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Abstract

Background

The favorable health-promoting adaptations to exercise result from cumulative responses to

individual bouts of physical activity. Older adults often exhibit anabolic resistance; a phe-

nomenon whereby the anabolic responses to exercise and nutrition are attenuated in skele-

tal muscle. The mechanisms contributing to age-related anabolic resistance are emerging,

but our understanding of how chronological age influences responsiveness to exercise is

incomplete. The objective was to determine the effects of healthy aging on peripheral blood

metabolomic response to a single bout of resistance exercise and whether any metabolites

in circulation are predictive of anabolic response in skeletal muscle.

Methods

Thirty young (20–35 years) and 49 older (65–85 years) men and women were studied in a

cross-sectional manner. Participants completed a single bout of resistance exercise consist-

ing of eight sets of 10 repetitions of unilateral knee extension at 70% of one-repetition maxi-

mum. Blood samples were collected before exercise, immediately post exercise, and 30-,

90-, and 180-minutes into recovery. Proton nuclear magnetic resonance spectroscopy was

used to profile circulating metabolites at all timepoints. Serial muscle biopsies were collected

for measuring muscle protein synthesis rates.

Results

Our analysis revealed that one bout of resistance exercise elicits significant changes in 26

of 33 measured plasma metabolites, reflecting alterations in several biological processes.

Furthermore, 12 metabolites demonstrated significant interactions between exercise and

age, including organic acids, amino acids, ketones, and keto-acids, which exhibited distinct

responses to exercise in young and older adults. Pre-exercise histidine and sarcosine were

negatively associated with muscle protein synthesis, as was the pre/post-exercise fold

change in plasma histidine.
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Conclusions

This study demonstrates that while many exercise-responsive metabolites change similarly

in young and older adults, several demonstrate age-dependent changes even in the

absence of evidence of sarcopenia or frailty.

Trial registration

Clinical trial registry: ClinicalTrials.gov NCT03350906.

Introduction

Sarcopenia is an insidious process whereby muscle mass and function progressively decline

over many decades [1], eventually reaching a threshold below which physical function

becomes compromised and frailty and disability become more likely. This functional decline

in older adults is compounded by metabolic derangements that include insulin resistance [2],

ectopic lipid accumulation [3], mitochondrial dysfunction [4, 5], oxidative stress [6] and

altered protein metabolism [7, 8]. Skeletal muscle is a nexus of age-related changes in meta-

bolic health and physical function and has emerged as a target tissue for therapeutic strategies

to lessen the burden of sarcopenia. Indeed, individuals who engage in lifelong physical activity

are protected from many of these undesirable changes [9], supporting the notion that the func-

tional and metabolic declines, while hallmarks of aging, are not necessarily inevitable conse-

quences of chronological age, per se. From a pragmatic viewpoint, a variety of chronic

conditions make it difficult or impossible for many older adults to engage in physical activity

at levels sufficient to fully maintain muscle health.

Exercise reduces disease and disability in older adults, but many individuals fail to demon-

strate favorable adaptations even when interventions are painstakingly controlled [10, 11].

This so-called anabolic resistance is particularly evident in older adults, who exhibit blunted

anabolic responses to exercise and nutrition [12, 13], which likely contributes to sarcopenia

and attenuated adaptive responses to exercise. In the quest to fully understand the factors that

regulate exercise response in older adults, several potential mechanisms have been proposed

including dysregulated intracellular signaling pathways [14], altered mitochondrial function

[5], and chronic inflammation [15, 16]. Although substantial precedent literature is devoted to

understanding how aging influences adaptive responses to exercise, there are still gaps in the

current knowledge base related to detailed molecular and cellular signals that influence these

adaptive responses [17]. Toward this goal, metabolomics has emerged as an analytical tool to

provide a window into metabolic processes. Metabolites are the fingerprints of these processes

in the form of small molecules in tissues and biological fluids such as blood and urine. More-

over, many metabolites are believed to act as signaling molecules that influence other cellular

processes in endocrine or paracrine manner [18, 19]. To date, metabolomics studies of acute

exercise response have mostly been conducted in response to endurance/aerobic exercise [20],

with fewer investigations of acute resistance exercise [21]. In the context of aging, metabolo-

mics studies of acute resistance exercise are scarce, but hold promise to generate new insights

into the factors that regulate or attenuate anabolic response to resistance exercise in older

adults. The possibility of generating molecular insights from peripheral blood sampling is par-

ticularly appealing for difficult-to-study human populations such as pediatric and older adults.

The objective of this study was to determine the effects of healthy aging on peripheral blood
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metabolomic response to a single bout of resistance exercise and whether any circulating

metabolites are predictive of anabolic response in skeletal muscle.

Subjects and methods

Study design

This study is a secondary analysis of data and biospecimens collected as part of a larger clinical

trial (ClinicalTrials.gov identifier: NCT03350906). The metabolomics analysis was not prede-

clared as a primary or secondary endpoint of the parent trial and should be regarded explor-

atory post-hoc analyses. S1 Table of the provides the CONSORT Checklist for the study.

Participants

All procedures were carried out according to the Declaration of Helsinki and were approved

by the Mayo Foundation Institutional Review Board (IRB 17–004403). All participants pro-

vided written informed consent. Thirty young (27.1 [4.11] years) men and women and 49

older (71.4 [4.53] years) men and women were recruited from the southeast Minnesota area

from February 2018 through December 2021. Inclusion criteria were age 20–35 years of age

for the young group and 65–85 years of age for the older group. Participants were excluded if

they reported diabetes or fasting plasma glucose greater than 126 mg/dL, anemia (hemoglobin

less than 11 g/dL for females and less than 12 g/dL for males), active coronary artery disease or

history of unstable macrovascular disease, renal failure (serum creatinine greater than 1.5 mg/

dL), active liver disease (AST greater that 144 IU/L or ALT greater than 165 IU/L), history of

blood clotting disorders, anticoagulant therapy, international normalized ratio (INR) greater

than 2.0, substance abuse, untreated or uncontrolled hypothyroidism, pregnancy or breast-

feeding. Participants were also excluded if they reported engaging in structured exercise train-

ing more than 20 minutes three times per week.

Outpatient muscle strength testing

Knee extensor muscle strength was determined from unilateral one-repetition maximum

(1-RM). Participants were familiarized with a pneumatic resistance leg extension machine

(Keiser Air300, Keiser Corporation, Fresno, CA, USA), instructed in the proper range of

motion, and allowed to perform a warm-up set of 10 repetitions at minimal resistance. Follow-

ing the warm-up set, participants performed three sets of 5–10 repetitions at progressively

increasing resistance at the discretion of the investigator and tailored based on participant’s

perceived exertion. Three minutes of rest was provided between sets. Following habituation,

1-RM was determined from a series of single attempts at incremental resistance with three

min of rest between attempts [22, 23]. 1-RM was defined as the maximum load that could be

moved through the full range of motion with proper form.

Inpatient acute exercise session

Within three months of completing outpatient testing, participants were admitted to the Clini-

cal Research and Trials Unit. In advance of this visit, participants were provided with three

days of weight-maintaining meals (20% protein, ~50% carbohydrate, and ~30% fat) using the

Mifflin-St Jeor equation to estimate resting metabolic rate (RMR) and total daily energy expen-

diture from RMR and an activity factor [24]. On the evening of admission to the research unit,

participants ate an evening meal at ~1800h and remained fasting except for water until com-

pletion of the study the following morning. Participants completed eight sets of 10 repetitions

of unilateral knee extensions at 70% of 1-RM. Vastus lateralis muscle biopsies were performed
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under local anesthesia (2% lidocaine) using a modified Bergstrom needle [44] before exercise

(non-exercised leg) and three hours following exercise (exercised leg). Muscle tissue was

immediately blotted on sterile gauze, weighed at the bedside, and frozen in liquid nitrogen

before being transferred to -80˚C freezer until analysis of muscle protein synthesis rates. Blood

samples were collected 30 minutes before exercise, and immediately following completion of

the final set, 30-, 90-, and 180-minutes post exercise. Whole blood was placed on ice and pro-

cessed immediately for plasma collection. Plasma samples were stored at -80˚C until metabolo-

mics analysis.

Muscle protein synthesis

For muscle protein synthesis measurements, [13C6]phenylalanine was administered through a

peripheral intravenous catheter at 0500h as an initial bolus dose (1mg/kg fat free mass) fol-

lowed by continuous infusion (1 mg/kg fat free mass/hour). Another intravenous catheter was

placed retrograde in the opposite hand, which was kept in a plexiglass box maintained at 55˚C

for collection of arterialized venous blood samples. Muscle fractional synthesis rates (FSR)

were calculated from the increment in isotopic enrichment of [13C6]phenylalanine in the

mixed muscle protein (MMP) pool over the two biopsy timepoints with muscle tissue fluid

(TF) enrichment as the precursor pool as previously described [25, 26]. Frozen muscle tissue

was pulverized, and TF free amino acids were extracted with 5% sulfosalicylic acid. The

remaining muscle tissue was hydrolyzed overnight in 6N HCL at 110˚C. The hydrolyzed mus-

cle protein and TF samples were purified by cation exchange columns (AG 50W-X8 resin;

Bio-Rad), dried, and derivatized to isobutyl esters [27]. Phenylalanine molar percent excess

was determined by tandem mass spectrometry with selective ion monitoring at 222.4> 121.6

and 226.4> 125.6 for the m + 2 and m + 6 fragments of phenylalanine and [13C6]phenylala-

nine, respectively [27] and a 6-point enrichment standard curve. Muscle FSR was calculated

from the following precursor-product equation:

FSR ¼
Ep2 � Ep1

Eprecursor � t

 !

� 100

Ep2 and Ep1 are the MMP-bound enrichments of [13C6] phenylalanine in serial muscle biop-

sies, Eprecursor is the isotope enrichment in TF free amino acids, and t is the time in hours

between the two biopsies.

1H-NMR metabolomics

Plasma samples were analyzed using high-resolution proton nuclear magnetic resonance

(1H-NMR) spectroscopy according to the Bruker B.I. QUANT-PS 2.0 standard platform as

previously described [28]. The NMR instrument was calibrated using a sealed reference sample

provided by the manufacturer to ensure a maximal internal devation of four % or less. The

technical reproducibility of abundant metabolites (e.g., glucose, alanine, glycine, lactate, pyru-

vate) is less than 5%, while other less abundant metabolites are 5–15% coefficient of variation.

Plasma samples were thawed on ice and mixed with Bruker VERBR plasma buffer (phosphate

buffer pH 7.4 containing 4.6 mM TSP-d4 (sodium 3-(trimethylsilyl) (2,2,3,3-d4) propionate

and 20% of D2O) in 1:1 (v/v) ratio. The samples were prepared as follows: 300 μL of plasma

was mixed with 300 μL of phosphate buffer, gently shaken for one minute and transferred to a

five mm NMR tube. The NMR spectra were collected using a Bruker 600 MHz Avance III HD

spectrometer with a BBI room temperature probe head and SampleJet auto sampler (Bruker

Biospin, Billerica, MA). The sample temperature in the magnet was regulated to 310 ± 0.1 K
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with a BTO 2000 variable temperature unit. The 1D NMR spectra were recorded with water

peak suppression using the standard 1D NOESY pulse sequence (noesygppr1d; Bruker BioS-

pin), acquiring 32 scans, with 98,304 data points, a spectral width of 18,029 Hz, a mixing time

of 10 ms, acquisition time of 2.73 s, and a relaxation delay of four seconds. Before Fourier

transformation, the line broadening of 0.3 Hz (LB = 0.3 Hz) was applied to the free induction

decay. The phase and baseline corrections were performed automatically. Spectra were trans-

ferred to the Bruker Data Analysis server for automated remote analysis. Identified metabolites

and their corresponding peak assignments from the 1H-NMR spectra are shown in S1 Fig. An

example of metabolite quantitation using the Bruker IVDR method is provided for a reference

plasma sample (SRM 1950) in S2 Fig.

Statistical analysis

Descriptive and clinical characteristics of the study participants at baseline are provided as

means and standard deviations with unpaired t-tests utilized to compare differences between

young and older groups. Data were assessed for normality by Shapiro-Wilk test and histo-

grams. To address the non-normal distribution and the dependency inherent in the repeated

measures design, a Generalized Linear Mixed Model (GLMM) approach was implemented.

Employing the ’lme4’ package in R, GLMMs were conducted to determine the present of sig-

nificant main effects for each independent variable (age and exercise) and their interaction

(age*exercise). A random intercept was included to account for variability between samples.

The exercise*age interaction term was used to determine if changes in metabolite concentra-

tions with acute exercise depended on participants’ age groups. In the absence of a significant

exercise*age interaction, the main effects of exercise were used to determine if variables were

different at any of the five sampling time points regardless of age. Likewise, the main effect of

age was used to determine if metabolite concentrations differed by age group, regardless of

exercise-induced responses to intervention. If there was a significant interaction, the Tukey’s

Honest Significant Difference (HSD) test was used to compare the mean concentrations

between the two groups at each sampling time point. The False Discovery Rate (FDR) method

was applied to adjust p-values, thus mitigating the risk of Type I errors associated with multi-

ple testing. P-values were compared to the level of statistical significance, which was set at α =

0.05. All results were analyzed using RStudio, version 3.4.1.

Results

Participant characteristics

A total of 30 young and 49 older adults were included. Young and older adults had similar

height, mass, and BMI (Table 1). Older adults had significantly higher systolic blood pressure

compared to young, but there was no difference in diastolic blood pressure (Table 1). Fasting

plasma glucose was significantly elevated in older compared to young adults with no signifi-

cant difference in fasting insulin values between age groups (Table 1).

Pre-exercise plasma metabolomics

Plasma 1H-NMR metabolomics in baseline pre-exercise plasma samples (Figs 1–3) revealed

elevated plasma glucose (P = 0.043) concentration in older compared to younger adults. Gly-

cine (P<0.0001), glutamine (P = 0.042), tyrosine (P<0.0001), creatinine (P = 0.034), ornithine

(P<0.0001), trimethylamine N-oxide (P = 0.04), and citrate (P<0.0001) were also significantly

elevated in plasma from older compared to young adults at baseline.
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Metabolomic response to acute resistance exercise

Of the 33 plasma metabolites detected and quantitated by 1H-NMR, 26 demonstrated time-

dependent changes following acute resistance exercise. The acute bout of single-leg RE elicited

increased plasma organic acids (lactate, pyruvate, p< 0.001) (Fig 1A and 1B) and decreased

ketones (acetoacetate, acetate, p< 0.001) (Fig 1H and 1I) and several amino acids (methio-

nine, isoleucine, valine, ornithine, p< 0.001) (Fig 2E–2G) in the immediate post-exercise time

points (0 and 30 minutes after exercise). In contrast, the amino acids alanine and glycine (Fig

2A, 2B) exhibited acute increases (p< 0.001) immediately following exercise. Other plasma

metabolites demonstrated more latent changes following exercise that emerged in the later

recovery period. These metabolites include succinate (Fig 1D), 3-hydroxybutyrate (Fig 1H),

and acetoacetate (Fig 1I), which were significantly elevated at 180 minutes of recovery

(p< 0.001). On the other hand, glucose (Fig 1C), acetate (Fig 1F), valine (Fig 2G), and isoleu-

cine (Fig 2F) remained below the basal levels at 180 minutes of recovery.

Of the metabolites that were responsive to acute single-leg resistance exercise, 12 demon-

strated significant exercise*age interactions, including lactate (Fig 1A), pyruvate (Fig 1B),

3-hydroxybutyrate (Fig 1H), acetoacetate (Fig 1I), alanine (Fig 2A), isoleucine (Fig 2F), tyro-

sine (Fig 2H), creatinine (Fig 2I), phenylalanine (Fig 2J), ornithine (Fig 3A), lysine (Fig 3D).

Notable trends that did not reach statistical significance included glutamine (Fig 2C; P = 0.055)

and citrate (Fig 1E; P = 0.086). Plasma lactate (Fig 1A), pyruvate (Fig 1B), and alanine (Fig 2A)

concentrations were acutely elevated immediately following exercise and returned to baseline at

the 90-minute timepoint with older adults demonstrating smaller magnitude changes compared

to young. Plasma ketones 3-hydroxybutyrate (Fig 1H) and acetoacetate (Fig 1I) acutely

decreased in young and older adults following exercise but with greater magnitude changes evi-

dent in young compared to older. The amino acids methionine (Fig 2E), and isoleucine (Fig

2F) exhibited acute decreases immediately post-exercise that tended to be more apparent in

young compared to older adults though this did not reach statistical significance.

Associations between plasma metabolites and muscle protein synthesis

As an exploratory exercise, we examined associations between circulating metabolites and

muscle protein synthesis (Fig 4A). Pre-exercise plasma lactate and pyruvate levels were

Table 1. Demographic and clinical characteristics of young and older adults at baseline.

Young

(N = 30)

Old

(N = 49)

Young vs Old

Range min-max Mean (SD) Range min-max Mean (SD) P-value

Sex, F/M 15F-15M 26F-23M

Age, years 20–30 27.07 (4.11) 65–84 71.37 (4.53) <0.001*
Height, cm 154.3–185.5 171.35 (8.56) 149.6–192.05 168.74 (9.95) 0.237

Mass, kg 53.13–97.50 73.77 (11.35) 50.27–111.23 75.13 (13.45) 0.645

BMI, kg/m 19.90–28.95 24.91 (2.70) 21.45–37.20 26.28 (3.65) 0.079

Heart rate, BPM 48–92 67.52 (10.84) 46.50–87 63 (8.50) 0.042*
SBP, mm Hg 97.50–139.50 116.03 (10.10) 107–170 129.70 (13.63) <0.001*
DBP, mm Hg 47–86 72.08 (9.13) 53–93 72.95 (9.71) 0.693

Glucose, mg/dL 72–100 86.00 (7.48) 80–121 93.47 (8.31) <0.001*
Insulin, μIU/mL 2.9–16.4 7.37 (3.33) 2.4–29.7 7.90 (5.55) 0.60

Note: M; Male, F; Female, BMI; body mass index, SBP; systolic blood pressure, DBP; diastolic blood pressure

*; statistically significant at the .05 level. Data are shown as mean (SD).

https://doi.org/10.1371/journal.pone.0301037.t001
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positively associated with muscle protein synthesis, although the relationships did not reach

statistical significance (P<0.10). Pre-exercise histidine (Fig 4C) and sarcosine (Fig 4B) were

significantly negatively associated with muscle protein synthesis, as was the pre/post-exercise

fold change in plasma histidine (Fig 4D).

Discussion

This study employed semi-quantitative NMR-based plasma metabolite profiling to compare

the acute response to resistance exercise in young and older adults. We demonstrate that a sin-

gle bout of unilateral resistance exercise induces significant shifts in circulating metabolites,

Fig 1. Changes in plasma carbohydrate, TCA cycle intermediates, and ketone body metabolites in young (n = 30) and older (n = 49) adults pre and post

resistance exercise. Values are shown as mean and 95% CIs of non-transformed data, with (θ) denoting significant (p-value< 0.05) difference between

young and older groups at baseline, (*) representing significant effect of time from baseline, (φ) representing age and time interaction, found by LMM. Pre-

ex: pre-exercise, IPE: immediately post exercise.

https://doi.org/10.1371/journal.pone.0301037.g001
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Fig 2. Changes in plasma glucogenic and biogenic amines in young (n = 30) and older (n = 49) adults pre and post resistance exercise. Values are shown

as mean and 95% CIs of non-transformed data, with (θ) denoting significant (p-value< 0.05) difference between young and older groups at baseline, (*)
representing significant effect of time from baseline, (φ) representing age and time interaction, found by LMM. Pre-ex: pre-exercise, IPE: immediately post

exercise.

https://doi.org/10.1371/journal.pone.0301037.g002
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including organic acids, ketones, and amino acids. Moreover, we identified 12 metabolites that

were influenced by acute resistance exercise in a manner that was dependent on age. These

metabolites included lactate, pyruvate, alanine, 3-hydroxybutyrate, ornithine, tyrosine, for-

mate, lysine, glycerol, isoleucine, creatinine, and phenylalanine. We were interested in deter-

mining if any circulating exercise-responsive metabolites were predictive of anabolic response

to exercise, measured from the rate of muscle protein synthesis. We found that muscle protein

synthesis was positively associated with pre-exercise plasma lactate and pyruvate and nega-

tively associated with histidine and sarcosine. Furthermore, the fold change in plasma histidine

was negatively associated with muscle protein synthesis. Altogether these results highlight key

circulating metabolites that are responsive to acute resistance exercise, including those that

respond distinctly in young and older adults, and those that are associated with anabolic

response.

Fasting pre-exercise levels of glucose, citrate, creatinine, and several amino acids (glycine,

glutamine, tyrosine, ornithine) were elevated in older adults compared with the younger

group. These findings harmonize with precedent literature that also document elevated plasma

levels of these analytes in older adults [28–31]. While it is tempting to ascribe these systemic

metabolite changes with age to known age-related changes to mitochondrial function [4, 5]

and muscle protein metabolism [7, 8], the tissues of origin and precise metabolic processes

that contribute to this metabolite fingerprint are uncertain. Our main objective was to assess

the time-dependent changes in plasma metabolites in response to acute resistance exercise in

Fig 3. Changes in other amino acids and metabolites (A-E), and fold-change (F) pre and post resistance exercise in young (n = 30) and

older (n = 49) adults. Values are shown as mean and 95% CIs of non-transformed data, with (θ) denoting significant (p-value< 0.05)

difference between young and older groups at baseline, (*) representing significant effect of time from baseline, (φ) representing age and

time interaction, found by LMM. Pre-ex: pre-exercise, IPE: immediately post exercise.

https://doi.org/10.1371/journal.pone.0301037.g003
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Fig 4. Correlation between muscle protein synthesis rates and plasma metabolite levels. The heatmap in panel A provides the correlation coefficients

between muscle fractional synthesis rate (FSR) and metabolite concentrations at each timepoint. Of these, sarcosine (B) and histidine (C) concentrations at

rest were significantly negatively associated with FSR. There was also a significant negative association between FSR and the fold change (FC) in plasma

histidine from pre-exercise to immediate post-exercise (D). Red color represents positive Pearson correlation coefficients while blue color represents

negative correlation. Dotted lines represent 95% confidence intervals for regression analyses in panels B, C, and D.

https://doi.org/10.1371/journal.pone.0301037.g004
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young and older adults. The majority of the exercise-responsive metabolites changed similarly

in young and older, although several exhibited age-dependent changes in response to exercise.

Plasma glucose levels increased immediately following RE and declined below the basal levels

180 minutes post-exercise. This observation can be attributed to the enhanced glucose uptake

in skeletal muscle that continues for hours following exercise onset [32]. Our finding closely

mirrored previously reported changes in which the plasma concentrations of glucose were

reduced following RE in healthy [33], and diabetic individuals [34], and within 180 minutes of

recovery [35]. Due to the accelerated carbohydrate utilization during RE, lactate, and pyruvate

were markedly elevated immediately after exercise. Despite the early dogma of lactate as a

dead-end metabolic byproduct, there is now convincing evidence that lactate production

occurs continuously at rest and during exercise in fully oxygenated conditions [36–38]. Pyru-

vate and lactate concentrations followed a steady decreasing trend and reached the basal levels

within 90 minutes of recovery. Pyruvate significantly dropped below the baseline values at 180

minutes post-RE. Our observation is in agreement with prior findings showing that blood

pyruvate and lactate decline within an hour after RE [35, 39, 40]. TCA cycle intermediates are

known to be increased in blood following endurance and resistance exercise, [20, 21, 39, 41–

43]. Likewise, we find citrate increased immediately and 30 minutes after exercise and gradu-

ally returned to the basal levels 90 minutes into the recovery time in both young and older

groups. Succinate, another notable TCA metabolite involved in muscle adaptation and remod-

eling [44], remained elevated 180 minutes post exercise in-line with prior reports [20, 39, 40].

Acetate, which is utilized by the TCA cycle to synthesize nicotinamide adenine nucleotide

(NADH) and ATP, declined significantly following exercise and remained below basal levels at

180 minutes.

Plasma amino acids were substantially influenced by a single bout of resistance exercise.

The branched-chain amino acids (BCAA) isoleucine, leucine, and valine were reduced imme-

diately post-exercise with gradual recovery over 3 hours. A prior study of young participants

reported that BCAAs decreased below basal levels as late as 60 minutes post-RE [39]. Our

results show that this pattern is maintained in healthy older adults. BCAAs are relevant to exer-

cise response as they are a carbon source for the TCA cycle [45, 46] and act as precursors for

protein synthesis in the muscle [45]. Leucine is a particularly important regulator of muscle

protein anabolism by activating the mTORC1 pathway [47]. Inasmuch, the observed time

course of BCAA concentrations following a bout of RE are consistent with prior observations

[30, 35, 39], but importantly we show that they are similar in young and older adults. In con-

trast to BCAAs, we observed a marked rise in alanine concentrations immediately after RE

which was more pronounced in young compared to older adults. Alanine is a glucogenic

amino acid that is synthesized in skeletal muscle through transamination of glutamate and

released into circulation during exercise [48]. Its role as an ammonia carrier and gluconeo-

genic substrate makes it an important factor in the metabolic demands of resistance exercise.

Several ketone bodies including acetoacetate and 3-hydroxybutyrate demonstrated an

immediate decrease after resistance exercise, followed by a later rise above pre-exercise values

at 180 minutes of recovery. Ketone bodies are fuel substrates for brain and muscle under con-

ditions such as fasting or prolonged exercise where carbohydrate availability may be limited.

In our study, participants were fasted overnight and throughout exercise and the three hours

of recovery. The time course of acetoacetate levels aligns with previously reported reductions

in plasma acetoacetate levels in response to acute RE [20, 49]. Others have shown that

3-hydroxybutyrate and acetoacetate are released into the blood after exercise [20, 50, 51]. Ber-

ton et al. 2017 showed that 3-hydroxybutyrate and 2-hydroxybutyrate increased immediately

after resistance exercise in young non-fasting individuals [39]. Previous studies have demon-

strated that 3-hydroxybutyrate can regulate adaptation mechanisms in skeletal muscle through
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positive effects on protein synthesis in human skeletal muscle [51, 52], so the rise in

3-hydroxybutyrate during exercise likely represents a beneficial adaptive response.

While many exercise-responsive metabolites exhibited similar patterns in young and older

adults, there were several metabolites that were responsive to resistance exercise in an age-

dependent manner. The magnitude of exercise-induced response in metabolites associated

with glycolysis and the TCA cycle, such as lactate and pyruvate (Fig 1A and 1B), were signifi-

cantly lower in older adults compared with the younger group immediately and 30 minutes

following the intervention. A similar age-related attenuation in the exercise-induced rise of

alanine (Fig 2A) was observed, which goes together with pyruvate. Ornithine (Fig 3A)

response in older adults was unique because, despite elevated levels at rest, ornithine was

markedly lowered after exercise and remained below the basal level after 180 minutes of recov-

ery. In contrast, ornithine concentrations in younger individuals increased immediately after

exercise and remained above the baseline value throughout the three-hour recovery period.

Among ketone bodies, 3-hydroxybutyrate (Fig 1H) exhibited different exercise responses

between the young and older groups at 30 and 90 minutes into the recovery time, while acetoa-

cetate (Fig 1I) concentrations exhibited a marked interaction between age and exercise

response only at the 30-minute recovery timepoint. The concentration of plasma ketone bod-

ies reflects the balance between production in liver and peripheral utilization as a fuel source.

Since participants in this study remained fasting during the postexercise period, the rise in

plasma ketones during this period is consistent with a glucose-sparing strategy. Although

young and older adults demonstrated post-exercise ketosis, the rise was delayed in young com-

pared to older adults, which may reflect greater peripheral utilization of ketone bodies in youn-

ger adults or differences in hepatic ketone production in young and older adults.

Circulating metabolites not only provide a window into cellular processes but may them-

selves influence processes through potential paracrine or endocrine influence. Inasmuch, we

sought to explore the associations between skeletal muscle protein synthesis following exercise

and the static levels and dynamic metabolite responses to acute exercise. The analysis revealed

positive associations between muscle protein synthesis rate and plasma lactate and pyruvate

concentrations at rest but not at any post-exercise time points. While these preliminary associ-

ations do not indicate causality, there is evidence that lactate may act as a signaling molecule

that stimulates insulin production and activates the mTORC1 pathway, which is a crucial regu-

lator of muscle protein synthesis [53, 54]. Histidine and sarcosine emerged as metabolites neg-

atively associated with muscle protein synthesis at rest (Fig 4B and 4C). The pre/post-exercise

fold change in plasma histidine demonstrated a negative correlation with muscle protein syn-

thesis rate. This is an unexpected finding since histidine is an essential proteinogenic amino

acid required to synthesize proteins [55]. Essential amino acids activate the mTORC1 signaling

pathway, the primary regulator of anabolic actions in the muscle cells, promoting muscle pro-

tein synthesis [56]. Histidine also contributes to muscle growth by producing histamine,

which regulates muscle microcirculation and persistent vasodilation after exercise [57]. Addi-

tionally, histidine can act as a precursor for carnosine, a molecule that acts as an intracellular

buffer, antioxidant, and free radical scavenger [55]. Studies have identified a negative associa-

tion between histidine, inflammation and oxidative stress in obese individuals [57, 58]. Inter-

estingly, in the present study, young and older individuals exhibited distinct exercise responses

in Histidine levels, although they did not reach statistical significance. Following RE, histidine

levels decreased in the elderly and increased in the young group. It is possible that high levels

of histidine and sarcosine could inhibit the uptake of other essential amino acids in muscle

cells or interfere with the function of enzymes necessary for muscle protein synthesis, although

more targeted interrogation is needed to fully understand the specific mechanisms underlying

the relationship between histidine, sarcosine, and muscle protein synthesis.
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It is important to recognize several limitations of this work. This study evaluated a single

mode of exercise (resistance) in one muscle group. The results cannot be generalized to other

modes of exercise or training responses. Another key consideration is that plasma metabolites

originate from many different tissues and organs, making it difficult to ascribe changes in cir-

culating concentrations to any particular source. Another limitation of the study is that NMR

spectroscopy, despite its specificity and reproducibility, is an analytical platform that has low

sensitivity for low abundance molecules. Inasmuch, this platform covers a narrow biochemical

space that likely excludes biologically relevant analytes that change with aging and exercise.

Finally, the observational and cross-sectional nature of this work cannot definitively or mecha-

nistically link metabolite changes with any biological processes.

In conclusion, our study highlights circulating metabolites that are acutely responsive to a

single bout of resistance exercise (organic acids, ketones, amino acids), and several that exhibit

age-dependent responses (lactate, pyruvate, alanine, ornithine, acetoacetate, 3-hydroxybuty-

rate). Of these metabolites, resting plasma lactate and pyruvate were positively associated with

the anabolic response to exercise while histidine and sarcosine were negatively associated.

Altogether this study confirms that many of the metabolites know to be acutely responsive to

resistance exercise are also evident in healthy older adults. Nevertheless, a smaller number

exhibit responses that are attenuated in older adults and are predictive of anabolic response to

exercise. Here we studied relatively healthy older adults free from many common chronic con-

ditions that accompany aging and likely influence outcomes. Inasmuch, caution should be

used in generalizing the results from this study to the overall population of individuals over

the age of 65 years.
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