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ABSTRACT 
 

The dynamics of systems in barrier structures is determined by the rate of the fluctuational decay of 
metastable states in a potential relief. The nature of the decay undergoes a qualitative change with 
a variation of the temperature. As the temperature decreases, thermal fluctuations freeze out and 
are replaced by quantum ones, which leads to a kind of phase transition in the dynamics. The 
transition temperature depends on the degree of metastability and can be controlled by an external 
load. This dependence is calculated for an extended nanosystem in an inclined periodic relief of the 
"washboard" type in a wide range of load changes. The obtained dependence generalizes the 
previously known results and can serve as the phase diagram of various dynamics mechanisms. 

 
 
Keywords: Dynamics of extended systems; metastable states; slip phase; activation-tunneling 

transition; collective coordinates. 

 
1. INTRODUCTION 
 
The dynamics of extended quasi-one-
dimensional objects of various nature is currently 
being actively studied both experimentally and 

theoretically [1,2]. Popular examples are the 
motion of charge-density waves, the 
phenomenon of phase slip in Josephson 
junctions or superconducting nanowires (see, for 
example, [2,3]). Similar features are also 

Original Research Article 



 
 
 
 

Petukhov; PSIJ, 24(10): 10-18, 2020; Article no.PSIJ.62899 
 
 

 
11 

 

observed in the dynamics of domain boundaries 
[4] or dislocation movement in the crystal relief 
[5]. The tendency to miniaturize devices has led 
to workspaces reaching sizes where the 
fundamental quantum mechanisms come into 
play. Therefore, the study of phenomena on the 
so-called "classical / quantum frontier" becomes 
very relevant. The distinction between classical 
and quantum mechanisms is all the more urgent 
in view of the emergence of such purely quantum 
applications of nanosystems as storing 
information for quantum computers in the form of 
qubits, quantum teleportation, distribution of 
quantum keys, and others [6,7]. 
 
The fundamental characteristic in the low-
temperature physics is the boundary that 
separates the temperature regions of classical 
thermally activated and quantum mechanical 
dynamics of systems [8]. 
 
Of considerable interest for applications is the 
reaction of an extended system located in a flat 
bistable or periodic potential relief to the impact 
of an external load making the relief valleys 
nonequivalent. The position of such the system 
in a minimum of the potential relief disturbed by 
the load becomes a metastable state, since, 
overcoming the barrier by means of thermal or 
quantum fluctuations, the object can move to 
neighboring energetically preferred minima. For 
systems of recording and storing information in 
barrier structures of spintronics, the issues of 
switching and stability of states in minima of the 
potential relief are important [9]. 
 
According to the accepted concepts, the 
evolution of a sufficiently extended system is 
carried out by the formation of local  nuclei of a 
new state, their expansion and merging. The 
kinetics of this process is often described in 
terms of the formation and movement of nucleus 
boundaries, which are domain walls or kink-
solitons (hereinafter referred to as kinks) [4]. With 
regard to Josephson junctions, the terms fluxon 
or anti-fluxon are sometimes used instead of kink 
or anti-kink. 
 
The dynamics of domain walls or kinks is well 
studied for relatively low loads, at which they can 
be considered as weakly perturbed 
quasiparticles characterized by a single degree 
of freedom – the position of the kink as a whole 
[10]. The situation is more complicated when the 
load increases, leading to deformation of the 
kinks, which reveals their internal degrees of 
freedom. In this case, the possibility of one-

dimensional description is lost and it is necessary 
to use more complete representations of the 
configuration space of systems. The purpose of 
this work is to describe the dynamics of extended 
metastable systems in a wider range of loads, for 
which an effective method of collective 
coordinates will be applied. This method includes 
an additional variable – the width of the domain 
wall that can change and effectively takes into 
account the internal degrees of freedom. The 
foundations of this approach were laid in [11,12]. 
 

2. ENERGY RELIEF IN 
MANYDIMENTIONAL SPACE 

 
A local overcoming barriers by an extended 
system occurs with a distortion of its 
configuration. To describe this process, one 
needs to know the energetics of the configuration 
space. The archetypal model used to describe 
the switching of states of various quasi-one-
dimensional systems is the elastic string model. 
The energy of a string located in a flat potential 
relief U0 (y) under the action of an external force f 
is described by the expression 
 

E{y(x,t)}=

2 2
0{ ( ) ( ) ( ) ( , )}

2 2

y y
dx U y fy x t

t x

 




 
  

  .    (1) 

 
Here y(x,t) is the string configuration, x is the 
coordinate along the valleys of the potential 
U0(y), which has several minima corresponding 
to the metastable states of the system,  is the 
string stiffness,  is the mass density per unit 
length. The role of the external force in different 
systems is played by different physical quantities. 
For example, in the dynamics of charge density 
waves this is an electric field, in superconductors 
it is the flowing current or the magnetic field, and 
at dislocations movement, it is the mechanical 
stress. The simplest and most popular choice for 
the potential U0(y) is the harmonic one  
 

U0(y) = 
2

[1 cos( )]
2
mU y

h


 .                          (2) 

 

Here h is the period of the potential. In this case 
and in the absence of an external load f the 
Euler-Lagrange equation for the model (1) is the 
famous sine-Gordon equation, which describes 
nonlinear waves, in particular, kink-solitons. 
 

The sine-Gordon equation arises in a very 
diverse range of applications (see for review 
[13]). These started as early as the 1860s when 
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it was discovered in the course of an 
investigation of surfaces of constant negative 
curvature. It acquired renewed interest due to the 
classical study of Frenkel and Kontorova in the 
1930s in the theory of crystal dislocations. 
Subsequently, the work of A.C. Scott produced a 
mechanical analog of the system, through the 
realization of an array of coupled torsion pendula 
that proved extremely useful in the experimental 
observation of its solutions. The range of relevant 
applications kept expanding through the 
emergence of Josephson junction arrays and 
their fluxons, as well as breathers that were 
intensely studied in the 1990s and early 2000s. 
Relevant applications of the model have 
continued to expand with recent proposals 
involving among others the astrophysics or the 
evolution of the electromagnetic field on neuronal 
microtubules [4,13]. 

 
The availability of exact solutions to the sine-
Gordon equation has caused a boom in related 
research. However, in the presence of an 
external load, the integrability property of the 
model is lost. For this reason, the behavior of 
systems under low load has mainly been studied, 
when the perturbation theory is applicable [10]. 
To study the behavior of a system at any value of 
the load, one needs to go beyond the close 
scope of the perturbation theory. This is done in 
this work using the method of collective 
coordinates. 
 
In the presence of an external driving force f the 
metastable states of the system in minima of 
U0(y) have a finite lifetime. The decay time of the 
metastable states is determined by the height of 
the barriers in the configuration space, and is 
calculated using expression (1). 
 
We will measure y in units of h, x in d0 = 
h(/Um)1/2, and time t in units of h( /Um)1/2. The 
energy of the string with potential (2) takes the 
form 

 

E{y(x,t)}= 2 2
0

1 1
{ ( ) ( ) ( ) ( , )}
2 2

y y
dx U y fy x t

t x





 
  

    (3) 

 

where the variables are dimensionless: E E/h

mU ,  ffh/Um,. Let the string initially be at the 

minimum of the potential U0(y)-fy corresponding 
to y0 = arcsin(f/π). Next, we count y(x) from y0 
and renormalize the potential U0(y)-fy, so that the 
minimum will correspond to zero energy 
 

U(y)→U(y)=U0(y)-fy-U0(y0)+fy0 

=
1

2
{[1-(f/π)2]1/2[1-cos(2πy)]+(f/2)sin(2πy)}-fy. 

 

Here y is counted from 0. 

 
The main task is to describe the process of 
formation of a new state nucleus corresponding 
to the easiest path to overcome the barrier. This 
path will be sought by the variational method, 
using a trial function to describe the configuration 
of the string, which depends on 2 parameters: d 
and x0 

 
y(x)=y0+

0

0 0

exp[( ) / ]

{1 exp[( ) / ]}{1 exp[( ) / ]}

x x d

x x d x x d



   
.   (4) 

 
The physical meaning of the parameters 
becomes clear in the limit x0→, when 
 

y(x,t) → y0+
0

1

1 exp[( ) / )]x x d 
-

0

1

1 exp[( ) / )]x x d 
,  

 
which looks like a kink-antikink pair (see Fig. 1). 
In this case, x0/2 corresponds to the distance 
between the kinks, and d to the width of the kink. 
Taking into account this interpretation, for the 
sake of convenience, x0 will be called the 
longitudinal coordinate, and d - the transverse 
one. The variables x0 and d can be time 
dependent. For small or negative x0, 
corresponding to small deviations of the string 
from the initial position, the clear meaning of the 
variables is lost, and x0, d are considered only as 
variational parameters. The chosen trial function 
(4) makes it possible to describe a wide 
spectrum of intermediate states from small sub-
barrier fluctuations to fully formed nuclei behind 
the barrier. 

 
We substitute trial function (4) into energy 
functional (3) to obtain the two-dimensional 
potential relief E(x0,d). After a change of the 
scale of the integration variable and replacement 
the variable x0 by e = exp(x0/d), the potential 
takes the form 
 

E(e,d)= 
2

2

e

d
I1+
2

d
{[1-(f/π)

2
]
1/2

I2-f[2eI3-

(1/π)I22]}.                                                     (5) 
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Fig. 1. The form of the trial function y(x)-y0 for different values of the parameter x0/d, indicated 
by numbers at the curves. The dotted line shows the trial function with a negative value of the 

parameter x0/d=-2. The dashed line corresponds to the minimum of the potential relief 

 
Here I1, I2, I22 and I3 are functions of the single 
variable e, represented by integrals, for some of 
which it is possible to obtain analytical 
expressions, while the rest must be calculated 
numerically: 
 

I1=
2

4

exp(2 )[1 exp(2 )]

[1 ( 1/ )exp( ) exp(2 )]

x x
dx

e e x x







  
 

=
2

1

e
(

2

2 1

e

e 
)
2
{
1

3
+

2

2 2

4

( 1)

e

e 
-4

4 2

2 3( 1)

e e

e




}

ln(e).(6)  

 

I2= exp( )
{1 cos[2 ]}

1 ( 1/ )exp( ) exp(2 )

x
dx e

e e x x







   . (7) 

 

I22=
exp( )

sin[2 ]
1 ( 1/ )exp( ) exp(2 )

x
dx e

e e x x





   .(8) 

 

I3=
exp( )

1 ( 1/ )exp( ) exp(2 )

x
dx

e e x x




  

 

=
2

1

4e 
ln

2

2

4

4

e e

e e

 

 
.                               (9) 

 

In order to find the optimal way to overcome the 
barrier, the minimum E(e,d) in (5) with respect to 
d is calculated with the help of the equation 
 

E

d




 =-

2

1

2d
e2I1 +

1

2
{[1-(f/π)2]1/2I2-f[2eI3-

(1/π)I22]}=0.  
 

Whence the optimal d is 

d=[
2
1

2 1/2
2 3 22[1 ( / ) ] [2 (1/ ) ]

e I

f I f eI I   
]1/2.    (10) 

 
Substituting this value into E(e,d) (5), one                  
find the change of energy along the e           
coordinate trough the valley of the two-
dimensional relief 

 
Ev(e) 
=e{I1[(1-(f/π)2)1/2I2-f(2eI3-(1/π)I22)]}

1/2.       (11) 
 
This line will be called the valley bottom of the 
potential (two-dimensional) relief. When the 
longitudinal coordinate changes along the valley, 
the maximum energy EM is encountered. From 
the point of view of the two-dimensional relief, 
this point corresponds to a pass or "saddle"              
with a decrease in energy when moving                   
away from it along one coordinate and               
an increase in energy along the other.                         
Fig. 2 illustrates the two dimensional                     
potential relief for the driving force f=1 by 
depicting the lines of a constant energy, and the 
valley bottom line leading to the pass point in                 
the relief. Note that EM plays the role of  
activation energy at the thermally fluctuational 
formation of the nucleus of the new state of the 
system. 

 
For a demonstration of the effectiveness of the 
collective coordinates method used, in Fig. 3           
the obtained dependence of the energy EM               
on the driving force f is compared with the             
same dependence calculated numerically                   
in frame of the full multidimensional  approach.  
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Fig. 2. Two-dimensional potential relief for the driving force f=1. Solid lines correspond to the 
constant energy levels with the values indicated by numbers near them, the dashed line 

represents the bottom of the potential relief valley. The cross marks the position of the barrier 
maximum EM = 0.93389 

 

 
 

Fig. 3. The dependence of the energy EM of the formation of the new state nucleus on the 
driving force f, obtained using two collective coordinates (circles). The solid line shows the 

result of numerical calculation of this dependence with the full multidimensional approach. Ek 
is the energy of a kink 

 
The method that takes into account a few, in the 
simplest version, two collective coordinates, 
makes it possible to find also the dependence of 
the quantum tunneling rate on the driving force in 
a wide range of its variation. 
 
3. QUANTUM MECHANISM OF DECAY OF 

THE METASTABLE STATE OF AN 
EXTENDED SYSTEM 

 
In the semiclassical approximation, the 
probability of quantum-mechanical overcoming 

the barrier is given with exponential accuracy by 
the expression 
 

Г ≈exp(-S/ħ),          (12) 
 

where S is the action calculated along the 
trajectory of the sub-barrier transition, ħ is the 
Planck constant. Substitute trial function (4) into 
(14), assuming x0 and d to be time dependent 
 

y(x,t)= y1+

0

0 0

exp[( ( )) / ( )]

1 {exp[ ( ) / ( )] exp[ ( ) / ( )]}exp[ / ( )] exp[2 / ( )]

x x t d t

x t d t x t d t x d t x d t



   

. 
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The kinetic energy takes the form 
 

Tk=
2

2

e

d
Ikx

2
0x +

2

2

e

d
Ikd d

2+
2e

d
Ikxd 0x d

 ,         

(13) 
 

Where 
 

Ikx=
2

4

[1 exp(2 ) 2 exp( )]
exp(2 )

[1 ( 1/ )exp( ) exp(2 )]

x e x
dx x

e e x x






 

   = 

1

3

2

2 2( 1)

e

e 
-

4 2

2 4

8 12

( 1)

e e

e




+

6 4 2

2 5

4 28 8

( 1)

e e e

e

 


ln(e),       (14) 

 
Ikd= 
 

2
0

4

{( / )[1 2exp( ) / exp(2 )] [1 exp(2 )]}
exp(2 )

[1 ( 1 / )exp( ) exp(2 )]

x d x e x x x
dx x

e e x x





   

  
 

(15) 
 
 

 (16) 
 
Euclidean Lagrangian (with inverted potential) 
L=Tk+E(x0,d) makes it possible to calculate the 

action S= Ldt  by solving the system of two 

Euler-Lagrange equations in the standard way. 
 
4. ACTIVATED-TUNNELING MODE 
 
At a low but finite temperature, both quantum 
and thermal fluctuations contribute to the 
overcoming the barrier. Often, the temperature 
boundary between the determining influence of 
one or the other is found simply by equating the 
probabilities of thermally activated and tunnel 
overcoming the barrier. However, this approach 
is inaccurate not only quantitatively, but also 
qualitatively, since it obscures the physical 
picture of what is happening. In fact, at a 
temperature other than absolute zero, an 
intermediate combined process is possible: 
tunneling not from the ground, but from the 
thermally excited state of the system. The 
probability of such the combined process is 
mainly determined by some optimal energy 
preceding tunneling which, as a rule, increases 
with increasing temperature. The transition 
temperature is considered to be the one at which 
the preactivation energy is compared with the 
barrier height EM and above which the process 
has the character of the classical thermal 
activation. 

Consider the sub-barrier motion with the 
preliminary activation for some energy E. The 
height of the barrier for the subsequent tunneling 
in this case decreases by the value E, and the 
action is a decreasing function S(E) of the pre-
activation energy. The transition probability is 
equal to the product of the activation probability 
with the energy E, given by the Boltzmann             
factor exp(-E/kT), and the probability of the 
tunnel transition trough the barrier lowered by E, 
which is exp{-E/kT)-S(E)/ħ}. The optimal 
preactivation energy corresponds to the 
maximum exponent over E and is found from the 
equation 

 

d

dE
[E/kT+S(E)/  ]=1/kT+

1



dS

dE
=0.      (17) 

 
The maximum possible solution of this equation 
at the preactivation energy equal to the barrier 
height E = EM corresponds to the transition 
temperature from the classical thermally 
activated overcoming of the barrier to its 
overcoming with the participation of the quantum 
tunneling. 

 
5. THE TEMPERATURE OF THE 

TRANSITION BETWEEN MODES OF 
THE BARRIER OVERCOMING 

 
To study the transition with the decreasing 
temperature from the classical activated jump 
over the barrier to the barrier overcoming with 
the participation of the quantum mechanical 
tunneling, it is necessary to study the dynamics 
of the system near the maximum of the   
potential relief EM. Let us expand the expressions 
for the potential and kinetic energies by small 
deviations near the saddle point xM and dM: x0 ≈ 
xM+x, d ≈ dM+. The potential energy will take the 
form 

 

E(x0,d) ≈ EM+
1

2
Kxx

2
+Kxdx+

1

2
Kd

2
.         (18) 

 
Here 

 

Kx=
2

2
M

M

e

d

2

2

E

e




,                                            (19) 

 

Kxd= M

M

e

d
{

2E

e d



 
- ln(eM) M

M

e

d

2

2

E

e




},              (20) 

Kd= 
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2

2

E

d




-2ln(eM) M

M

e

d

2E

edd




+ln

2
(eM)

2

2
M

M

e

d

2

2

E

e



   
(21) 

 
The M index marks that all parameters are taken 
at their values at the maximum of the barrier.  
The kinetic energy will be given by the quadratic 
form 

 

Tk=
1

2
Mx

2x +Mxd x  +
1

2
Md

2.                 (22) 

 
Here the components of the anisotropic mass are  

 

Mx=2{
12
kxM

M

I

I
EM+

12
kdM

M

I

I

4
M

M

e

E
(2I1M+eM

1MdI

de
)2+

1

kxdM

M

I

I
eM

2(2I1M+eM
1MdI

de
)},                     (23) 

 

Mxd={
1

kdM

M

I

I
(2I1M+eM

1MdI

de
)+

1

kxdM

M

I

I
EM },       (24) 

 

Md=
1

kdM

M

I

I
EM.                                  (25) 

 

Potential relief (18) near the maximum has the 
form of a saddle (see Fig. 2) with negative 
curvature along one direction (pass) ys and 
positive curvature along the other yt, transverse 
to the pass. The optimal trajectory to overcome 
the barrier corresponds to movement along             
the pass direction without excitation of                       
the transverse mode. Minimizing the potential 
energy (18), for example, with respect to ,               
one find that along the pass =-(Kxd/Kd)x. 
Substituting this relationship into the potential 
and kinetic energies (18) and (22), one                  
obtains that the movement in the pass              
direction is described by the Euler-Lagrange 
equation 
 

y s=-2ys,                                   (26) 

 
where  
 

={- (Kx-Kxd
2
/Kd)/[Mx+Md(Kxd/Kd)

2
-

2MxdKxd/Kd]}
1/2. 

 
The action for such a movement is                       
easily calculated. Integration of equation (26) 
gives 

1

2
sy

2
= -
1

2
2

ys
2
+const.                            (27) 

 

The initial conditions correspond to a start with 
zero velocity sy =0 from the boundary of the 

classically allowed region ys= -y0 with the given 

preactivation energy 
1

2
2y0

2=EM-Ecl=E. Hence 

const=E=
1

2
2y0

2, and equation (27) takes the 

form 
 

1

2 sy
2
= 
1

2
2

(y0
2
- ys

2
).                                     (28) 

 

The action for motion during the half-period /, 
calculated using equation (28), is 
 

1

2
S=

/
2 2 2

0

1 1
( )
2 2

s sdt y E y
 

   =                           


0

0

2 2 1/2
0( )

y

y
dy y y


 = 

2


(2E)/.        (29) 

 

The solution to the equation for the preactivation 
energy (17) exists only for Tq/T> 
min|dS/dE|=2/ in accordance with the known 
results [14,15] for the second-order phase 
transition. Thus, the temperature at which the 
tunnel contribution appears is 
 

Tc/Tq =/2=
3/2

1

2 
{-(Kx-

Kxd
2/Kd)/[Mx+Md(Kxd/Kd)

2-2MxdKxd/Kd]}
1/2.   (30) 

 

The result for the dependence of the transition 
temperature on the driving force f, calculated 
using this expression, is shown in Fig. 4. The 
presented picture can serve as a phase diagram 
for different mechanisms of the dynamics of 
extended quasi-one-dimensional systems. The 
inset shows a section of such the diagram for a 
Sn nanowire investigated in [16], which 
demonstrates a qualitative similarity with the 
initial section of the theoretical curve. 
Quantitative parameters similar to those                    
found for numerous other materials [3]                     
are: nanowire diameter is 20 nm ≈(1/10),                  
 is the coherence length of bulk tin, Tc0≈4.1                   
K is the superconducting transition                 
temperature, Ic

up≈17 A is the critical current of 
the wire at the lowest temperature of the 
experiment, 0.47 K, Ic0≈9.5 A is the current of 
the transition to the individual phase slip at the 
same temperature. 
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Fig. 4. The dependence on the driving force the temperature of the change of regimes between 
the classical thermally activated and activation-tunneling overcoming of barriers [f0=UM/h, Tq=              
(  /kh)(UM/)

1/2
]. The inset shows the experimentally observed boundary between two modes in 

a Sn nanowire, one of which corresponds to the multiple phase slip events due to the thermal 
activation, and the second corresponds to the individual phase slip due to the quantum 

tunneling according to the rescaled data from [16] 
 

6. DISCUSSION AND CONCLUSION 
 
In the present paper, the transition with the 
decreasing temperature from the classical 
thermally activated mechanism of motion of an 
extended system through potential barriers to 
motion involving the quantum tunneling is 
studied. The calculation was performed for any 
external load magnitude using the method of 
collective coordinates developed in the works 
[11,12]. A trial function qualitatively reproducing 
the shape of a fluctuation that transfers the 
system through the barrier (see Fig. 1) and is 
characterized by two parameters (collective 
coordinates) was used. It allows one to reduce 
the potential relief for a system with an infinite 
number of degrees of freedom to a two-
dimensional one, as illustrated in Fig. 2. The 
quantitative efficiency of the method was tested 
by the comparing the result of calculation of the 
activation energy EM for overcoming the barrier 
with the result of an accurate numerical 
calculation of this value in Fig. 3. 
 
The rate of overcoming the barrier by the 
classical thermal fluctuation is mainly determined 
by the value of the activation energy EM. 
However, with decreasing temperature, the 
probability of thermal fluctuations sharply 
decreases, and athermal quantum ones become 
more effective. To describe the boundary of the 

appearance of a quantum contribution to 
overcoming the barrier, it is essential to study the 
potential relief near its maximum, where it has 
the form of a "saddle", as illustrated in Fig. 2. The 
barrier near the relief maximum has the shape of 
a parabola, the dynamics of the quantum 
mechanical overcoming of which is well known. 
This allows one to solve the problem under 
study. 
 
The transition boundary can be controlled by an 
external load, so the main goal was a more 
complete calculation of the transition temperature 
dependence on the load than it was done before. 
Previously, such a transition was studied, in 
particular, in [17], and for the region of low values 
of the driving force f, the dependence of the 
transition temperature Tc was found Tc f1/2. 
Earlier in [12], it was established that for any 
extended (not only harmonic) potential relief, with 
the driving force approaching the critical value fc 
which eliminates the barriers, the transition 
temperature behaves like Tc (fc-f)

1/4
. In these 

two cases, the scope of the manifestation of 
quantum effects is rather limited. In the present 
paper, the dependence of the transition 
temperature Tc on the external load in the whole 
range of its variation has been calculated. The 
whole range includes the region in which Tc 
significantly increases with increasing load. This 
fact justifies the expansion of the scope of the 
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low-temperature quantum effects manifestation 
in the dynamics of extended systems of various 
nature accessible to experimental observation. 

 
When current-carrying superconducting 
nanowires are used as single-photon detectors 
[3], an increase in the current leads to an 
increase in their sensitivity. At the same time, the 
corresponding lowering of the barrier for the 
escape from the metastable state increases the 
probability of fluctuational detector response due 
to background processes of phase slip and the 
formation of so-called “dark spots”. To find a 
compromise, the phase diagram of various 
mechanisms of the decay of metastable states of 
quasi-one-dimensional nanosystems calculated 
in this work can be useful. 
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