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Abstract: Scene taxiing time is an important indicator for assessing the operational efficiency of 

airports as well as green airports, and it is also a fundamental parameter in flight regularity statistics. 

The accurate prediction of taxiing time can help decision makers to further optimize flight pushback 

sequences and improve airport operational efficiency while increasing flight punctuality. In this 

paper, we propose a hybrid deep learning model for departure taxiing time prediction based on the 

new influence factors of taxiing time. Taking Pudong International Airport as the research object, 

after analyzing the scene operation mode, we construct the origin–destination pairs (ODPs) with 

stand groups and runways and then propose two structure-related factors, corridor departure flow 

and departure flow proportion of ODP, as the new features. Based on the new feature set, we 

construct a departure taxiing dataset for training the prediction model. Then, a departure taxiing 

time prediction model based on convolutional neural networks (CNNs) and gated recurrent units 

(GRUs) is proposed, which uses a CNN model to extract the high-dimensional features from the 

taxiing data and then inputs them to a GRU model for taxiing time prediction. Finally, we conduct 

a series of comparison experiments on the historical taxiing dataset of Pudong Airport. The 

prediction results show that the proposed hybrid prediction model has the best performances 

compared with other deep learning models, and the proposed structure-related features have high 

correlations with departure taxiing time. The prediction results of taxiing time for different ODPs 

also verify the generalizability of the proposed model. 

Keywords: departure taxiing time; scene operation mode; deep learning; corridor; stand group 

 

1. Introduction 

The departure taxiing time of a flight is defined as the interval from the off-block time 

to the moment of actual take-off, following the clearance provided by ramp control. 

Taxiing time serves as an important indicator reflecting the operational efficiency of an 

airport. Accurately predicting the taxiing time before flight pushback helps optimize the 

pushback sequence, thus improving airport traffic, reducing taxiing delays, and 

enhancing the utilization efficiency of taxiing ways and runways. Currently, a common 

practice among domestic airports is to determine the off-block time for departing flights 

by subtracting a fixed taxiing time from the takeoff time. However, this static method fails 

to consider factors like the specific layout of the airport, the availability of parking spaces, 

and the scene traffic flow. For large and busy airports, taxiing time vary greatly from flight 

to flight. Therefore, the value of taxiing time obtained by using a uniform calculation 

method will have a large error with the actual value. If we cannot accurately predict the 

taxiing time of each flight, we will not be able to make reasonable arrangements for the 
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flight departure process, which will certainly affect the overall operational efficiency of an 

airport. 

Existing studies on taxiing time prediction have seen a transition from simulation 

methods to machine learning techniques in terms of prediction methodologies. For 

instance, references [1,2], among others, employed simulation methods for taxiing time 

prediction. Meanwhile, [3–8] and other studies utilized machine learning methods, 

including random forest, neural networks, and support vector machines, highlighting the 

superiority of machine learning approaches. In feature studies, there has been a 

predominant focus on macro features like taxiing distance and scene flow [9–11]. 

However, micro features, especially those tied to scene structure, have been largely 

overlooked. A significant portion of these studies emphasize predicting the taxiing time 

of flights that are characterized by short durations and high dynamics. These predictions 

are challenging due to their need for high accuracy, making them less suitable for practical 

applications. In contrast, estimating the average taxiing time offers a broader perspective, 

allowing for a general prediction of taxiing dynamics in subsequent hours. This is 

achieved by incorporating both macro and micro features of the scene. Such an approach 

serves a dual purpose: it caters to the demand for high precision in short-term dynamic 

predictions and also paves the way for optimal early calculated take-off time (CTOT) and 

calculated off-block time (COBT) allocation. 

To address the limitations of the existing work, we first analyze the scene structure 

and traffic flow characteristics of Pudong International Airport and propose two new 

features: corridor departure flow and departure flow proportion which serve as the 

foundation for constructing both the feature set and the dataset aimed at predicting 

departure taxiing time. Taking advantage of deep learning technology, we introduce a 

model based on convolutional neural networks (CNNs) and gated recurrent units (GRUs) 

for predicting departure taxiing time. In this model, a CNN is employed to uncover 

relationships in the data, while a GRU captures the dynamic variations inherent to the 

data. Finally, comparison experiments are applied to make predictions on the historic 

traffic flow data of Pudong International Airport to verify the effectiveness of the 

proposed features and prediction model. 

The main contributions of this paper can be summarized as follows: 

(1) Two new features, corridor departure flow and departure flow proportion, are 

proposed to further improve the departure taxiing time feature set as well as the 

dataset. 

(2) A departure taxiing time prediction model based on CNN-GRU is proposed. 

(3) The effectiveness and generalization ability of the proposed features and models are 

verified on the historical dataset of Pudong International Airport. 

2. Literature Review 

2.1. Related Work 

Currently, the research on departure taxiing time prediction include two aspects: the 

construction of features and the development of prediction models. For feature 

construction, Wang et al. [9] studied the impacts of various features on taxiing time and 

emphasizes that employing selected features, such as taxiing distance, average speed of 

aircraft, and scene traffic flow, can get more accurate taxiing time predictions. Li et al. [10] 

classified taxiing time features into two distinct categories. The first, centering on sparse 

features, encompasses elements like weather conditions, runway configurations, types of 

aircraft, and time period. In contrast, the second category encompasses dense features, 

which include factors such as instantaneous traffic flow at the airport, the number of 

taxiing flights at the scene, and the overall taxiing distance. Du et al. [11] considered the 

influence of weather factors on taxiing time and established four characteristics 

characterizing scene flow: Scene Instantaneous Flow Index (SIFI), Scene Cumulative Flow 

Index (SCFI), Aircraft Queue Length Index (AQLI), and Slot Resource Demand Index 
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(SRDI). Xia et al. [12] investigated the correlation between six indexes such as the number 

of departure flights, the number of arrival flights, the number of flights launching in the 

same time period, the average taxiing-out time per half hour, the taxiing distance, the 

number of turns, and the departure taxiing time. The results show that taxiing-out time 

has the highest correlation with airport scene traffic flow, moderate correlation with 

average taxiing-out time, and weak correlation with taxiing distance and number of turns. 

Lee et al. [13] considered the effects of several factors on their taxiing time prediction: the 

month, terminal, points the aircraft passes through when entering the taxiing area from 

the ramp, the takeoff runway, the departure fix, and the weight class of the aircraft. Tang 

et al. [14] innovatively introduced features related to the apron configuration, i.e., real-

time dynamic flight flow at the scene, unobstructed taxiing time of the stand group, and 

the spatial influence index of the stand group. 

Machine learning methods and simulation methods are increasingly used for the 

construction of prediction models. Lee et al. [1] proposed a simulation model based on 

linear optimized sequencing (LINOS) to simulate the path of an aircraft taxiing along the 

taxiway between the gate and the runway. This method was compared with four machine 

learning methods: linear regression (LR), support vector machine (SVM), k-nearest 

neighbors (KNN), and random forest (RF). The results indicate that the LINOS simulation 

outperforms LR, has a similar prediction accuracy to SVM, but is less accurate than both 

KNN and RF. Murça et al. [2] introduced a runway sorting and scheduling mixed integer 

linear programming model. This model incorporates the set of uncertainties in the slip-

out time to dynamically determine the optimal order in which aircraft are released from 

the gates. One notable contribution is from Wang et al. [3] who designed the informer–

random forest regression model which was crafted specifically for predicting departure 

taxiing time across various boarding gates and was tested on the data of Capital 

International Airport. Impressively, its validation demonstrated a prediction accuracy of 

96.62% within a margin of ±5 min. Jeong et al. [4] innovated a prediction method tailored 

based on the airport node-link model for unimpeded taxiing time, which specifically 

targets both departure and arrival taxiing time at Incheon International Airport. Jiao et al. 

[5] introduced an advanced method based on a�ention mechanism, which synergizes 

long- and short-term memory with a deep neural network (D-LSTM) to predict taxiing 

time. Jiao et al. [10] proposed a wide deep neural network model (WDM) to predict both 

taxiing-in and taxiing-out time of flights at Hong Kong Airport. Du et al. [11] proposed a 

deep metric learning model to learn the similarity between historical scenarios consisting 

of flight characteristics, ground traffic, and meteorological conditions. This model was 

also combined with the k-nearest neighbor regression algorithm to find a set of historical 

environments similar to a reference scenario for predicting taxiing time. Kim et al. [6] used 

a random forest algorithm to predict the departure taxiing time at Incheon International 

Airport. Zhou et al. [7] developed a gated recurrent unit (GRU) model to predict the 

departure taxiing time at Lukou International Airport and considered the effect of 

hyperparameters on the network performance. Zhang et al. [8] established a probabilistic 

taxiing time prediction model based on machine learning, utilizing both random forest 

regression and kernel density estimation methods. 

In summary, existing studies have focused on predicting variable taxi time (VTT) for 

single flights, which is essential for precise aircraft pushback control and enhanced 

efficiency in ground operations. However, the short time interval between the prediction 

trigger and the flight’s expected departure requires high accuracy and a significant 

amount of dynamic information. The regular A-CDM (Airport Collaborative Decision 

Making System) or DMAN (departure management system) basically sets fixed taxiing 

times by the area paired with runways, which can be used to support COBT calculations 

more than 2 h in advance. However, they mostly use methods based on historical statistics, 

with weak timing dynamics, and cannot support dynamic configuration. Therefore, 

predicting average taxiing time based on timing characteristics can alleviate this problem 
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and support the collaborative operation of flight ground services more accurately at an 

earlier stage. 

Based on the research mentioned above, we propose two new factors: corridor 

departure flow and departure flow proportion. Subsequently, we establish a hybrid model 

that combines a CNN model with a GRU model to predict the departure taxiing time. 

2.2. Research Gap 

We summarized the above studies in three aspects, including the research object 

(average departure taxiing time or single-flight departure taxiing time), the features used, 

and the prediction method, as shown in Table 1. From Table 1, we can obtain the following 

conclusions: 

(1) Most of the existing studies on taxiing time prediction focus on single-flight departure 

taxiing time [2–14] and less on the average departure taxiing time [1]. 

(2) All existing studies use macroscopic scene flow features [2,3,5–13] but do not consider 

the influence of scene structures, such as connecting corridors. 

(3) Most of the existing studies use single and traditional machine learning methods [5–

9,11–14], and few a�empts are made to apply deep learning methods or combined 

models to improve prediction accuracy [3,10]. 

To address these issues, in this paper, we propose an average departure glide time 

prediction method based on a combined deep learning model after constructing new 

scene structure-based features. The gaps between our work and existing studies are as 

follows: 

(1) Unlike existing departure taxiing time prediction methods, our proposed method 

focuses on the average departure taxiing time, which can reflect the congestion of the 

field in a macroscopic way. 

(2) Compared with similar methods, we consider not only the conventional traffic flow 

features but also construct the structural features related to connecting corridors, 

aircraft groups, and runways in our prediction model, which explores more factors 

affecting the taxiing time. 

(3) In addition, we used a combined deep learning model for taxiing time prediction, 

using CNNs to extract deep features and inpu�ing them into a GRU for prediction, 

which improved the prediction accuracy. 

Table 1. Summary of taxiing time prediction works. 

Reference Research Object Features Prediction Method 

Lee et al. [1] (2015) Average 

Runway and fix information, flight call signs, destination airports, 

aircraft models, initially assigned gate, spot and scheduled gate-

out time 

Linear optimized sequencing  

Lee et al. [13] (2016) Single flight Terminal concourse, spot, runway, departure fix, and weight class LR, SVM, KNN, RF, NN 

Murça [2] (2017) Single flight Departure traffic, taxiing distance 
Integer linear programming 

model 

Li et al. [10] (2020) Single flight 

Weather, runway configuration, aircraft type, time period, airport 

instantaneous traffic flow, number of ground taxiing aircraft, and 

taxiing distance 

Wide-deep neural network 

model  

Kim et al. [6] (2021) Single flight  

Airline, wingspan category, depart apron, take-off runway, 

operation type, take-off route, month, day of taxiing-out 

operation, time of taxiing-out operation, CTOT issued, queue 

length, ground traffic, and air traffic 

RF 

Jiao et al. [5] (2022) Single flight  Aircraft type, taxiing distance, and airport traffic flow LSTM 

Du et al. [11] (2022) Single flight  Flight properties, surface traffic, and meteorological conditions Deep metric learning 

Zhou et al. [7] (2022) Single flight  Flight information, airport, weather, and airline GRU 

Zhang et al. [8] (2023) Single flight  Scene traffic, gate, airline, and time period RFR, kernel density estimation 

Wang et al. [3] (2023) Single flight Departure traffic, aircraft type, expected delay and gate Informer–RFR 
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3. Construction of Feature Set and Dataset 

3.1. Layout of Pudong International Airport 

As one of the three major hubs, Pudong International Airport is the first airport in 

China that has four runways. As depicted in Figure 1, these four runways are uniquely 

arranged in two parallel sets, with 17L/35R and 17R/35L in the T1 terminal and 16R/34L 

and 16L/34R in the T2 terminal. Specifically, 16R/34L and 17L/35R are used for taking off 

and 16L/34R and 17R/35L for landing. The 255 parking stands in this airport are grouped 

into 22 stand groups based on their locations, as shown in Figure 1, where SG stands for 

the abbreviation of stand group. Flights within a stand group share identical arrival and 

departure taxiing ways and operate in a coordinated manner. This airport has two control 

zones, the east control zone and the west control zone, which are connected to each other 

by a central corridor. The corridor has two unidirectional taxiing ways, TW3 for the east-

to-west flights and TW4 for the opposite direction. 

 

Figure 1. Layout of Pudong International Airport. 

3.2. Construction of Feature Set 

We take 22 stand groups as the origin and four departure runways as the destination, 

forming 88 origin–destination pairs (ODPs) to analyze the factors affecting departure 

taxiing time. Combined with the layout of Pudong Airport, we propose two new features, 

corridor departure flow and departure flow proportion. 

3.2.1. Corridor Departure Flow 

Pudong International Airport has a corridor bridging the east and west control zones, 

which is an area prone to traffic conflicts for all the departure flights leaving from the 

stand groups in the east control zone; flights arriving have to go through TW3 to get to 

the 35R runway in the west to depart, and the flights arriving on the 16L/34R runway in 

the east also have to go through TW3 to get to their stand groups in the west. Therefore, 

traffic flow of the corridor can significantly affect the departure taxiing time of flights that 

have to pass through the corridor during the taxiing process. 
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Figure 2 shows how the departure taxiing time varies with the arrival and departure 

traffic flow of the corridor. The median of the average departure taxiing time gradually 

increases as the corridor departure flow increases. The main reason is that if the corridor 

departure flow is larger, the hotspots at the intersections of the corridor and taxiing ways 

are more likely to be congested, resulting in a longer waiting time. On the other hand, the 

correlation between the corridor arrival flow and the average departure taxiing time is 

weak, with no obvious correlation trend, so the influence of corridor arrival flow is not 

considered in this paper. 

  
(a) (b) 

Figure 2. Effect of corridor flow on departure taxiing time. (a) Effect of corridor departure flow; (b) 

effect of corridor arrival flow. 

3.2.2. Departure Flow Proportion of ODP 

This feature refers to the proportion of an ODP’s departure flow to the total arrival 

and departure flow within that OPD in a time slice. In the case of ODP 16-35R, which is 

used for departure, its arrival flow is the flow of the neighboring ODP 17R/35L-16, which 

is used for landing. Taking one hour as a time slice, we calculated the Pearson’s correlation 

coefficient between the average departure taxiing time and the percentage of departure 

flow for all ODPs, and the results are shown in Figure 3, with the corresponding average 

Pearson’s correlation coefficient 0.52. The average departure taxiing time is lower when 

the proportion of departure flow is larger or smaller. When the proportion of departure 

flow is about 0.5, that is when there is a high mix of arrival and departure, the scene is 

busier, and the average departure taxiing time is higher.  

The departure flow proportion of ODPs ranging from 0 to 0.5 is larger than that from 

0.5 to 1, which is more compact. This is because during the counting process, flights at 

both ends of the arrival runway are included, resulting in more cases where the number 

of arriving flights exceeds that of departing flights at different times of the day. 

Consequently, there are also more instances where the departure flow proportion of ODPs 

is smaller. Compared to calculating the departure flow proportion for the whole scene, 

the ODP’s departure flow proportion can reflect the effect of an OPD’s departure flow on 

the average departure taxiing time in a more microscopic way. 
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Figure 3. Correlation of departure flow proportion on departure taxiing time. 

In addition to the two new features of corridor departure flow and departure flow 

proportion mentioned above, we use a total of 15 features and classify them into four 

categories based on their relevance, airline, aircraft, restricted status, and scene traffic 

flow, as shown in Table 2.  

Table 2. Departure taxiing time feature set. 

Feature Categories Feature Name 

Airline Number of domestic airlines, number of foreign airlines 

Aircraft 
Number of type C aircraft, number of type D aircraft, number of type E aircraft, 

and number of type F aircraft 

Restricted status Number of restricted flights, number of unrestricted flights 

Scene 

traffic flow 

Normal 

Departure instantaneous flow at start time, departure instantaneous flow at end 

time, departure queue number, departure cumulative flow, and departure 

resource demand index 

Structure related Corridor departure flow and departure flow proportion of ODP 

In Table 2, aircraft types are classified into four types, C, D, E, and F, according to 

wingspan and main wheel wheelbase, with type C having the smallest wingspan and 

main wheelbase. Restricted status refers to whether a flight is subject to route traffic 

restrictions or control area traffic restrictions, which generates ground waiting time. 

Since the runway operation mode at Pudong International Airport is an independent 

parallel approach and departure entails two take-offs and two landings, the number of 

arrival flights as well as the number of queuing flights have less impact on the departure 

taxiing time. Therefore, in this paper, we focus on the impact of several departure flow 

features on the departure taxiing time. 

3.3. Construction of Dataset 

Based on the feature set established in Section 3.2, the raw data are preprocessed to 

construct the required dataset for further prediction. The process of constructing the 

dataset is shown in Figure 4. The red line in the figure indicates deletion of missing data, 

and the blue boxes indicate different categories of datasets. 
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Figure 4. Departure taxiing time dataset construction process. 

Firstly, we select the data corresponding to the features or the data used to calculate 

the features from the original data based on the feature set. Then, the selected data are 

preprocessed, including missing value and outlier processing. Due to the small amount of 

missing data, samples with missing values are directly deleted. We use the 3σ principle 

to find outliers. That is, when the departure taxiing time deviates more than three times 

the standard deviation from the mean, the sample is considered as an outlier for deletion. 

Finally, the preprocessed data are used to calculate the values of the features by different 

time slices to get the final departure taxiing time dataset. 

4. Prediction of Departure Taxiing Time 

On the obtained departure taxiing dataset, we construct an end-to-end departure 

taxiing time prediction model based on CNN and GRU models, and its framework is 

shown in Figure 5. 
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Figure 5. CNN-GRU-based departure taxiing time prediction model. 

The proposed prediction model takes the departure taxiing data as input. Firstly, it 

uses the powerful feature extraction capability of a CNN model to mine the intrinsic 

connection between various types of features in the input data and obtains the high-

dimensional feature space representation of the input samples. Then, the extraction results 

of the CNN model are used as inputs to the GRU model to predict the departure taxiing 

time of flights. The working process of CNN-GRU-based departure taxiing time 

prediction model is described as shown in Algorithm 1. 

Algorithm 1: CNN-GRU-based departure taxiing time prediction 

Input: training set 1D , test set 2D  

Output: prediction value H  

, , (0,1)z r hW W W N —weight matrix, tx —input vector at time t 

1. for each epoch: 

2.   for each batch in 1D : 

3.     Perform a convolution operation 

4.     Perform activation using R e LU  function  
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5.     Perform pooling operations using max pooling 

6.     Compute the update gate tZ  according to 1( [ , ])t z t tZ W h x    

7.     Compute the reset gate tr  according to 1( [ , ])t r t tr W h x    

8.     Compute the candidate state tg  according to 1tanh( [ , ])t h t t tg W r h x    

9.     Compute the hidden state th  according to 1(1 )t t t t th Z h Z g     

10.    Input the fully connected layer to get the prediction value 

11.    Compute the mean square loss of 1D  

12.    Update the , ,z r hW W W  by using optimizer 

13.   end for 

14. end for 

15. Input 2D  into the best trained model to get the prediction value H   

5. Experiments 

5.1. Experimental Setup 

To verify the effectiveness and superiority of the departure taxiing time prediction 

model based on CNN-GRU proposed in this paper, we compared the prediction accuracy 

of this model with the departure taxiing prediction models based on three other deep 

learning models, LSTM, CNN-LSTM, and GRU. To verify the generalization ability of the 

CNN-GRU-based departure taxiing time prediction model proposed in this paper, we 

predicted and analyzed the results of departure taxiing time for different ODPs. To 

investigate the effect of different categories of features on the taxiing time prediction, we 

used ablation experiments to observe the changes that occur in the prediction results after 

removing a certain category of feature. To investigate the effect of different time slice 

lengths on the prediction performance of the model, we divided the time slice into five 

lengths of 30, 45, 60, 75, and 90 min and compared the prediction results. 

We collected flight inbound and outbound data from Pudong International Airport 

from 5 January 2018 to 7 March 2018, including 40,504 arrival data and 40,072 departure 

data. After preprocessing, the dataset required for the experiment was obtained, and the 

dataset was divided into a training set, a validation set and a test set in the ratio of 6:1:3. 

We used five indicators to evaluate the performance of the prediction models, 

including mean absolute error (MAE), root mean square error (RMSE), coefficient of 

determination (R2), ±3 min accuracy, and ±5 min accuracy, and the expressions for the last 

two are given as follows: 

1

ˆ( , )
ˆ0, 3

ˆ3min accuracy) = , ( , )
ˆ1, 3

n

i i
i ii

i i

i i

L y y
y y

L y y
y yn


  

  
 


（   

(1)

1

ˆ( , )
ˆ0, 5

ˆ5min accuracy) = , ( , )
ˆ1, 5

n

i i
i ii

i i

i i

L y y
y y

L y y
y yn


  

  
 


（   

(2)

where îy   denotes the predicted value, iy   denotes the true value, and n  denotes the 

number of samples. 

For the parameters in the CNN and GRU models, the optimal values were obtained 

after several rounds of debugging in advance as shown in Table 3. 
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Table 3. Optimal values of key parameters of the model. 

Model Parameter Value 

CNN 

The size of kernels 3 × 3 

Sliding window step 1 

Padding 0 

GRU 

The number of neurons 128 

Dropout rate 0.2 

Iteration rounds 100 

5.2. Results and Discussions 

5.2.1. Performance Comparison of Different Prediction Models 

In order to validate the prediction performance of the combined CNN-GRU model, 

we simultaneously predicted the departure taxiing time of ODP 16-35R and 1-35R based 

on four deep learning models, namely, LSTM, CNN-LSTM, GRU, and CNN-GRU. The 

prediction performances of the four prediction models of 16-35R are shown in Table 4 and 

Figure 6, with the length of the time slice being 60 min. And, the prediction performances 

of the four prediction models of 1-35R are shown in Table 5, with the same time slice. 

Table 4. Performance of four prediction models of 16-35R. 

Model Base MAE RMSE R2 ±3 min Accuracy ±5 min Accuracy 

LSTM 2.82 5.33 0.75 0.71 0.84 

CNN-LSTM 2.65 4.95 0.78 0.74 0.85 

GRU 2.86 5.46 0.73 0.72 0.82 

CNN-GRU 2.45 4.60 0.81 0.75 0.88 

As can be seen from Table 4, the CNN-GRU-based prediction model achieved the 

best performance. Compared to the LSTM-based prediction model, its MAE and RMSE 

were improved by 13.12% and 13.70%, respectively. Compared to the prediction model 

based on CNN-LSTM, its MAE and RMSE were improved by 8.55% and 7.07%, 

respectively, which indicates that the GRU outperforms the LSTM in processing time 

series data. Compared to the prediction model based on GRUs, its MAE and RMSE were 

improved by 14.34% and 15.75%, respectively, which indicates that the use of a CNN can 

effectively extract the deep features of the data and improve the prediction performance. 

 

Figure 6. Prediction results of different models. 
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Figure 6 illustrates the gaps between the predictions of the four prediction models 

and the true values. In order to see the gaps more clearly, the plots corresponding to the 

75th to 125th prediction results are zoomed in. In the enlarged figure, it can be seen that 

the CNN-GRU prediction model proposed in this paper fits the best with the true values, 

which also proves its superiority. 

Table 5. Performance of four prediction models of 1-35R. 

Model Base MAE RMSE R2 ±3 min Accuracy ±5 min Accuracy 

LSTM 2.75 5.04 0.73 0.63 0.79 

CNN-LSTM 2.54 4.68 0.77 0.66 0.81 

GRU 2.71 4.62 0.74 0.63 0.76 

CNN-GRU 2.48 4.42 0.79 0.69 0.87 

As can be seen from Table 5, the CNN-GRU-based prediction model also achieved 

the best performance. Compared to the LSTM-based prediction model, its MAE and 

RMSE were improved by 10.89% and 14.03%, respectively. Compared to the prediction 

model based on CNN-LSTM, its MAE and RMSE were improved by 2.42% and 5.88%, 

respectively. Compared to the prediction model based on GRU, its MAE and RMSE were 

improved by 9.27% and 4.52%, respectively. 

5.2.2. Taxiing Time Prediction for Different ODPs 

In order to investigate the generalization ability of the proposed CNN-GRU-based 

prediction model, we performed taxiing time predictions for all the ODPs consisting of 

stand group 16 and stand group 1 with different runways, and the results are shown in 

Table 6. As can be seen from Table 6, the proposed prediction model can achieve about 

70% ±3 min accuracy and 85% ±5 min accuracy, i.e., it is able to effectively predict the 

departure taxiing time for different ODPs. 

Table 6. Prediction performance under different ODP. 

ODP MAE RMSE R2 ±3 min Accuracy ±5 min Accuracy 

16-35R 2.45 4.60 0.81 0.75 0.88 

16-17L 2.40 4.66 0.82 0.73 0.87 

16-16R 2.69 5.32 0.77 0.68 0.81 

16-34L 2.58 5.29 0.78 0.70 0.82 

1-35R 2.48 4.42 0.79 0.69 0.87 

1-17L 2.54 4.52 0.80 0.67 0.85 

1-16R 2.29 4.39 0.80 0.74 0.87 

1-34L 2.32 4.35 0.82 0.76 0.89 

5.2.3. Prediction with Different Features 

In order to verify the effects of different categories of features on the prediction, we 

conducted feature ablation experiments using the ODP 16-35R and 1-35R departure 

taxiing time prediction as an example. That is, a group of features was removed each time 

and then the model was trained to obtain the values of various performance indicators of 

the prediction model. The experimental results of 16-35R are shown in Table 7 and Figure 

7. And, the experimental results of 1-35R are shown in Table 8. 

Table 7. Prediction performance under different features of 16-35R. 

Features Removed  MAE RMSE R2 ±3 min Accuracy ±5 min Accuracy 

None 2.45 4.60 0.81 0.75 0.88 

Airline category 2.47 4.66 0.80 0.71 0.86 
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Aircraft category 2.48 4.63 0.79 0.71 0.85 

Restricted status category 2.48 4.69 0.79 0.70 0.87 

Normal features of scene 

traffic flow 
2.66 4.81 0.77 0.66 0.81 

Structure-related features 2.58 4.78 0.78 0.68 0.82 

Corridor departure flow 2.52 4.75 0.79 0.69 0.85 

Departure flow proportion 

of ODP 
2.49 4.70 0.79 0.73 0.86 

As can be seen from Table 6, the scene traffic flow features have a greater impact on 

the prediction performance. The MAE, RMSE, R2, ±3 min accuracy, and ±5 min accuracy 

of the prediction model were improved by 7.89%, 4.37%, 5.19%, 13.64%, and 8.64%, 

respectively, after adding the normal field traffic flow features. After adding the proposed 

structure-related features corridor departure flow and the departure flow proportion of 

ODP, the MAE, RMSE, R2, ±3 min accuracy, and ±5 min accuracy metrics of the prediction 

model were improved by 5.04%, 3.77%, 3.85%, 10.29%, and 7.32%, respectively, which are 

higher than the other categories of features.  

By adding the corridor departure flow feature alone, we can see that the MAE, RMSE, 

R2, ±3 min accuracy, and ±5 min accuracy of the prediction model were improved by 

2.78%, 3.16%, 2.53%, 8.70%, and 3.53%, respectively. The prediction effects were also 

improved while adding the departure flow proportion of ODP feature alone. The MAE, 

RMSE, R2, ±3 min accuracy, and ±5 min accuracy of the prediction model were improved 

by 1.61%, 2.13%, 2.53%, 2.74%, and 2.33%, respectively. The experimental results proved 

the effectiveness of the proposed two new features. 

Figure 7 shows the comparison of 258 prediction errors using all features and 

removing the proposed structure-related features, the first 129 in Figure 7a and the last 

129 in Figure 7b, for a time slice length of 60 min. It is clear from these two bar charts that 

the blue bars cover more area than the red bars. This means that if the two structure-

related features constructed in this paper are not used, this will result in a large prediction 

error. This also proves that these two proposed new features have an important effect on 

the departure taxiing time. 

 
(a) 
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Figure 7. Comparison of 258 prediction errors. (a) Comparison of the first 129 prediction errors; (b) 

comparison of the last 129 prediction errors. 

Table 8. Prediction performance under different features of 1-35R. 

Features Removed  MAE RMSE R2 ±3 min Accuracy ±5 min Accuracy 

None 2.48 4.42 0.79 0.69 0.87 

Airline category 2.48 4.53 0.78 0.66 0.86 

Aircraft category 2.50 4.56 0.77 0.67 0.85 

Restricted status category 2.49 4.61 0.77 0.63 0.85 

Normal features of scene 

traffic flow 
2.71 4.72 0.75 0.60 0.81 

Structure-related features 2.64 4.68 0.77 0.63 0.83 

Corridor departure flow 2.60 4.63 0.77 0.65 0.84 

Departure flow proportion 

of ODP 
2.57 4.61 0.78 0.68 0.85 

From Table 8, we can also see that the normal features of scene traffic flow have the 

greatest impact on the comparison of the prediction results. The prediction effect of the 

model was also improved by adding the two indicators we proposed respectively. 

5.2.4. Prediction with Different Length of Time Slice 

In order to verify the effect of different lengths of time slices on the prediction 

performance, we take the prediction of the departure taxiing time of ODP 16-35R as an 

example and conduct prediction experiments under the time slice lengths of 30 min, 45 

min, 60 min, 75 min, and 90 min, respectively, and the results are shown in Table 9.  

Table 9. Prediction performance under different time slice. 

Time Slice MAE RMSE R2 ±3 min Accuracy ±5 min Accuracy 

30 min 2.45 5.07 0.80 0.72 0.85 

45 min 2.62 5.00 0.80 0.72 0.84 

60 min 2.45 4.60 0.81 0.75 0.88 

75 min 2.86 5.29 0.78 0.71 0.84 

90 min 2.89 5.39 0.74 0.72 0.83 
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From Table 9, it can be seen that the model prediction performance is best when the 

time slice length is 60 min, while too short or too long a time slice will lead to a decrease 

in the prediction performance. 

6. Conclusions 

In the realm of airport operations management, enhancing the accuracy of departure 

taxiing time predictions is important for boosting operational efficiency and ensuring a 

high flight punctuality rate. In this paper, we presented a model for predicting the average 

departure taxiing time, taking advantage of the combined strengths of CNNs and GRUs. 

First, we analyzed the scene operation layout of Pudong International Airport and 

proposed two new features from a structure point of view: corridor departure flow and 

the departure flow proportion of ODP. Then, we established a CNN-GRU hybrid model 

to capture the underlying pa�erns in departure taxiing data and predict the taxiing time. 

Finally, we validated the model on actual operational data from Pudong Airport. The 

results show that, compared with other deep learning models, the proposed CNN-GRU 

model has the highest prediction accuracy, which shows its superiority. We also verified 

that the addition of the proposed structure-related features can effectively improve the 

prediction accuracy. Meanwhile, the CNN-GRU model can also predict the average 

departure taxiing time for different ODPs effectively, which indicates its broad 

applicability. 

Predicting the average departure taxiing time bridges the early allocation of CTOT 

and COBT with high-accuracy predictions in the later dynamic phase. On the other hand, 

it allows for a more comprehensive understanding of the overall taxiing situation on the 

scene, which can help in providing early warning alarms for potential congestion and 

enhancing the intelligent management of the airports. 

In terms of practical application requirements, the prediction of the average 

departure taxiing time can be used not only for monitoring the taxiing efficiency of the 

auxiliary field but also for the dynamic configuration of the taxiing time in the earlier 

stages of the A-CDM system, which can improve the accuracy of early COBT calculations 

and reduce the large-scale jump of COBT. 

Subsequently, we will continue to work on single-flight taxi time predictions, 

considering more characteristics of the field structure and traffic distribution, as well as 

innovations in prediction methods. From the perspective of field operations management, 

these two components will form a solution that can continuously improve the 

configuration of taxi times as time approaches at different time scales. 
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