstress), average children’s illness of the 1-16 days(billness) and study time(week) [See [24] for variable details].
Data covering the period of day 17 to 28 were considered, as the data for day 1-16 exhibited weak correlation
therefore m = 12. The data had 0.97% missing values [24] hence the MCAR assumption was applied. We
adopted the logit link function and fitted the following model:

log

(
µit

1− µit

)
= β0 + β1illnessit + β2marriedit + β5chlthit + β3educationit

+β4employedit + β6mhlthit + β7raceit + β8csexit + β9housizeit

+β10bstressit + β11billnessit + β12weekit (5.1)

where µit = E(Yit|Xitp), Yit is the binary indicator of the presence or absence of mother’s stress during the tth

visit, t = 1, . . . , 12. and Xitp is the pth covariate.

We compared the EAIC, QIC, QICm2(R), CIC and EBIC values for the four models each under the correlation
structures: independence, compound symmetry,AR(1) and Toeplitz. EAIC, QICm2(R) and EBIC chose the
AR(1) working correlation structure for the MSCM data while QIC and CIC chose the Toeplitz structure for
the data Table 7. The selection of AR(1) by QIC2m(R) is supported by views by [25] that when the intra-
subject measurements are equispaced in time, the correlation between consecutive measurements on a subject
will decrease with increase in the distance between measurement times.

Table 7. Working correlation structure for MSCM data

Working Correlation Structure
IN CS AR(1) TOEP

EAIC 266.899 68.619 26.006 46.000
QIC 2047.577 2047.358 2047.336 2047.335
QIC2M (R) 2082.434 2081.037 2080.182 2081.240
CIC 1.597× 10−5 1.471× 10−5 1.437× 10−5 1.434× 10−5

EBIC 317.474 123.409 80.796 142.936

The estimates of regression parameters, SE of the estimates and p-values under the AR(1) and Toeplitz
correlation structures are presented in Table 8.

Table 8. Parameter estimates, standard errors, P -values for the AR(1) and Toeplitz structures.

AR(1) TOEPLITZ
COVARIATE ESTIMATE SE P-value ESTIMATE SE P-vale
Illness .731 .179 < .0001 .696 .186 < .0001
Married -.032 .233 .889 -.055 .2326 .925
Education -.419 .221 .055 .423 .223 .032
Employment .618 .240 < 0.01 -.617 .244 < .01
Child health status -.230 .122 .058 -.228 .212 .160
Mother health status -.200 .118 .087 -.204 .117 .053
Race .067 .237 .761 .064 .238 .692
Sex -.022 .211 .911 -.0215 .212 .899
House size .064 .237 .793 .0793 .241 .736
Stress 3.897 .693 < .0001 3.9375 .6980 < .0001
Billness .426 .692 .544 .443 .708 .560
Week -.399 .163 .015 -.406 .164 .013
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The results show that estimates of regression coefficients are not similar under the two structures hence will lead
to different estimates of E(Yit) and 10 out of the 12 covariates have lower Standard Errors under the AR(1)
structure compared to only 2 which have lower standard errors under Toeplitz structure. As suggested by [26],
the standard errors of GEE estimators are smaller when the appropriate working correlation structure is used.
Hence in the spirit of [27], we therefore conclude that the model under the AR(1) correlation structure can
predict the mother’s stress status more accurately than the model under the Toeplitz structure. Lower SE imply
that the estimates under AR(1) will have shorter confidence intervals hence more precise. To further ascertain
the predictive performance of the GEE model with the AR(1) working correlation structure chosen by EAIC,
QICm2(R) and EBIC for the MSCM data compared to the GEE model with the Toeplitz structure chosen by
CIC and QIC, K-fold cross-validation method(K = {6, 10, 12}) was used to generate the MSE error of prediction
for the two models.

CVk =
1

k

k∑
i=1

PE−k(λ) (5.2)

PE−k(λ) =
1

| N−k |
∑

i∈N−k

1

m

m∑
i=1

(Yit − g−1(XT
i β))2

is the prediction error based on the N−k set of subjects in the training dataset. |N−k| is the cardinality of N−k.
Relative Efficiency of the model under the AR(1) correlation matrix relative to the model under the Toeplitz
structure was also established.

RE =
MSETOEP

β̂

MSE
AR(1)

β̂

(5.3)

For all K, the RE values were more than 1. Hence, based on [27], the model under the AR(1) working correlation
structure had a higher estimation efficiency of the mother’s stress status than the model with the Toeplitz
structure. The gain in efficiency established for the AR(1) structure was 2% more than the one for the Toeplitz
structure when K = 6, 6% more than the one for the Toeplitz structure when K = 10 and 26% more than the
one for the Toeplitz structure when K = 12. [13] also held the view that the use of the correct correlation matrix
enhances efficiency of GEE estimators.

6 Conclusions
In the present paper, we proposed a modification to the penalty term of QIC model selection criterion in GEE
and came up with a new criteria QICm2(R). The Performance evaluation and comparison with other criteria was
done using simulation studies through which we established thatQICm2(R) often selected the true parsimonious
correlation structure and its performance became better when the degree of correlation was strong in which case
the performance was regardless of the number of observations taken per subject. In the case of a weak correlation,
increasing the number of measurements per subject significantly improved its proportion of selecting the true
AR(1) and compound symmetry structures. Furthermore, fitting the GEE model with the correlation structure
selected by QICm2(R) improved the relative efficiency of the GEE estimators which is one of the primary interest
in GEE modeling. We therefore recommend for the routine use of QICm2(R) to select a working correlation
structure rather than the original QIC.
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