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Abstract 
In this work we derived and analyzed the stability structure of an order eight 
rational integrator wherein our numerator and denominator is 4 (i.e. m = n = 
4) for the solution of problems in ordinary differential equations. The inte-
grator was observed to be A-stable and also L-stable.  
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1. Introduction 

According to [1], Scientific Computing is the Mathematical Subject that deals 
with the use of computer to solve mathematical problems. The process involves:  

1) Analyzing the problem into a computable form; 
2) Developing the Analysis into an algorithm; 
3) Writing a Computer Programme in a Computer Programming Language 

based on the algorithm; 
4) Running the programme to obtain Output Results and; 
5) Analysing the output for the work. 
[2] opened the main stream of researches into the use of rational approximat-

ing functions of the form: 

 ( ) ( )
( )

m

n

P x
R x

Q x
=  (1.1) 

where ( )mP x  and ( )nQ x  are polynomial functions of the same variable x, 
whose denominator degrees m and numerator degree n need not be unique for 
developing Rational Integrators. Herein we desire to avoid one of the methods 
that use the determinant of the matrix equation in arriving at the solution to our 
Simultaneous Linear Algebraic Equations (SLAE) where in this case the un-
known variables are not very many to handle. It is usually understood as a se-
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quence of row operations performed on the associated matrix of coefficients. 
According to [3] [4] [5] [6] this method represents an important family of im-
plicit and explicit iterative methods for approximation of (ODEs) in numerical 
analysis especially in solving (IVPs) in (ODEs) of the form 

 ( ) ( )0 0, , ,y f x y y x y a x b′ = = ≤ ≤  (1.2) 

For any 4 × 4 matrix of coefficients such as represented in (2.1) we employ the 
GEM by following the work in [4] and [5] whose work on order 4 based deno-
minator with m = 0 arrived with a new formula after a very exhaustive detailed 
analysis. [1] [7] [8] [9] [10], alongside [10] [11] [12] [13] [14] they all concen-
trated their work on the theoretical solutions in (ODEs) whose result on lurie 
systems we will follow to achieve our goal, here their major aim was centered on 
the non-linearities of the equilibrium state of the degenerate systems. Here in 
this research we wish to derive a singulo-stiff numerical rational integrator, 
study its stability and determine the nature of the stability function. 

As our work is concerned with the stability function of the eight order rational 
integrator, we would ensure that there is a theoretical guarantee of its work-ability 
before future testing, this assurance is obtained by proving consistency and con-
vergence. We cite just a few here to justify this non-implementation work.  

The requirement of evaluating the derivative at the midpoint or endpoint of a 
step not yet completed was achieved by first performing an Euler type of calcula-
tion to obtain a preliminary approximation to the solution at one of these points. 
Exponential integrators are among the integrators that have become an active 
area of research, which originally was developed for solving stiff differential eq-
uations and also partial differential equations which include hyperbolic as well as 
parabolic problems such as heat. They are a class of numerical methods for the 
solution of partial and ordinary differential equations. This deals with the exact 
integration of the linear part of the initial value problem from numerical analy-
sis. They can be constructed to be explicit or implicit for numerical ordinary 
differential equations or serve as the time integrator for numerical partial diffe-
rential equations. Examples of published works in this area include the work of 
[15] [16]. 

This research work, however, is aimed at creating and applying a new integra-
tion approach to solve these classes of problems. We shall also be examining the 
stability structure of the new integration method. 

2. Notations and Definitions 

Definition:  
A numerical method is said to be A-stable if its Region of Absolute Stability 

(RAS) contains the whole of the left-hand half of the complex plane i.e. 
( ) 0Re h < . 

Definition: [4] [5] 
A numerical integrator is said to be Absolutely Stable if the absolute value of 

the stability function ( )hς  is less than unity. That is, 
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 ( ) ( ) 1, 1h u iv iς ς= + < = −  (2.1) 

Definition: Region of Absolute Stability (RAS) [5] 
A region D of the complex plane is said to be a Region of Absolute Stability 

(RAS) of a given method, if the method is absolutely stable for h D∈ . 
Definition: [4] 
A given one-step method is said to be L-stable if it is A-stable and in addition, 

 ( ) ( )lim 0Re h hς
→−∞

= . (2.2) 

Definition: [3] 
The function ( ),f x y  is said to satisfy a Lipschitz condition in y, over the 

region D, if there exist a constant L such that 

 ( ) ( )1 2 1 2, ,f x y f x y L y y− ≤ −  (2.3) 

In this case, L is called the Lipschitz constant and ( ),f x y  is said to be Lip-
schitzian. 

By virtue of the relation 

 ( )
( )

( ) ( )
1 2

1 2
0

1 2

, , ,
lim y y

f x y f x y f x y
y y y− →

∂ −
=

∂ −
 (2.4) 

Consequently, ( ),f x y
y

∂
∂

 becomes a ready tool for the computation of L. 

Thus, we can simply write 

 
( ),f x y

L
y

∂
=

∂
 (2.5) 

3. The Stability Function 

The stability function of any one-step numerical integrator is obtained by using 
the linearized form 1y yλ=  which gives 

 ( )m m
ny y mλ += ∀ ∈ . (3.1) 

The primitive form of our integrator is represented by [1] 

 0 1 1 2 1 3 1 4 1
1

1

2 3 4

1 1 3 1 4 1
2 3 41

n n n n
n

n n n n

p p x p x p x p xy
q x qx q x q x

+ + + +
+

+ + + +

+ + + +
=

+ + + +
 (3.2) 

which yields 

 10
1 0

10

4

4 , 1
r

r nr
n r

r nr

p x
y q

q x
+=

+

+=

= ≡∑
∑

 (3.3) 

The 1nx +  represents mesh points and so they are not affected by the solution 
function y. Consequently, as we saw that the GEM reveals that the parameters 

ip  and iq  as functions h  where h hλ=  through the use of 1y yλ= . From 
the work done and applied, we find in our work below, that for us, we could not 
find any easier way to derive the stability function than this direct primitively 
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long approach. It is an arduous task requiring real technological patience in our 
technological age. 

The work of [16] has over the years on stability function of numerical inte-
grators been the reference point. It is a linear relation which states that if λ  is 
an arbitrary eigenvalue of any of the solution to the ivp ( ) ( )1 ,y f x y= , a x b≤ ≤  
then at each point x in the solution space we have  

 ( ) ( )1y x y xλ=  [1] (3.4) 

Consequently, for each point [ ],nx a b∈  
1

ny yλ=   

which by the method of mathematical induction on any arbitrary m +∈  
( )m m

ny yλ=   

To succeed in our arduous task from [1], this linear (3.4) would be needed in 
the ,i ip q  ( )1 4i i= . We do note some difficulties we must overcome upon 
checking [1] that define the solutions 4 3 2 1, , ,q q q q  as being solutions that de-
pend on =Aq b  and through the GEM on it, we therefore move as shown be-
low. 

Proposition 3.1 
Let y be a sufficiently differentiable function of x, and λ a constant, then for all 

positive integer k, 
1y yλ=  implies k ky yλ= . x∈ . 

Proof: 
For 1k = , this assertion in time by hypothesis be an assumed true induction 

step. We must show that the truth of the induction step k m⊂  implies the 
truth for the case 1k m= + . 

The induction step true meant that  

( ) d
d

m
m m

m
yy y

x
λ= =  

Consider 

( )
( )

( )1 d d
d d

m
m myy y

x x
λ+ = =  (By induction step) 

       
( )1d

d
m my y

x
λ λ= =  (since λ is a constant) 

1m my yλ λ λ += =   

( )1 1m my yλ+ +∴ =  

which is what we are required to establish. 
But the positive integer m was chosen arbitrarily, hence the proposition is 

true. 
Remark  
For each [ ],nx a b∈ ⊆  , ( )1

n ny yλ∴ =  implies ( )m m
n ny yλ=  for any arbi-

https://doi.org/10.4236/jamp.2024.123058


K. A. Aliu, S. I. Odiachi 
 

 

DOI: 10.4236/jamp.2024.123058 934 Journal of Applied Mathematics and Physics 
 

trary positive integer m. 
Here we write [1] 

 
( )

( )( ) ( ) ( )
9

9
1

, , 1 1 4
9 !

i j
n

ij i j
n

h ya i j
i j x

− +

− +
+

= =
− +

, 
( ) ( )

9 (9 )

9
1

, 1 1 4
9 !

i i
n

i i
n

h yb i
i x

− −

−
+

= − =
−

 (3.5) 

where h hλ=  next we compute the ijd  and ie  also as functions of , nh y  
and 1nx + . 

( ) ( ) ( )

( )

5 6 65 6 6 7
121 12

11 22 5 6 6 7 7
11 1 1 1

55 5 12 2 5 5

5 5 7 5 5
1 1 1 1

7!
5! 6! 6!

7 7
5! 6! 5! 6!

n n n n

n n n n

n n n n

n n n n n

h y h y h y xa ad a
a x x x h y

h y h y h y h y
x x y x x

λ
λ

+

+ + +

+ + + +

= − = − ⋅ −

= − = −

 

 
5

11 5
1

,
6!

n

n

h yd h h
x

λ
+

∴ = − =  (3.6) 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

4 5 64 5 6 7
31 12 1

12 21 32 4 5 6 77
11 1 1 1

4 5 64 4 4 4

4 4 474
1 1 11

7!
4! 5! 6!

7 7
4! 4! 5!5!

n n n n

n n n n

n n n n n

n n nn n

a a h y h y h y xd d a
a x x x h y

h y h y y h y h y
x x xx y

+

+ + +

+ + ++

= = − = − ⋅ ⋅

= − = −

 

 
4

12 21 4
1

2 ,
5!

n

n

h yd d h h
x

λ
+

∴ = = − =  (3.7) 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

( )

3 4 63 4 6 7
141 12

13 31 42 3 4 6 77
11 1 1 1

3 4 6 23 3 3 4

3 3 373
1 1 11

7!
3! 4! 6!

7 7
3! 3! 4!4!

n n n n

n n n n

n n n n n

n n n nn n

h y h y h y xa ad d a
a x x x h y

h y h y y h y h y
x x x yx y

+

+ + +

+ + ++

= = − = − ⋅ ⋅

= − = −

 

 
3

13 31 3
1

3 ,
4!

n

n

h yd d h h
x

λ
+

∴ = = − =  (3.8) 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

3 5 53 5 5 7
31 13 1

22 33 3 5 5 77
11 1 1 1

3 5 53 3 3 3 3 3

3 3 3 3 373
1 1 1 1 11

7!
3! 5! 5!

7 7 5 4 7 6
3! 3! 5 4 5! 5!5 4

n n n n

n n n n

n n n n n n n

n n n n nn n

a a h y h y h y xd d
a x x x h y

h y h y y h y h y h y h y
x x x x xx y

+

+ + +

+ + + + ++

= − = − ⋅ ⋅

⋅ ⋅
= − = − = −

⋅⋅

 

 
3

22 31 3
1

22 ,
5!

n

n

h yd d h h
x

λ
+

∴ = = − =  (3.9) 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

2 4 52 4 5 7
41 13 1

23 32 43 2 4 5 77
11 1 1 1

2 4 52 2 2 2 2 2

2 2 2 3 272
1 1 1 1 11

7!
2! 4! 5!

7 7 12 7 3 2
2! 2! 4 4! 4!4

n n n n

n n n n

n n n n n n n

n n n n nn n

a a h y h y h y xd d a
a x x x h y

h y h y y h y h y h y h y
x x x x xx y

+

+ + +

+ + + + ++

= = − = − ⋅ ⋅

⋅ ⋅
= − = − = −

  

 
2

23 32 2
1

30 ,
4!

n

n

h yd d h h
x

λ
+

∴ = = − =  (3.10) 

Next we compute 33d   
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( ) ( ) ( )

( )

( ) ( ) ( )

( )

1 4 44 4 7
141 14

33 44 4 4 77
11 1 1 1

1 4 4

72
1 1 11

7!
4! 4!

7 5 7 5
44

n n n n

n n n n

n n n n n

n n nn n

hy h y h y xa ad a
a x x x h y

hy hy y hy hy
x x xx y

+

+ + +

+ + ++

= − = − ⋅ ⋅

⋅ ⋅
= − = −

 

 33
1

31 ,
4

n

n

hyd h h
x

λ
+

∴ = − =  (3.11) 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )

7 6 87 6 8 7
121 1

1 2 7 6 8 77
11 1 1 1

7 6 8 7 6 87 7 7 7

7 77 77 7
1 11 1

7!
7! 6! 8!

8 7
7! 8!8 6! 8!

n n n n

n n n n

n n n n n n

n nn n n n

h y h y h y xa be b
a x x x h y

h y h y y h y h y y
x xx y x y

+

+ + +

+ ++ +

= = = − − ⋅ − ⋅

= − + = − +
⋅

 

 
7

1 7
1

,
8!

n

n

h ye h h
x

λ
+

∴ = − =  (3.12) 

( ) ( ) ( )

( )

( ) ( ) ( )

( )
( )

6 5 86 5 8 7
31 1 1

2 3 6 5 8 77
11 1 1 1

66 5 86 6

6 7
11 1

7!
6! 5! 8!

8 7 6 7
8!6! 5!8

n n n n

n n n n

nn n n

nn n n

a b h y h y h y xe b
a x x x h y

h yh y h y y
xx x y

+

+ + +

++ +

= = = − − ⋅ − ⋅

⋅ − ⋅
= + =

  

 
6

2 6
1

14 ,
8!

n

n

h ye h h
x

λ
+

∴ = − =  (3.13) 

Similary, 

 
5

3 5
1

126 ,
8!

n

n

h ye h h
x

λ
+

= − =  (3.14) 

For our pictorial views and probable inspection for errors areas, the symme-
tric matrix equation from [1] 

11 12 13 2 1

21 22 23 3 2

31 32 33 4 3

d d d x e
d d d x e
d d d x e

    
     =    
        

 

becomes the matrix stability function 

 

5 4 3 7

5 4 3 7
1 1 1 1

24 3 2 6

34 3 2 6
1 1 1 1

43 2 5

3 2 5
11 1 1

2 3
6! 5! 4! 8!

2 22 30 14
5! 5! 4! 8!

3 30 31 126
44! 4! 8!

n n n n

n n n n

n n n n

n n n n

n n n n

nn n n

h y h y h y h y
x x x x

q
h y h y h y h yq
x x x x

q
h y h y hy h y

xx x x

+ + + +

+ + + +

++ + +

  
− − − −  
       − − − = −      
 − − − −
   






 
 
 
 
 

 (3.15) 

This pictorial representation makes it easier for cross-checking at a glance and 
for computing ijf  and ig . Symmetry is maintained but it is not easy to see 
pattern of diagonal elements giving room for concern. So are the vector e en-
tries. 

We now turn our attention on [1] to enable us compute the partly expected 
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contribution to the stability function. 

 

3 4 4 5
121 12

11 22 3 4 4 5
11 1 1 1

3 3 3

3 2 2
1 1 1

22 2 2 6!
5! 5! 5!

22 24 2
5! 5! 5!

n n n n

n n n n

n n n

n n n

h y h y h y xd df d
d x x x h y

h y h y h y
x x x

+

+ + +

+ + +

   
= − = − − − − −   

   

= − + =

 (3.16) 

 

2 4 3 5
21 13 1

12 21 23 2 4 3 5
11 1 1 1

2 2 2 2

2 2 2 2
1 1 1 1

30 2 3 6!
4! 5! 4!

30 36 6
4! 4! 4! 4!

n n n n

n n n n

n n n n

n n n n

d d h y h y h y xf f d
d x x x h y

h y h y h y h y
x x x x

+

+ + +

+ + + +

   
= = − = − − − − −   

   

= − + = =

 (3.17) 

 31 13
22 33

11 1 1 1 1

31 45 14 7
4 4 4 2

n n n n

n n n n

d d hy hy hy hyf d
d x x x x+ + + +

= − = − + = − =  (3.18) 

 
6 6 6

21 1
1 2 6 6 6

11 1 1 1

14 12 2
8! 8! 8!

n n n

n n n

h y h y h yd eg e
d x x x+ + +

= − = − + = −  (3.19) 

 
5 5 5

31 1
2 3 5 5 5

11 1 1 1

126 90 36
8! 8! 8!

n n n

n n n

d e h y h y h yg e
d x x x+ + +

= − = − + = −  (3.20) 

This therefore meant the h —matrix form becomes 

 

3 2 6

2 2 6
1 1 13

2 5
4

2 5
11 1

2 2
5! 4! 8!

7 36
24! 8!

n n n

n n n

n n n

nn n

h y h y h y
x x xq

qh y hy h y
xx x

+ + +

++ +

   
−   

    =        −
      

 (3.21) 

Next we employ (3.14) - (3.20) into (3.3) to yield 

5 3 6 2

4 5 2 6 2
1 1 1 1

3 2 2

2 2 2
1 1 1 1

8 2 4 2

8 4
1 1

36 2 2
8! 5! 8! 4!

7 2
2 5! 4! 4!

12 12
5!8! 2!5!

n n n n

n n n n

n n n n

n n n n

n n

n n

h y h y h y h y
q

x x x x

hy h y h y h y
x x x x

h y h y
x x

+ + + +

+ + + +

+ +

      
= − − −      
       

      
÷ −      
       

= − ÷− =
8 2 4 4

1
8 4 2 4

1 1

2!5! 4!
5!8! 8!

n n

n n n

h y x h
x h y x

+

+ +

  
− =  

  

 

 
4 4

4
4 4 14

1

4! 4!or
8!8! n

n

h hq q x
x +

+

∴ = =  (3.22) 

Next: 

6 2 24
11 12 4

3 6 2 4 3
11 1 1 1

6 6 3 6 3 3
1 1

6 6 3 6 3 3
1 1 1 1

2 5!4!
8! 4! 8! 2

2 4! 5! 8 5! 4 5!
8! 4 8! 2 8! 2 8!

n n n

n n n n

n n n n n

n n n n n n

h y h y xg f q hq
f x x x h y

h y h y x h y x h
x x h y x h y x

+

+ + +

+ +

+ + + +

     −
= = − −     

      
    ⋅

= − − − ⋅ = −  ⋅   

 

 
3 3

3
3 3 13

1

4 5! 4 5!or
8!8! n

n

h hq q x
x +

+

⋅ ⋅
∴ = − = −  (3.23) 
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7 4 3
1 12 3 13 4

2 7 4 3
11 1 1 1

3 54
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For the computation of 1q  and 1 1nq x +  in terms of h , we note that 
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 (3.25) 

and 
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 (3.26) 

where h hλ= . 
Hence, we write 
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Consequently we sum up (3.21) - (3.27) to get  
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 (3.28) 

The next stage of this search for the stability function is for us to get back to 
the primitive form of the 8th order rational integrator given by (3.28) along with 
the results (3.21) - (3.27) for us to determine the contribution arising from 

2 3 4
0 1 1 2 1 3 1 4 1n n n np p x p x p x p x+ + + ++ + + +  

So therefore we consider 
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∴  we now have our 
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Combining (3.7, 3.28) and (3.33) we obtain 
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where h hλ= . 
By definition, for one-step methods, the stability function ( )hς  defined by  

( ) ( )
( )

2 3 4
1

2 3 4
8! 4 7! 6 6! 4 5! 4!
8! 4 7! 6 6! 4 5! 4!

n

n

y h h h h hh
h h h hy h
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= =

− ⋅ + ⋅ − ⋅ +
 

where h hλ=  
Conclusively, therefore the stability function of the eight order rational inte-

grator is 

 ( )
2 3 4

2 3 4
8! 4 7! 6 6! 4 5! 4!
8! 4 7! 6 6! 4 5! 4!

h h h hh
h h h h

ς + ⋅ + ⋅ + ⋅ +
=

− ⋅ + ⋅ − ⋅ +
 (3.35) 

4. Interval of Absolute Stability [IAS]  

The stability function ( )hς  as shown in result above is a rational function 
whose numerator and denominator degree each equals 4. This is high for effi-
cient investigation; the research level period offered us would not permit us to 
venture into the full region. 

Consequently we follow [6] suggestion to determine the interval of Absolute 
Stability. This is done on the real line and it puts 0v =  meaning we are investi-
gating the stability in the plane as exemplified by [11]. Here h h=  is real. Here 
we seek value of h which makes ( ) 1hς  ≤  which is the same thing as giving 
us the IAS. The advantage of IAS is that it offers the researcher a quick opening 
into the nature of the RAS. Further full investigations are expected to provide us 
with greater detected properties of the RAS. 

Definition [4] 
A numerical integrator is said to be A0-stable if the IAS lies in the left-half of 

the real line. 
I.e. ( ) 1hς  ≤  for every 0h < . 
Definition [4] 
A numerical integrator is said to be A0-stable if its IAS encloses the left half of 

the real line. 
Theorem  
Our explicit one-step rational integrator is A0-stable. 
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Proof  
From (3.15), we set h h=  real to get 
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Let 0α >  be an arbitrary positive real number; 
Set 0h α= − <  and observe that  

2 3 4

2 3 4

2 3 4

2 3 4

8! 4 7! 6 6! 4 5! 4!

8! 4.7! 6 6! 4 5! 4!

8! 4 7! 6 6! 4 5! 4!
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 α α α α 

 α α α α 

 

+ ⋅ + ⋅ + ⋅ +

= − + ⋅ − ⋅ +

≤ + ⋅ + ⋅ + ⋅ +

= − + ⋅ − ⋅ +

 

But 0α >  was chosen arbitrary, hence ( ) 1hς  ≤  whenever 0h < . ∴  
the integrator is A0-stable. 

5. Region of Absolute Stability 

Our explicit one-step method of rational integrator is a [4, 4] Padé integrator. A 
few explanations on the RAS of [L, M] Padé integrators are stated here. 

Definition: Acceptability  
The (L, M) Padé Approximant ( ),L MU x  to ex  is said to be 
1) A-acceptable if ( ), 1L MU x < , ( ) 1Re x < ; 
2) A(0)-acceptable if ( ), 1L MU x <  when x is real and negative; 
3) L-acceptable if it is A-acceptable and in addition satisfies ( ), 0L MU x →   

as ( )Re x →−∞ . 
According to [16]: it follows immediately that if a one-step method, applied to 

the usual scalar test equation 1y yλ= , λ  a complex constant, yields  
( )1 ,n L M ny U h yλ+ = , then the method is A-, A(0)- or L-stable according as the 

approximation ( ),L MU x  to ehλ  is A-, A(0)-, or L-acceptable. The following 
results concerning Padé approximations are known. 

It is this linkage statement from approximants to integrators by [16] that 
makes possible for designers of rational integrators today to test for the RAS. 
The theorem below by [17] and [18] gives us the stand in which our result in the 
Chapter is based. 

Theorem 5.1 
Let ( ),L MU x  be the (L, M) Padé approximation to ex  then: 
1) [18] if L M= , ( ),L MU x  is A-acceptable. 
2) [17] if L M≤ , ( ),L MU x  is A(0)-acceptable. 
3) [18] if 1L M= −  or 2L M= − , ( ),L MU x  is L-acceptable. 
Theorem 5.2 
Our Explicit One-Step Padé integrator is A-stable. 
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Figure 1. Longitudinal section of the RAS curve. 

 

 
Figure 2. The non-uniform Jordan curve. 

 
Proof 
For our integrator 4L M= =  L M∴ =  
By [18] the integrator with L M=  is A-stable. 
∴  Our [4, 4] Padé Integrator is A-stable.  
Figure 1 is our stability curve, wherein at the point 
1) ( ), 1u vς  ≤ , the 3-dimensional shape is a hill-like solid shape to be seen 

only if we rotate the figure about the vertical axis shown. The hill-like solid 
shape has its top at infinity. 

2) ( ), 1u vς  = , the boundary between the Region of Absolute Stability and 
the Region of Instability. 

3) ( ), 1u vς  > , is the part of the hill that requires equipment for climbing, 
the unstable Region. 

4) ( ), 1u vς  < , this represents the stable region, we have it as the low-hill 
area of the hill-like shape where one can walk freely without falling, unless the 
ground is slippery.  

Figure 2 is the shape obtained from the hill and the part where ( ), 1u vς  =  
to show us that the hill is not exactly circular.  
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