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Abstract 
This study employs a quantitative approach to comprehensively investigate 
the full propagation process of agricultural drought, focusing on pigeon peas 
(the most grown crop in the AGS Basin) planting seasonal variations. The 
study modelled seasonal variabilities in the seasonal Standardized Precipita-
tion Index (SPI) and Standardized Agricultural Drought Index (SADI). To 
necessitate comparison, SADI and SPI were Normalized (from −1 to 1) as 
they had different ranges and hence could not be compared. From the sea-
sonal indices, the pigeon peas planting season (July to September) was singled 
out as the most important season to study agricultural droughts. The planting 
season analysis selected all years with severe conditions (2008, 2009, 2010, 
2011, 2017 and 2022) for spatial analysis. Spatial analysis revealed that most 
areas in the upstream part of the Basin and Coastal region in the lowlands 
experienced severe to extreme agricultural droughts in highlighted drought 
years. The modelled agricultural drought results were validated using yield 
data from two stations in the Basin. The results show that the model per-
formed well with a Pearson Coefficient of 0.87 and a Root Mean Square Error 
of 0.29. This proactive approach aims to ensure food security, especially in 
scenarios where the Basin anticipates significantly reduced precipitation af-
fecting water available for agriculture, enabling policymakers, water resource 
managers and agricultural sector stakeholders to equitably allocate resources 
and mitigate the effects of droughts in the most affected areas to significantly 
reduce the socioeconomic drought that is amplified by agricultural drought in 
rainfed agriculture river basins. 
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1. Introduction 

The Athi-Galana-Sabaki (AGS) basin plays a crucial role in agriculture. Howev-
er, the Basin is significantly vulnerable to drought events due to its reliance on 
rainfed agriculture and diverse landscapes [1]-[3]. These droughts severely affect 
farmers who rely on rainfed agriculture to grow their crops, exposing them to 
reduced yields, income losses, and potential food insecurity [4] [5]. Also, re-
duced agricultural productivity due to drought negatively impacts the regional 
and national economy [6] [7]. In addition, droughts can exacerbate land degra-
dation and affect water resources, leading to long-term environmental chal-
lenges [8]-[10]. 

Accurately quantifying and understanding the spatio-temporal dynamics of 
agricultural drought within the AGS basin is essential for addressing agricultural 
drought-induced challenges [11]. Traditional methods often lack the necessary 
detail or spatial coverage to effectively inform decision-making [12]. Hence, the 
main objective of this study is to quantify agricultural drought based on remote 
sensing data products available for precipitation (P), Land Surface Temperature 
(LST) and Normalized Difference Vegetation Index (NDVI) to highlight hotspot 
areas vulnerable to agricultural drought. The study of geospatial techniques and 
drought-specific indices like the Standardized Agricultural Drought Index (SADI) 
will aid in mapping and analyzing the spatial distribution and temporal evolu-
tion of agricultural drought severity across the Basin [13]-[15]. Quantifying the 
relationship between drought and crop yields to assess impacts on different agri-
cultural systems is essential for informed planning against the drought effects 
[16]-[20]. Determining areas within the Basin most susceptible to drought is 
crucial for effectively using limited resources to provide more protection to the 
most vulnerable regions [21]-[23]. 

GIS and Remote Sensing technologies have emerged as powerful tools in com-
bating agricultural droughts, empowering proactive and informed decision-making 
for farmers, policymakers, and stakeholders [24]. They provide data-driven in-
sights that support informed decisions for drought preparedness, resource allo-
cation, and targeted interventions. GIS and Remote Sensing are indispensable in 
mitigating agricultural droughts [25] [26]. 

Remote sensing provides real-time data on various parameters like rainfall, soil 
moisture, vegetation health, and LST [27]. These datasets help identify drought 
onset and monitor its progression across vast areas. By integrating climatic data 
with remote sensing information, GIS generates robust drought indices like 
NDVI anomaly, Standardized Precipitation Index (SPI), and Vegetation Condi-
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tion Index (VCI) [27]-[29]. These indices quantify drought severity and predict 
potential impacts on crops, enabling early warnings for targeted responses [24]. 
GIS analyzes factors like soil types, topography, and historical drought patterns 
to identify areas most vulnerable to drought. This spatial understanding enables 
targeted interventions and resource allocation towards the most critical regions 
[30]. By overlaying climatic data with soil characteristics and historical yield in-
formation, GIS helps identify areas suitable for drought-resistant crops, pro-
moting adaptive agricultural practices. High-resolution satellite imagery and 
drone data provide detailed insights into field-specific variations in crop health 
and water stress [31]. This allows for precision irrigation practices, optimizing 
water usage and minimizing losses [31] [32]. GIS analysis of land cover, water 
bodies, and soil infiltration rates helps design efficient water management strat-
egies at the watershed level, optimizing water storage and distribution [33]. GIS 
creates intuitive maps and dashboards that effectively communicate drought se-
verity, vulnerability, and mitigation strategies to diverse stakeholders, including 
farmers, policymakers, and extension service providers [34]. Real-time informa-
tion and tailored advisories can be delivered directly to farmers through mobile 
applications, empowering them to adapt their practices based on drought condi-
tions [35] [36]. 

The Agricultural Drought Index (ADI) is a comprehensive drought index spe-
cifically designed to assess drought impacts on agricultural systems [37]. Unlike 
other indices focusing solely on meteorological or hydrological variables, the 
ADI integrates various components related to agricultural productivity, soil 
moisture, and crop health [38]. While there is no standard formula for the ADI, 
it typically incorporates meteorological variables, LST and vegetation health 
[39]. 

Precipitation and temperature data are often included in the calculation of the 
ADI to assess rainfall deficits and temperature anomalies, both of which directly 
impact agricultural activities and crop growth [37]. Indices such as the NDVI 
and VCI are used to evaluate vegetation health and stress levels. Reduced vegeta-
tion health due to water deficits or temperature extremes can indicate agricul-
tural drought conditions [40]. 

Some versions of the ADI may include crop-specific parameters or thresholds 
to tailor the index to the particular crops grown in the region of interest [41]. Dif-
ferent crops have varying sensitivities to drought, so incorporating crop-specific 
information enhances the relevance of the index for agricultural drought moni-
toring [30]. The ADI is often calculated using a weighted combination of these 
components, with weights assigned based on their relative importance and re-
levance to agricultural drought impacts [42]. 

The exact formula for the ADI may vary depending on the specific objectives 
of the assessment, data availability, and regional characteristics [43]. The ADI 
provides valuable information for decision-makers, farmers, and stakeholders 
involved in agricultural management. It allows them to assess drought risks, im-
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plement mitigation measures, and make informed decisions to safeguard crop 
production and food security [44]. Its comprehensive nature makes it a useful 
tool for monitoring and managing agricultural drought conditions in diverse 
agroecological regions [45]. 

2. Materials and Methods 

Base datasets for the study involve Landsat data and Climate Hazards Group 
InfraRed Precipitation with Station data (CHIRPS), with the other data revolving 
around these two data types. Data acquisition, being a key part of any project, acts 
as a starting point of the study with the acquisition of Landsat 7 and Landsat 8 
data, which was the ultimate fit due to the time series duration of the analysis. 
The methodology shown in Figure 1 for the Agricultural Drought Monitoring 
System utilizing the ADI which involves a systematic process outlined in various 
stages as follows: 

1) The Normalized Difference Vegetation Index 

( )
( )
NIR RED

NDVI
NIR RED

−
=

+
                        (1) 

where: 
NIR = Near-Infrared reflectance. Vegetation reflects more near-infrared light 

compared to visible red light. 
RED = Red reflectance. Vegetation absorbs more red light compared to near- 

infrared light. 
NDVI represents the output value of the index, ranging from −1 to +1. 
2) Land Surface Temperature 
LST refers to the temperature of the Earth’s surface, as measured by remote 

sensing instruments like satellites. LST is typically measured in degrees Kelvin 
(K) or Celsius (˚C). Satellites carry sensors that can detect the thermal radiation 
emitted by the Earth’s surface. Scientists can estimate the LST of different land 
cover types by analyzing this radiation. 

3) The Vegetation Condition Index 
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( )
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where: 
NDVImin = Minimum NDVI value observed for a specific pixel over a chosen 

historical reference period. This value signifies the lowest vegetation greenness 
recorded for that pixel. 

NDVImax = Maximum NDVI value observed for a specific pixel over the cho-
sen historical reference period. This value signifies the highest vegetation green-
ness recorded for that pixel. 

4) Temperature Condition Index 
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where: 
TCI is the Temperature Condition Index. 
T is the temperature for a specific period (e.g., monthly, seasonal). 
Tmin is the minimum temperature over the same period. 
Tmax is the maximum temperature over the same period. 
4) The Vegetation Health Index 

( )0.5VHI VCI TCI= ∗ +                       (4) 

5) Standardization of VHI to Standardized Drought Index (SDI) 
VHI VHI

SDI
VHI

µ

σ

−
=                        (5) 

where: 
SDI is the Standardized Agricultural Index. 
VHIμ is the VHI mean. 
VHIσ is the VHI standard deviation. 
6) Normalization of Agricultural index 

min

max min

2 1SDI SDISADI
SDI SDI

−
−

∗ −=                   (6) 

where: 
SADI is the Standardized Agricultural Drought Index after normalization. 
SDImin is the minimum SDI. 
SDImax is the maximum SDI. 
7) Standardized Precipitation Index 
SPI is the widely used drought index that quantifies precipitation anomalies 

relative to a specified period and distribution. Its comprehensive formulae can 
be obtained in. 

SPI can be summarised as follows: 
-iX xSPI
σ

=                               (7) 

where: 
Xi is the precipitation value for the current period (e.g., monthly precipita-

tion). 
x  is the long-term mean precipitation over the same time scale. 
σ is the standard deviation of precipitation over the same time scale. 
In the initial data collection and preparation phase, Landsat 7 and 8 satellite 

imagery for the AGS Basin were gathered from the Landsat image collection. 
The images were processed to mask out clouds and cloud shadows using a cus-
tom cloud masking function to ensure data accuracy. The study area was defined 
using the geographical boundaries of the AGS Basin delineated from the SRTM 
DEM basin using basin outlet coordinates. 

Following data preparation, the temporal selection phase involves user input 
for the start and end years of the analysis. Additionally, a specific season (1 - 4) 
was chosen, with each season corresponding to 3 months as defined by rainfall 
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seasons. For Kenya, the seasons are categorized into three months per season as 
follows: first season (hot and dry season)—December to February; second season 
(long rain season)—March to May; third season (cool and dry)—June to August 
and fourth season (short rain season)—September to November [46]. For this 
study, the seasons have been slightly altered, shifting forward by one month to 
give January to March, April to June, July to September and October to Decem-
ber for a first, second, third and fourth season. The main reason for the shift is to 
accommodate the July to September pigeon peas growing season in the Basin.  

In the Image Collection stage, the Landsat 7/8 collection was filtered based on 
the specified start and end months for the Galana Basin. Subsequently, essential 
vegetation indices, such as NDVI shown in Equation (1) [47] and VHI, were 
calculated to evaluate the agricultural landscape. The LST calculation phase in-
volved deriving LST using Landsat 8 thermal bands, with a crucial step being the 
application of cloud masking. Emissivity was then calculated and utilized to ad-
just the LST values. 

Vegetation Condition Indices (VCI, TCI, VHI) were computed in the subse-
quent phase. VCI shown in Equation (2) [48] was determined by the ratio of the 
difference between NDVI and its minimum to the range between its maximum 
and minimum. On the other hand, TCI was computed as the ratio of the differ-
ence between maximum and current LST to the range between maximum and 
minimum LST, as shown in Equation (3) [49]. Combining VCI and TCI pro-
vided the VHI calculated in Equation (4) [50]. The drought Index (SDI calcu-
lated in Equation (5)) [51] calculation phase involves classifying VHI values and 
standardizing and normalizing values (SADI computed in Equation (6)) [52] into 
specific classes based on threshold values, enabling the generation of a drought 
index map. Numeric values were assigned to these classes to facilitate further 
analysis. 

The standardization of the drought index was carried out to ensure consistent 
scaling across different seasons. Standardized values for the Drought Index were 
computed using mean and range (−1 to 1) normalization techniques. The SPI 
calculation for the comparison stage required user input for the start and end 
years and the chosen season. SPI was computed in Equation (7) [53] using CHIRPS 
imagery, and the layers are displayed on the map for visual analysis. 

3. Results 
3.1. Parameter Evaluation 
3.1.1. Digital Elevation Model 
The Digital Elevation Model (DEM) of the Athi-Galana-Sabaki River Basin in 
Kenya was derived from the 90-metre Shuttle Radar Topography Mission 
(SRTM) dataset. The DEM shows the geomorphology of the area. The geomor-
phology shows how the topography is changing within the Basin. Analyzing the 
topographic characteristics of this Basin is essential for understanding water re-
sources, land use planning, and disaster preparedness. The high-resolution  
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Figure 1. A flowchart showing how various sections of the methods are interlinked. 

 
DEMs are available for the Athi-Galana-Sabaki basin, offering high levels of de-
tail and accuracy. The DEM analysis of the Athi-Galana-Sabaki basin revealed 
valuable information about the topography, which involved analyzing slope gra-
dients, identifying potential erosion-prone areas, and delineating areas suitable 
for various lands. The DEM also helped link droughts and the general undula-
tion of the Basin. From the results, the DEM image of the area reveals that the 
AGS Basin has a varied topography, with high mountains or hills in the western 
and central regions, giving way to lower-lying plains and riverbeds in the eastern 
part. The basin elevation ranges from 0 metres above sea level (a.s.l) to 5801 me-
tres a.s.l, as shown in Figure 2. The higher elevation values correspond to 
mountainous areas surrounding the Basin, while the lower values represent the 
basin floor at the coast. The AGS Basin’s diverse elevation profile profoundly 
impacts its hydrology, environment, and land-use patterns. Understanding the 
Basin’s elevation characteristics is crucial for effective water management, land-use 
planning, and disaster risk mitigation. 

3.1.2. Rainfall 
The AGS River Basin is a vital water source for Kenya’s eastern region, support-
ing agriculture, industry, and urban populations. Rainfall is an essential resource 
for the ASG basin and a source of vulnerability. The Basin is characterized by 
uneven rainfall distribution, high seasonal variability, and sensitivity to climate 
variability. These factors challenge water management, disaster preparedness, 
and sustainable development. Effective management of water resources in the 

https://doi.org/10.4236/jgis.2024.164013


J. N. Tete et al. 
 

 

DOI: 10.4236/jgis.2024.164013 208 Journal of Geographic Information System 
 

ASG basin will require a comprehensive approach that addresses climate change, 
land degradation, and population growth. Understanding the Basin’s rainfall 
patterns and variability is crucial for water resource management and sustaina-
ble development [54]. 

Rainfall in the ASG basin is distributed unevenly, with higher rainfall in the 
central highlands and lower rainfall in the southeast. Figure 3 shows that the 
average annual rainfall in the Basin is about 750 millimetres, which can vary 
considerably yearly. Rainfall distribution within seasons is also variable, with in-
tense downpours interspersed with dry periods, leading to flash floods and soil 
erosion. Yearly rainfall amounts fluctuate considerably, with periodic droughts 
causing significant water stress. El Niño and La Niña events can influence rain-
fall patterns, with El Niño typically bringing increased rainfall and La Niña asso-
ciated with droughts [55]. 

The mountainous regions receive the highest rainfall (2272 millimetres in Mt. 
Kilimanjaro region), and the areas are relatively flat. Those nested in the leeward 
side of the hilly regions receive low rainfall, as low as 356 millimetres, except for 
the areas near the coast that receive wet winds from the Ocean that promote 
rainfall, see Figure 4. The topography plays a significant role, with the eastern 
slopes of the Kenya Highlands receiving heavier rainfall due to the orographic 
lifting of moisture-laden winds [56]. 
 

 
Figure 2. Map showing the Digital Elevation Model enhanced by Hill Shade. 

3.1.3. Land Use Land Cover 
The Athi-Galana-Sabaki River Basin, straddling Kenya’s eastern highlands and 
coastal plains, represents a critical water resource for over 10 million people. Le-
veraging FAO data alongside other sources helps gain valuable insights into the 
LULC dynamics of the Athi-Galana-Sabaki river basin. This information is  
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Figure 3. Average annual rainfall temporal variability in AGS Basin. 

 

 
Figure 4. Average annual rainfall spatial variability in AGS Basin. 

 
essential for informed decision-making regarding water resource management, 
land degradation prevention, and promoting sustainable development in the re-
gion amid threats posed by climatic changes and hazards. Cognizant of the rea-
sons mentioned above. This study analyses the LULC in the AGS Basin to sup-
port understanding and interpreting drought conditions in the Basin. 

According to the FAO Global Land Cover (GLC) map in Figure 5, grasslands 
encompass about 65% of the Basin’s area. These include savannas, shrublands, 
and grasslands used for pastoralism and wildlife conservation. Rainfed and irri-
gated agriculture constitutes roughly 20% of the Basin, concentrated in the up-
per and middle reaches. Tea and coffee plantations are prominent alongside ma-
ize, sorghum, and other subsistence crops. Dense forests, mainly montane fo-
rests in the upper catchment, cover around 5% of the Basin. Montane forests 
play a vital role in soil conservation and water regulation. Freshwater and estua-
rine wetlands occupy approximately 2% of the area, providing valuable ecologi-
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cal services like flood mitigation and habitat for numerous bird species. Urban 
and rural settlements, including Nairobi city, account for roughly 3% of the Ba-
sin. The expansion of settlements raises concerns about water pollution and re-
source pressure. Open water bodies and bare land represent 5% of the Basin. 

The LULC composition of the Athi-Galana-Sabaki River Basin, revealed by 
FAO data, highlights the complex interplay between human activities and envi-
ronmental sustainability. Understanding these patterns and their implications is 
crucial for informing informed land-use planning, environmental conservation, 
and sustainable water management practices to ensure the Basin’s future water 
security and ecological well-being. 
 

 
Figure 5. Athi-Galana-Sabaki Basin land use land cover spatial representation—the FAO extracted datasets 
and classes. 

3.1.4. Impact of Evapotranspiration on Agricultural Drought 
Evapotranspiration refers to the combined process of evaporation (water vapo-
rization from soil and water surfaces) and transpiration (water loss through 
plant leaves). Evapotranspiration (ET) is a crucial process that connects soil, 
crops, and the atmosphere. It plays a significant role in the water cycle and 
energy exchange. Agricultural practices significantly impact ET. Crop types, ir-
rigation methods, and soil management affect water availability and transpira-
tion rates. For agriculture, understanding ET is essential for water management, 
especially in regions prone to drought [57]. 

From the results, Figure 6 shows that the average annual ET in the AGS basin 
is around 111.3 millimetres per year. However, there has been temporal varia-
tion in ET rates over the years. Similarly, Figure 7 shows that the spatial annual 
ET in the AGS basin ranges from 44.56 millimetres to 333.68 millimetres. How-
ever, there is spatial variation in ET rates across the Basin. Areas with higher ET 
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will likely have more dense vegetation or higher temperatures. 
ET directly affects water availability in the soil. High ET rates in agricultural 

areas can lead to soil moisture depletion, especially during periods of limited 
precipitation, exacerbating drought conditions. Different land uses have varying 
vulnerabilities to drought. Agricultural lands, especially rainfed croplands, are 
particularly susceptible to drought due to their reliance on adequate soil mois-
ture for crop growth. Understanding the relationship between ET and LULC is 
crucial for monitoring and mitigating agricultural drought. Remote sensing 
techniques, as illustrated in Figure 6 and Figure 7, can be used to monitor ET 
rates and changes in LULC, providing valuable information for drought early 
warning systems and water resource management strategies. 

In summary, the relationship between evapotranspiration and land use/land 
cover is fundamental to understanding agricultural drought dynamics. Changes 
in land use can alter ET rates, affecting water availability and the vulnerability of 
agricultural systems to drought. Effective management strategies must consider 
these interactions to mitigate the impacts of agricultural drought. 
 

 
Figure 6. Evapotranspiration temporal variability graph for AGS Basin. 

 

 
Figure 7. Athi-Galana-Sabaki Basin evapotranspiration spatial representation. 
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3.1.5. Yield 
Like other crops, Pigeon peas are susceptible to the impacts of agricultural drought, 
which can significantly affect their yield. Pigeon peas require adequate soil 
moisture for germination, vegetative growth, flowering, and pod development. 
During agricultural drought, soil moisture levels can decline, leading to soil 
moisture stress for pigeon pea plants. This stress can impair root development, 
nutrient uptake, and overall plant growth, reducing crop yield. Agricultural 
drought can disrupt pigeon pea plants’ flowering and pod formation stages [58]. 
Insufficient soil moisture and water stress can lead to reduced flower produc-
tion, poor pollination, and abortion of developing pods. As a result, the number 
of pods per plant and yield can be significantly reduced [59]. Drought stress can 
also impact the uptake of essential nutrients by pigeon pea plants. Reduced water 
availability in the soil limits the movement of nutrients to plant roots, leading to 
nutrient deficiencies that can further exacerbate yield losses. Severe drought 
stress can trigger premature senescence in pigeon pea plants, where leaves can 
turn yellow and drop prematurely, reducing the plant’s photosynthetic capacity. 
This premature ageing can limit the plant’s ability to fill pods and develop seeds, 
resulting in lower crop yield at harvest. Drought-stressed plants are often more 
vulnerable to pest infestations and diseases. Pigeon pea crops experiencing 
drought stress may be more susceptible to pest attacks such as pod borers and 
diseases like Fusarium wilt, further compromising yield potential [60]. Chronic 
agricultural drought can have long-term consequences for soil health, including 
soil erosion, depletion of organic matter, and degradation of soil structure. These 
soil degradation processes can negatively affect the productivity of pigeon pea 
crops in subsequent growing seasons [58]. 

The data that was available for a long period having pigeon peas yield data 
was for two stations, Kambi ya Mawe and Makindu. It is important to note that, 
for such a study, the yield data must be comparable, and thus, it requires data 
from at least two stations in the same ecological zone. Makindu and Kambi ya 
Mawe stations were favored in this study because they are in the same ecological 
zone. The two locations have research stations that monitor yield under various 
conditions. The data used in Figure 8 and Figure 9 is the water-limited yield 
potential data referring to the rainfed agricultural yield that is crucial in under-
standing the relationship between drought and crop yield. The two stations in 
the same ecological zone show different results pointing to spatial variability of 
pigeon peas growth enabling factors and, more so, soil moisture availability ex-
acerbated by climate change. For Makindu station, the lowest yield was recorded 
in 2009 (0.8 t/ha/year), and the highest yield was recorded in 2002 (4.0 t/ha/year) 
with an average of 2.5 t/ha/year. Kambi ya Mawe station’s lowest yield was rec-
orded in the year 2012 (1.2 t/ha/year), and the highest yield was recorded in 2010 
(5.0 t/ha/year) with an average of 3.1 t/ha/year, showing a better yield compared 
to Makindu data. The data from the two stations show interannual variation, 
which can help with interpretation by location-based SADI. 
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Figure 8. Makindu pigeon peas yield in tonnes per hectare per year from 
1999 to 2012. 

 

 
Figure 9. Kambi ya Mawe pigeon peas yield in tonnes per hectare per year 
from 1999 to 2012. 

3.2. Modelling Drought Indices 

The results obtained from the analysis offer valuable insights into SPI and SADI 
over the period from 2000 to 2023. These indices are fundamental to the study’s 
methodology, aligning with the overarching goal of drought risk assessment and 
mitigation planning in the AGS River Basin. The SPI measures meteorological 
drought, capturing deviations in precipitation from historical norms, while the 
SADI focuses on agricultural drought, considering variables such as vegetation 
health and land surface temperature [61]. It is important to note that in a perfect 
scenario, the normalized SPI and SADI should be equal in the ideal case. That 
was not the case in this study, as SADI has other external factors altered its re-
sults. 

The seasonal breakdown of the results, covering four seasons each year, allows 
for a comprehensive evaluation of drought conditions throughout the years un-
der consideration. Examining the temporal variations in SPI and SADI values 
revealed dynamic patterns, highlighting fluctuations in meteorological and 
agricultural drought conditions. Negative SPI values indicate periods of be-
low-average precipitation, indicative of meteorological drought, while negative 
SADI values underscore agricultural drought conditions and their impact on 
vegetation and surface conditions. Conversely, positive values suggest relatively 
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normal or above-average conditions in both indices. 
The comparison of SPI and SADI values for the same seasons provides in-

sights into spatial correlations or disparities between meteorological and agri-
cultural drought. Consistent patterns or deviations between the two indices offer 
valuable information for understanding the interplay between meteorological 
factors and their downstream impact on agriculture. 

As illustrated in the methodology, the seasonal SADI was computed by com-
bining various biophysical properties. The seasonal SADI values were plotted in 
a bar chart, as shown in Figure 10, with more focus on season three (planting 
season). Several key seasons from the results stand out, providing noteworthy 
insights into meteorological and agricultural drought dynamics in the Galana 
River Basin. For instance, in 2002, Season 4 exhibited a remarkable positive shift 
in SPI and SADI values. This suggests a period of above-average precipitation 
and improved agricultural conditions, emphasizing the interconnection between 
meteorological factors and positive outcomes for agriculture.  

Analyzing season three in Figure 10, it was noted that only six years had ex-
treme or severe droughts. The years highlighted were 2008, 2009, 2010, 2011, 
2017 and 2022. The drought years identified were further prepared for spatial 
analysis to give more insights into the spatial variability of the drought within 
the Basin. 

In this analysis, the three-month moving average was favoured mainly be-
cause of its capability to capture short to medium-term variations in precipita-
tion, which are often relevant for assessing agriculture. It provides a balance be-
tween capturing recent precipitation anomalies and smoothing out short-term 
fluctuations. In addition, a three-month average aligns well with critical stages of 
the crop growth cycle, including germination, vegetative growth, and reproduc-
tive stages. By considering precipitation over this timeframe, SPI can provide in-
sights into how current conditions may impact crop yields and water availability 
for irrigation. 

The normalized values of SADI and SPI were plotted together to visually com-
pare the two indices, as shown in Figure 11. From the result, it can be observed 
that SADI and the normalized SPI values do not align perfectly, as pointed out 
earlier, mainly because of other external factors that cause variations in SADI. 
Even though they do not have the same values, it can be noted that the two in-
dices agree on the general trend of the drought. The two indices indicated severe 
droughts in 2009, 2010, 2011 and 2022 but different results for 2014, 2016, 2017 
and 2019. The slight differences point to the cautious use of SPI in agricultural 
monitoring, as crop water demand is not the only factor influencing vegetation 
growth and phenology. 

3.3. Agricultural Drought Hotspot Mapping 

Spatial analysis of agricultural drought plays a crucial role in understanding, 
monitoring, and responding to drought impacts on agriculture and rural com-
munities. By leveraging spatial data and analytical tools, stakeholders can  
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Figure 10. SADI for AGS River Basin is computed per season. Season three, during which 
pigeon peas grow, was the main focus, with years of season three SADI below −0.5 hig-
hlighted for spatial analysis. 
 

 
Figure 11. Comparison of SADI and SPI indices for AGS River Basin season three data 
from 2000 to 2023. 
 
enhance their capacity to assess, mitigate, and adapt to the complex spatial dy-
namics of agricultural drought. Hence, this study investigates areas prone to 
droughts to support intervention efforts to mitigate the effect of droughts and 
prepare for future droughts. 

To understand droughts in the AGS River Basin, the spatial distribution of 
drought in the Basin was mapped per pixel, 5 kilometres by 5 kilometres unit 
areas for SADI drought years (2008, 2009, 2010, 2011, 2017 and 2022). Figure 
12(a) and Figure 12(b) give the spatial distribution of the 2008 and 2009 drought, 
respectively; the spatial distribution shows severe drought conditions in most 
parts of the Basin. The area received almost the same drought conditions through-
out the Basin as the area responded to the shocks of reduced precipitation. In the 
third season of 2009, the areas that received high rainfall were the most affected 
by extreme drought. These areas included mountainous regions, highland, hilly 
and coastal areas primarily found in the western, southern, and coastal regions. 
Notably, the generally dry areas, mostly inhabited by grassland, only experienced 
mild drought. These results show that drought severely affected most farmers 
because most agricultural deficiencies were felt in arable land areas, as shown in 
Figure 12(b). According to other studies, the 2008-2009 drought was caused by 
a combination of factors, including below-average rainfall, poor agricultural 
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practices, land degradation, and conflict-induced displacement of populations in 
some regions [62]. The drought exacerbated food insecurity and water scarcity 
in many parts of Kenya, particularly in arid and semi-arid areas [1] [62] [63]. 

The 2009 findings portrayed a scenario where the eastern part of the Basin 
faced a significant impact of severe and moderate agricultural drought during 
the short rains season. Taita Taveta County, in the southern part, encountered 
moderate drought, while the western regions, comprising Makueni, Mbooni, 
and Kibwezi, experienced low agricultural drought. This spatial distribution un-
derscores the varied nature of drought across different regions within the Basin 
during the specified year. 

2010, the situation was similar to other years; only in 2010 did coastal regions 
and areas around Mt. Kilimanjaro experience agricultural droughts, as shown in 
Figure 12(c). Figure 12(d) shows that 2011 findings portrayed a scenario where 
the eastern part of the Basin faced a significant impact of severe and moderate 
agricultural drought during the short rains season. Taita Taveta County, in the 
southern part, encountered moderate drought, while the western regions expe-
rienced extreme agricultural drought in highland areas that could have posed a 
serious challenge to farmers. This spatial distribution underscores the varied 
nature of drought across different regions within the Basin during the specified 
year. Extreme drought for 2017 concentrated mostly in the Western part of the 
Basin, with moderate drought conditions being felt throughout the Basin, as 
shown in Figure 12(e), mainly due to low precipitation experienced and high 
LST recorded during this period. Like 2009, 2022 experienced extreme drought, 
which affected most arable land areas, although the 2009 drought had more in-
tensity. The 2022 drought mainly affected the central and coastal regions of the 
Basin, as shown in Figure 12(f). 

The hilly and mountainous areas and the coastal regions have been constantly 
affected throughout the analyzed drought years mainly because mountains and 
hills can create rain shadows, where prevailing winds pick up moisture from one 
side of the mountain but release it as precipitation on the windward side, leaving 
the leeward side relatively dry. This phenomenon can result in reduced rainfall 
and increased aridity on the leeward slopes and valleys, making these areas more 
susceptible to droughts. Coastal regions often experience lower and more erratic 
rainfall compared to inland areas. This is partly due to the influence of nearby 
oceans, which can inhibit precipitation formation or lead to coastal fog and low 
cloud cover that restricts rainfall. As a result, coastal areas may be more prone to 
experiencing drought conditions, especially during reduced or failed rainy sea-
sons [64]. 

Furthermore, hilly areas and mountainous regions often exhibit diverse ter-
rain and microclimates due to elevation, aspect, and slope variations. These var-
iations can lead to spatial heterogeneity in precipitation patterns, with some 
areas receiving higher rainfall while others experience lower precipitation amounts. 
Consequently, areas with lower precipitation are more prone to droughts, espe-
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cially during periods of reduced rainfall [13]. 

 
(a)                                                   (b) 

 
(c)                                                   (d) 

 
(e)                                                   (f) 

Figure 12. AGS River Basin Standardized Agricultural Drought Index spatial variability for various droughts as follows: (a) SADI 
for 2008, (b) SADI for 2009, (c) SADI for 2010, (d) SADI for 2011, (e) SADI for 2017 and (f) SADI for 2022. 

 
The results from the analysis serve as a foundation for informed deci-

sion-making in drought mitigation. Identifying periods of heightened risk, such 
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as consecutive seasons with negative SPI and SADI values, prompts the need for 
targeted interventions in agriculture, water management, and community plan-
ning, especially in the Basin’s highlands, coastal, and mountainous and hilly 
areas. In conclusion, when interpreted alongside the project’s methodology and 
background, the analysis outcomes contribute to a nuanced understanding of 
drought dynamics in the Galana River Basin, facilitating comprehensive risk mi-
tigation and resource allocation strategies. 

3.4. Validation of Agricultural Drought Using Observed Yield 

The agricultural drought conditions and yield analysis revealed valuable insights 
into the relationship between weather patterns, crop performance, and agricul-
tural productivity. The yield data from the two stations (Kambi ya Mawe and 
Makindu) were also standardized and normalized to a range of −1 < x < 1 to al-
low comparison with the normalized SADI. From the results of the comparison, 
as shown in Figure 13 and Figure 14, there is a close relationship between agri-
cultural drought conditions extracted from satellite data-based biophysical 
properties and the yield, and this relationship can be used to validate modelled 
agricultural drought indices using yield data. Other parameters like soil proper-
ties, crop genetics and varieties, crop management practices, water management, 
nutrient management, and pest and disease management are important in agri-
cultural production, resulting in the observed differences between SADI and 
Yield Index. The results show that Kambi ya Mawe and Makindu have different 
production even though they are in the same ecological zone. 

From statistical analysis, the validation results gave a Pearson Correlation (r) 
of 0.87 and a Root Mean Square Error (RMSE) of 0.29. r indicates a strong posi-
tive linear relationship between the SADI and yield index. In simpler terms, the 
yield index also tends to increase as SADI increases, and vice versa. A value of 1 
would indicate a perfect positive linear relationship, and −1 would indicate a 
perfect negative linear relationship. Generally, a correlation coefficient closer to 
1 (or −1) indicates a stronger linear relationship. RMSE indicates a better fit be-
tween the model and the data. The RMSE measures the average magnitude of 
the difference between predicted and actual values [65]. In this case, an RMSE of 
0.29 suggests that the model’s predictions are typically within 0.29 units of the 
actual values. 

By comparing drought conditions, such as precipitation deficits or soil mois-
ture anomalies, to crop yield data, it becomes possible to assess the direct impact 
of drought on agricultural productivity. This analysis can quantify the extent to 
which yield losses are attributable to drought events and provide insights into 
the severity and spatial distribution of drought impacts on different crops and 
regions [66]. 

Analyzing the temporal relationship between drought occurrence and crop 
yield fluctuations over multiple growing seasons or years can identify recurring 
patterns and trends [67]. For example, it may reveal whether certain types of 

https://doi.org/10.4236/jgis.2024.164013


J. N. Tete et al. 
 

 

DOI: 10.4236/jgis.2024.164013 219 Journal of Geographic Information System 
 

droughts (e.g., early-season droughts vs. mid-season droughts) have a more sig-
nificant impact on yield and whether the frequency or intensity of droughts is 
increasing over time. 

Examining the spatial distribution of drought conditions and crop yields across 
different geographical regions allows for the identification of areas particularly 
vulnerable or resilient to drought. It can highlight hotspots of drought impact 
where targeted interventions may be needed to support affected farmers and mi-
tigate yield losses [19]. 
 

 
Figure 13. Kambi ya Mawe SADI and standardized pigeon peas yield index 
comparison from 2000 to 2012. 

 

 
Figure 14. Makindu SADI and standardized pigeon peas yield index com-
parison from 2000 to 2012. 

4. Discussion 

The study systematically analyzed agricultural drought in the AGS River Basin, 
employing a robust methodology incorporating GIS and indices like SPI and 
SADI. The comprehensive approach to data collection, temporal analysis, and 
spatial visualizations has provided a nuanced understanding of drought dynam-
ics in the region. The results presented provide a comprehensive understanding 
of agricultural drought in the Basin from 2000 to 2023, utilizing the SPI and 
SADI. The drought years identified were selected for detailed spatial visualiza-
tions, revealing varying intensities across different regions and emphasizing the 
spatial heterogeneity of agricultural drought impacts. The integration of GIS 
technology enhances the analysis by considering geographic features and envi-
ronmental data attributes.  
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The identified key seasons in 2008, 2009, 2010, 2011, 2017, and 2022 for fur-
ther visualizations align with the project’s objective of determining drought- 
affected areas. The map visuals for these years reveal varying intensities of 
drought across different regions, emphasizing the spatial heterogeneity of agri-
cultural drought impacts in the Basin. The findings underscore the importance 
of a nuanced understanding of drought dynamics for effective mitigation and 
planning strategies. 

The SADI system proved to be a valuable tool for monitoring agricultural 
drought in the AGS River Basin, specifically for pigeon pea crops that were used 
to validate the drought index, which gave consistent results with r giving a value 
of 0.87 and RMSE of 0.29. SADI provides a more objective and data-driven ap-
proach to drought monitoring than traditional methods relying on rainfall data 
alone. SADI effectively utilized satellite-derived data, likely vegetation indices 
(VIs) sensitive to plant health and moisture stress, to assess drought conditions 
in the Basin. By analyzing SADI outputs, agricultural stakeholders in the AGS 
basin can gain insights into the spatial extent and severity of drought stress im-
pacting pigeon pea crops, timely identification of drought-affected areas, allow-
ing for targeted interventions and improved decision-making regarding irriga-
tion practices, resource allocation, and potential crop insurance claims. 

5. Conclusions 

The findings from this study have practical implications for hazard mitigation 
planning, risk assessment, and early detection systems. The study’s integration of 
historical occurrences, frequency analysis, and vulnerability assessments aligns 
with its objective of offering a holistic approach to reducing drought risk. By 
highlighting drought hotspot areas, the study can be used to address the adverse 
effects on pasturelands, surface water basins, and crop production. The study 
provides actionable insights for public and private agencies to implement pre- 
and post-drought mitigation measures, highlighting the importance of education 
and outreach programs for mapped-out hotspot areas to enhance community 
resilience. Understanding the geomorphological and climatological conditions is 
crucial for sustainable water management, land use planning, and environmental 
conservation in the AGS River Basin. 

In the broader context, the documentation and visualizations contribute to the 
understanding of agricultural drought monitoring and risk reduction, offering 
stakeholders and policymakers valuable information to formulate effective strate-
gies for mitigating the impact of drought in the Basin. Overall, the project unders-
cores the importance of a proactive and informed approach to address the com-
plex challenges posed by agricultural drought in the region. 

While SADI offers valuable insights, ground-based data collection (e.g., soil 
moisture measurements) can further validate SADI outputs and improve drought 
assessments. Tailoring SADI’s algorithms to the specific spectral response of 
pigeon peas or any other crop can potentially enhance the accuracy of drought 
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detection for this crop. The utilization of the Standardized Precipitation Index 
(SPI) and the Standardized Anomaly Drought Index (SADI) for drought quanti-
fication presents methodological limitations and uncertainties. These include 
dependencies on the sensitivity to spatial and temporal scales, assumptions of 
stationarity amidst shifting climate patterns, subjective threshold selection, limited 
representation of hydrological processes, propagation of uncertainties throughout 
calculations, and oversimplification of the complex nature of drought pheno-
mena [68]. Despite their usefulness, these indices necessitate cautious interpreta-
tion and integration with complementary monitoring methods to mitigate their 
limitations effectively and provide accurate drought assessments [69]. Combin-
ing SADI data with weather forecasts, climate models, and historical drought 
patterns can provide a more comprehensive picture of drought risks in the AGS 
River Basin. 
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