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Abstract: Ship detection aims to automatically identify whether there are ships in the images, precisely
classifies and localizes them. Regardless of whether utilizing early manually designed methods
or deep learning technology, ship detection is dedicated to exploring the inherent characteristics
of ships to enhance recall. Nowadays, high-precision ship detection plays a crucial role in civilian
and military applications. In order to provide a comprehensive review of ship detection in optical
remote-sensing images (SDORSIs), this paper summarizes the challenges as a guide. These challenges
include complex marine environments, insufficient discriminative features, large scale variations,
dense and rotated distributions, large aspect ratios, and imbalances between positive and negative
samples. We meticulously review the improvement methods and conduct a detailed analysis of the
strengths and weaknesses of these methods. We compile ship information from common optical
remote sensing image datasets and compare algorithm performance. Simultaneously, we compare
and analyze the feature extraction capabilities of backbones based on CNNs and Transformer, seeking
new directions for the development in SDORSIs. Promising prospects are provided to facilitate
further research in the future.

Keywords: ship detection;deep learning; optical remote-sensing images; convolutional neural net-
work; transformer

1. Introduction

Ship detection has important applications in areas such as fisheries management,
maritime patrol, and maritime rescue. It contributes to ship traffic management and the
maintenance of maritime safety. Therefore, ship detection has broad application prospects
in civil and military fields [1]. The core objective is to determine the position of ships and
identify their categories.

Optical remote-sensing images are captured via imaging distant ground surfaces
using electro-optical sensors on aerial platforms and artificial Earth satellites [2]. With the
rapid development of remote sensing, the resolution of optical remote-sensing images has
continuously improved. They can provide more details, such as color and texture, as well
as a comprehensive database for ship detection. Therefore, how to effectively utilize the
existing favorable conditions to maximize the application benefits is an urgent issue to be
solved.

Ship-detection methods have experienced two stages of development: rule-based
classification and deep learning. In the early methods, the sliding window method was
employed to systematically judge all potential areas. It relies on fixed-pattern approaches,
such as geometric elements and manually designed features to extract ship features. How-
ever, the early methods may generate large amounts of redundant computations, which
significantly impact detection speed. Additionally, the manually designed features lack
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the robustness to resist the interference from complex backgrounds. Therefore, early
approaches struggled to meet the requirements of both performance and efficiency.

Compared with traditional methods, deep learning can extract features with stronger
semantic information, and enable autonomous learning. In recent years, deep learning has
developed rapidly. It has gradually migrated and innovated in the field of ship detection,
achieving good results in ship detection in optical remote-sensing images (SDORSIs). How-
ever, influenced by factors such as complex maritime environments and ship characteristics,
the results of SDORSIs based on deep learning still need improvement. Furthermore,
achieving a balance between accuracy and speed is also one of the significant challenges.

At present, some reviews have been published in ship detection. Er et al. [3] collated
a large number of popular datasets and reviewed the existing object-detection models.
Joseph et al. [4] and Li et al. [5] systematically analyzed the typical methods at each stage
of SDORSIs. Kanjir et al. [6] conducted a detailed analysis of the impact of environmental
factors on SDORSIs. Li et al. [7] summarized the ship-detection techniques in synthetic
aperture radar (SAR) images, along with their advantages and disadvantages.

Different from existing reviews, this paper primarily focuses on the challenges asso-
ciated with SDORSIs. It aims to establish a refined classification system that progresses
from the main problems to solutions, and provides readers with a comprehensive under-
standing of this field. Specifically, according to the characteristics of optical remote-sensing
images and ships, we summarize the challenges as follows: complex marine environments,
insufficient discriminative features, large scale variations, dense and rotated distributions,
large aspect ratios, and imbalances between positive and negative samples, as shown in
Figure 1. We take the problems as the driving force and conduct an in-depth analysis for
each one. We comprehensively summarize the corresponding solutions and analyze the
advantages and disadvantages of the respective solutions. In addition, we chronologically
summarize ship-detection technologies, including methods based on manual feature extrac-
tion, convolutional neural networks (CNN) and Transformer. Finally, for the first time, we
separate and aggregate ship information from comprehensive datasets. We also summarize
and analyze the performance improvement effects of existing solutions, as well as compare
the feature extraction capabilities of CNNs and Transformer. It is worth noting that the
ship-detection methods and datasets discussed in this paper are only for nadir imagery.

To summarize, the main contributions are as follows:

• We systematically review ship-detection technologies in chronological order, including
traditional methods, CNN-based methods, and Transformer-based methods.

• Guided by ship characteristics, we classify and outline the existing challenges in
SDORSIs. based on CNNs and analyze their advantages and disadvantages.

• We summarize ship datasets and evaluation metrics. Furthermore, we are the first to
separate and aggregate ship information from comprehensive datasets. At the same
time, we compare and analyze performance improvement of the solutions and the
feature extraction abilities of different backbones.

• Prospects of SDORSIs are presented.

The remaining components of this review are as follows: Section 2 chronologically
reviews ship-detection technologies. Section 3 sorts out SDORSI challenges, summarizing
improvement methods and their pros and cons. Section 4 summarizes ship datasets and
evaluation metrics, comparing the performance of existing algorithms. Section 5 discusses
the future development trends. Finally, Section 6 provides a summary of this paper. A
research content diagram of this paper is shown in Figure 2.
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Figure 1. Main challenges in SDORSIs.
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Figure 2. The research content of the paper.

2. Methods

Ship detection is an important research topic. In this section, we chronologically
review the methods of ship-detection technologies, including traditional methods, CNN-
based methods, and Transformer-based methods. The timeline of ship-detection methods
is shown in Figure 3.
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Figure 3. The timeline of ship-detection methods.

2.1. Traditional Methods

Most traditional ship-detection methods rely on geometric elements and manually
designed features to locate ships within the background. Furthermore, they achieve good
detection results in specific scenarios. The traditional methods are as follows: template
matching, visual saliency, and classification learning.

2.1.1. Template-Matching-Based Method

Template-matching-based methods initially collect ship templates from various angles
and environments. Then, they calculate the similarity between the templates and input
images to determine the presence of ships. The methods primarily include global template
matching, local template matching and feature-point matching. They are simple to operate
and exhibit good detection performance in specific scenarios.

Xu et al. [8] proposed a method based on an invariant generalized Hough transform.
It exhibited invariance to translation, scaling, and rotation transformation to extract ship
shapes. Harvey et al. [9] performed rotational transformation on ship samples to increase
the diversity of the templates. The method enhanced the generalization capability of the
detector. He et al. [10] proposed a new method based on pose-weighted voting. It is robust
in template matching. It further improved the performance.

Template-matching-based methods achieve good results in traditional ship detection.
However, they require a lot of prior knowledge to build a template database and are
sensitive to the environment, leading to a poor generalization capability.

2.1.2. Visual-Saliency-Based Method

The visual-saliency-based method prioritizes detector focus on regions with visually
prominent features by analyzing image characteristics. The method first utilizes saliency
detection algorithms to calculate the contrast between a certain region and its surrounding
areas. Subsequently, it accomplishes the extraction of ship regions according to the results.
The method achieves good results in ship detection.

Xu et al. [11] proposed a saliency model with adaptive weights for extracting candi-
date ships. The method can identify ships and suppress the interference from complex
backgrounds effectively. Nie et al. [12] proposed a method that combined extended wavelet
transform with phase saliency regions. It effectively achieved the extraction of regions
of interests (ROIs) from complex backgrounds. Qi et al. [13] utilized the phase spec-
trum of Fourier transform to measure saliency, resulting in better identification of ships.
Bi et al. [14] employed a visual attention algorithm to highlight the positions of ships and
provided their approximate regions.

The visual-saliency-based method finds extensive application in traditional ship detec-
tion. However, it has higher requirements for image quality. When ships are disturbed by
cloud or the ship areas are large, it is difficult to obtain ideal results.
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2.1.3. Classification-Learning-Based Method

Supervised machine learning is utilized in traditional ship detection. Thus, it is
necessary to design suitable classifiers. The network trains classifiers by extracting ship
features and labels to predict ships, and then establishes the relationship between ship
features and ship categories. The main features include Scale Invariant Feature Transform
(SIFT) features [15], histogram of oriented gradients (HOG) features [16], shape and texture
features, etc. The commonly used classifiers are SVM, logistic regression, and AdaBoost.

Corbane et al. [17] utilized Radon transform and wavelet transform to extract ship
features. Subsequently, the features were combined, employing logistic regression to
accomplish ship detection. Song et al. [18] combined shape features with HOG features to
construct a feature vector independent of size. Then, the method detected ships through
AdaBoost.

However, the above manually designed features only utilize the low-level visual
information, and cannot accurately express the complex high-level semantic information in
the image. Moreover, because of the large amount of calculation in classifier detection, it is
difficult to meet the application requirements of a real-time system.

2.1.4. Summary

In addition to the aforementioned methods, nearshore ship–land segmentation [19–22]
and grayscale information [23] are also common traditional ship-detection methods. They
have achieved some good results in specific scenarios. However, they are vulnerable to
complex environment and heavily rely on prior knowledge. Additionally, the features
are manually designed, and lack good robustness and generalization ability in traditional
methods.

2.2. CNN-Based Methods

The CNN-based AlexNet [24] won the first prize in the 2012 ImageNet competition,
marking the advent of the CNN era. Since then, CNN-based ship-detection technologies
have developed rapidly and achieved excellent results. Compared with traditional meth-
ods, CNNs can automatically extract ship features without manual design. The features
possess more advanced semantic information, contributing to the improvement of detec-
tion results. CNN-based methods are mainly divided into anchor-based methods and
anchor-free methods, in which anchor-based methods include a two-stage detector and a
single-stage detector.

2.2.1. Two-Stage Detector

The anchor-based detector locates ships by defining a set of anchor boxes. Anchor
boxes are a set of rectangular bounding boxes with different sizes and aspect ratios, and
evenly distributed at each pixel position in the image. The network predicts and adjusts
the positions of anchor boxes to precisely cover the ships. Then, by further judging the
category of ship, the network completes the detection. Anchor-based detectors include
a two-stage detector and a single-stage detector. The two-stage detector divides the ship
detection into two stages. The network first predicts all proposed regions containing ships
in the first stage, and then modifies these regions to accurately locate and classify ships
in the second stage, as shown in Figure 4. The two-stage detector has high accuracy and
robustness. However, due to the refinement process of the proposed regions, the detection
efficiency still needs further improvement.
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Figure 4. Schematic diagram of two-stage detector.

R-CNN: Girshick et al. [25] proposed R-CNN in 2014, marking the first attempt to
incorporate deep learning into object detection. It significantly improves the results of
detection. R-CNN uses the deep semantic features extracted by a CNN to replace the
original shallow features (HOG, SIFT, etc.), further enhancing the discriminability of ships.
Specifically, R-CNN first employs the Selective Search (SS) algorithm to divide the input
image into approximately 2000 proposed regions, aiming to comprehensively cover the
ships. Then, the network utilizes a CNN to extract features of each proposed region in turn,
and sends them into the SVM classifier to obtain the detection results. At the same time, the
network uses the regressor to adjust the positions of these proposed regions to accurately
represent the ships.

SPPNet: Due to the size requirements of the classifier, R-CNN needs to standardize the
sizes of proposed regions. It leads to the distortion and deformation of ships. To this end,
He et al. [26] proposed SPPNet in 2015 which introduced spatial pyramid pooling (SPP).
SPP divides the feature map into a fixed number of grids, and then performs max pooling
for each grid. As a result, it can convert feature maps of arbitrary size into fixed-size feature
vectors. Furthermore, compared with R-CNN, SPPNet significantly improves detection
speed.

Fast R-CNN: In order to enable end-to-end learning for object detection and further
improve the training speed, Girshick et al. [27] proposed Fast R-CNN in 2015. The network
no longer needs to extract features for each proposed region separately; instead, it cleverly
maps the regions to the feature map of the input image. At the same time, Fast R-CNN
innovatively proposed ROI pooling, which can adapt the proposed regions of different
sizes to a unified size to fit into the subsequent fully connected network. Fast R-CNN
replaces the SVM classifier with a softmax layer. Furthermore, by designing a multi-task
loss, the network is unified into a whole to train and optimize. Fast R-CNN greatly reduces
training costs.

Faster R-CNN: Ren et al. [28] proposed Faster R-CNN, in which a region proposal
network (RPN) replaced the SS algorithm for extracting ROIs. RPN proposed anchor boxes
for the first time and it greatly improved the detection speed. Anchor boxes are evenly
distributed at each pixel position of the feature map and fully cover it. Specifically, in the
first stage, Faster R-CNN predicts the foreground and background probability of anchor
boxes and performs rough boundary adjustments. Then, it maps anchor boxes to the
feature map to support predictions in the second stage.

R-CNN improvement: Following the concept of R-CNN, some detectors improved
from R-CNN have been successively proposed, such as Mask R-CNN [29], Cascade R-CNN
[30], Libra R-CNN [31], Grid R-CNN [32], etc. These detectors improve Faster R-CNN from
different aspects, aiming to meet the application requirements in various scenarios and
achieving excellent detection results.

A two-stage detector achieves high precision and robustness in ship detection. For
example, Guo et al. [33] proposed rotational Libra R-CNN to accurately predict the position
of rotated ships. Li et al. [34] introduced the hierarchical selective filtering layer into Faster
R-CNN to generate more accurate prediction boxes. Nie et al. [35] proposed a nearshore
ship-detection method based on Mask R-CNN which introduced Soft-NMS to reduce the
occurrence of missed detection.
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2.2.2. Single-Stage Detector

In the single-stage detector, the results can be directly output after passing through
a deep network, eliminating the time-consuming aspect of region proposals, as shown in
Figure 5. Compared with the two-stage detector, the single-stage detector trades off the
accuracy and efficiency. It is suitable for applications that require high real-time accuracy
and high efficiency.

Image

Backbone Features
3×3

Conv

1×1

Conv

Category

(Softmax)

Bounding Box

(Regressor)

1×1

Conv

Figure 5. Schematic diagram of single-stage detector.

YOLO: Redmon et al. [36] first proposed the representative of single-stage detectors
in 2016, known as You Only Look Once (YOLO). The image only passes through the CNN,
and the ship category and location can be generated directly. Specifically, YOLOv1 divides
the input image into 7 × 7 grids, and each grid generates two prediction boxes to predict the
ship category and location. YOLO reduces the complexity of the algorithm and increases
the detection speed. However, YOLOv1 can only detect one ship per grid, resulting in poor
detection performance for dense ships. Therefore, many researchers have made a series of
improvements on the basis of YOLOv1, including data preprocessing, feature extraction,
and anchor box generation [37–41]. These methods have elevated the accuracy of single-
stage detectors to a new level while maintaining YOLO’s high detection speed, achieving
further balance in performance. To date, the latest algorithm in the YOLO series, YOLOv8,
has been published in GitHub. It incorporates innovative improvements over YOLOv5,
including backbone, decoupling detection head, loss function, and sets the algorithm in an
anchor-free form. YOLOv8 has the advantages of light weight and high efficiency.

SSD: Liu et al. [42] combined the regression concept of YOLO with the anchor
mechanism of Faster R-CNN, proposing the SSD in 2016. SSD sets anchor boxes with
different aspect ratios at each pixel of the feature map for predicting the classification and
regression of ships. At the same time, multi-scale detection technology is introduced in
SSD. By setting up six scale feature maps, the model gains the capability to detect ships
at multiple scales, especially small ones. SSD provides a new approach for the design of
single-stage detectors by incorporating the anchor mechanism, which can achieve effective
coverage of ships.

RetinaNet: During the training process, anchor mechanisms may lead the model to
excessively focus on the background regions where negative samples are located, thereby
affecting detection performance. For this reason, Lin et al. [43] proposed RetinaNet in 2017,
and Focal Loss effectively addresses the issues of positive and negative samples imbalance
as well as difficulty imbalance. By utilizing Focal Loss, the network achieves weighted
positive samples through balanced cross-entropy, enhancing the ability to detect positive
samples. Simultaneously, the network maps the confidence of each category to a weight
coefficient added to the loss, improving the ability of the network to detect difficult samples.
The proposal of RetinaNet makes it possible to imagine that the single-stage detector can
compete with the two-stage detector in detection accuracy.

There are strict limitations on the detection speed due to the real-time requirements
of monitoring the sea situation. Therefore, more and more researchers are committed to
deep development of single-stage detectors to meet the requirements of ship detection. For
example, Patel et al. [44] compared the detection capabilities of different versions of the
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YOLO algorithm. Gong et al. [45] integrated the shallow features of SSD and introduced
context information, improving the detection accuracy. Wu et al. [46] employed RetinaNet
as the backbone and proposed the hierarchical atrous spatial pyramid to obtain larger
receptive fields.

In summary, anchor-based detectors include two-stage detectors and single-stage
detectors. Anchor boxes fully cover the image per pixel, significantly enhancing detection
accuracy. However, the drawbacks of the anchor mechanism are as follows: Firstly, the
ship regions occupy only a small portion of an image, resulting in the majority of anchor
boxes being assigned to irrelevant backgrounds. Therefore, the massive tiling of anchor
boxes introduces redundant computations. Secondly, anchor boxes require setting hyperpa-
rameters, and unreasonable configurations may lead to performance degradation. Finally,
predefined aspect ratios result in poor performance when matching irregularly shaped
ships, causing the detector to lack generalization.

2.2.3. Anchor-Free Detector

The anchor-free detector breaks limitations of the anchor-based detector, providing
a new reference path for ship detection. The anchor-free detector uses keypoints instead
of anchor boxes to detect ships, which enhances the ability to process ships of different
shapes, as shown in Figure 6. It improves the generalization of the model.

Figure 6. Schematic diagram of anchor-free detector.

CornerNet: Law et al. [47] proposed CornerNet which was the first to implement the
anchor-free detector in 2018. It adopts the keypoint detection method and proposes corner
pooling. By predicting the top-left and bottom-right points, Corner pooling generates
prediction boxes to determine the ship positions. It significantly reduces the amount of
calculation and improves the speed of detection.

CenterNet: Inspired by CornerNet, Zhou et al. [48] proposed CenterNet in 2019.
CenterNet takes the peak points of the heatmap generated by the image as the center points
of ships. Then, it regresses the width, height, weight, and other information of ships based
on the center points to generate prediction boxes.

FCOS: Tian et al. [49] proposed an anchor-free detector using pixel prediction in 2019,
named FCOS. It introduces center-ness to measure the distance between predicted pixels
and the actual center of ships. Center-ness effectively inhibits the generation of low-quality
prediction boxes.

An anchor-free detector has the obvious advantage of alleviating the imbalance be-
tween positive and negative samples. Therefore, it achieves excellent performance in
ship detection. For example, Yang et al. [50] improved the weight assignment method of
center-ness in FCOS, making it better aligned with the shape of ships. It more effectively
suppressed the generation of low-quality prediction boxes. Zhuang et al. [51] proposed
CMDet based on FCOS to detect rotated ships. Zhang et al. [52] introduced the recall-
priority branch based on CenterNet to alleviate the occurrence of missed detection.

However, due to the lack of anchor boxes, the capability of ship detection completely
depends on the recognition of keypoints. Anchor-free detector exhibits poor performance
for ships with ambiguous keypoints. Moreover, it cannot effectively handle overlapping or
occluded ships.
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2.2.4. Summary

Compared with traditional ship-detection methods, CNN-based methods demonstrate
superior robustness and accuracy. Currently, CNN-based methods have become the pri-
mary methods for ship detection. According to the specific requirements, different detectors
are adopted in different ship detections. For high-precision detection, two-stage detectors
are considered more suitable. Furthermore, single-stage detectors are more suitable for
scenes with high requirements for real-time performance. In addition, anchor-free detectors
can effectively address problems such as imbalance between positive and negative samples,
and redundant calculations in anchor-based detectors.

2.3. Transformer-Based Methods

Vaswani et al. [53] proposed a simple network architecture, Transformer, and im-
plemented efficient natural language processing (NLP) in 2017. Transformer abandons
traditional recurrent and convolutional structures, adopting an encoder–decoder structure
based on multi-head self-attention mechanism, as shown in Figure 7a,b. In this process,
the encoder maps input sequences into a continuous representative sequence through
global attention operations. Furthermore, the decoder is auto-regressive. It is able to
better capture long-range contextual relationships by interacting with the output of the
encoder during sequence generation. Furthermore, the parallel computing capability of
Transformer greatly enhances training speed. Benefiting from the satisfactory performance
in NLP, researchers are attempting to explore its applications in computer vision. In recent
years, Transformer has been extended to object detection and has made great contributions.
According to differences in model design, it can be divided into Transformer-based detector
and Transformer-based backbone.

 Positional
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Embedding

Multi-Head 

Attention

Add & Norm

Feed Forward

Add & Norm

Output 

Embedding

Masked 

Multi-Head Attention

Add & Norm

Multi-Head 
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Output 
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Addition

Figure 7. Schematic diagram of Transformer. (a) Encoder–decoder structure. (b) Self-attention
mechanism.

2.3.1. Transformer-Based Detector

DETR: Carion et al. [54] proposed DETR, which first applied Transformer to object
detection in 2020. DETR views ship detection as a set prediction problem. Specifically,
DETR first extracts feature maps using CNN. Then, they are converted into one-dimensional
vectors and fed into the encoder along with positional codes. Afterward, the encoder sends
the output vectors into the decoder along with object queries. Finally, the decoder sends the
output to a shared feed-forward network to obtain the detection result. DETR matches the
predicted object queries with ships, seeking an optimal matching scheme with the lowest
cost. Therefore, DETR circumvents the NMS procedure and achieves end-to-end detection.
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Deformable DETR: The high computational cost and spatial complexity of the self-
attention mechanism result in a slow convergence speed of DETR. The resolution that
DETR can process is limited, and it is not ideal for detecting small ships. To address
it, Zhu et al. [55] incorporated the concepts of deformable convolution and multi-scale
features into DETR, proposing Deformable DETR. Furthermore, the deformable attention
module was designed to replace the traditional attention module. It allows each reference
point to focus only on a set of sampling points in its neighborhood, and the positions of
these sampling points are learnable. It reduces the computational burden in irrelevant
regions and decreases training time. At the same time, the introduction of multi-scale
feature maps realizes the hierarchical processing for ships of different sizes. Deformable
DETR is capable of effectively performing detection tasks of different scales.

2.3.2. Transformer-Based Backbone

Swin Transformer: Liu et al. [56] proposed Swin Transformer, attempting to combine
the prior knowledge of a CNN with Transformer. Swin Transformer employs the idea of
the local context in a CNN, where the model calculates self-attention only within each
local window. It significantly reduced the sequence length and improved computational
efficiency. Swin Transformer also introduced the idea of translational invariance from
CNNs. The shifted window approach facilitates information interaction between adjacent
windows, achieving the goal of global information extraction. It first demonstrated that
Transformer can be used as a general backbone in computer vision.

PVT: Wang et al. [57] proposed a Transformer backbone suitable for dense object
detection, named PVT. By incorporating the pyramid structure from CNN, PVT can extract
better multi-scale feature information. Meanwhile, compared with traditional multi-head
attention, spatial reduction attention ensures that PVT can obtain high-resolution feature
maps while reducing computational cost.

TNT: Transformer struggles to capture the correlation within patches, which leads
to the omission of small objects. To this end, Han et al. [58] proposed a Transformer
in Transformer (TNT) architecture. TNT further divides each patch and then computes
self-attention within each patch. As a result, TNT cannot only model global information,
but also better capture local information, extracting more detailed features.

2.3.3. Summary

The issues of high parameters and computational consumption in Transformer greatly
restrict its practical application scenarios. Furthermore, the high data requirements make
it challenging to achieve satisfactory results on small datasets. These factors limit its de-
velopment in ship detection. However, compared to CNN-based methods, Transformer
can thoroughly explore long-range dependencies in targets, and effectively capture global
features. It increases the identifiable information of ships from a global perspective. Trans-
former has significant potential for development in ship detection. However, there is
currently a lack of research on the optimization of ship characteristics, which may be a key
hindrance to the development of this field. Therefore, addressing the above issues and
fully leveraging the advantages of Transformer in ship detection require more efforts in
the future. Furthermore, in order to facilitate the comparison of the three methods, we
summarize them and their advantages and disadvantages in Table 1



Remote Sens. 2024, 16, 1145 11 of 41

Table 1. Methods of ship detection and main advantages and disadvantages.

Methods Advantages Disadvantages References

Traditional
Methods

Template
Matching

It is simple to operate. It requires a lot of prior knowledge
and is sensitive to the environment. [8–10]

Visual
Saliency

It calculates the contrast between a
certain region and its surrounding
areas to extract regions.

It has higher requirements for image
quality. [11–14]

Classification
Learning

It establishes the relationship be-
tween ship features and ship cate-
gories.

The manually designed features
only utilize the low-level visual in-
formation and cannot express the
complex semantic information.

[17,18]

CNN-based
Methods

Two-stage
Detector

It divides the ship detection into two
stages and has high accuracy and ro-
bustness.

Detection efficiency of two-stage de-
tector may be lower than single-
stage detector.

[25–32]

Single-stage
Detector

It is suitable for the applications that
require high real-time accuracy and
high efficiency.

Detection accuracy of single-stage
detector may be lower than two-
stage detector.

[36–43]

Anchor-free
Detector

It uses keypoints instead of an-
chor boxes to detect ships which
improves the generalization of the
model.

It exhibits poor performance for
ships with ambiguous keypoints. [47–49]

Transformer
Methods

Detector
Backbone

It can explore long-range dependen-
cies in targets, and effectively cap-
ture global features.

The high data requirements make it
challenging to achieve satisfactory
results on small datasets.

[54–58]

3. Challenges and Solutions in Ship Detection

Due to the significant differences between optical remote-sensing images and natural
images, and variations in the features of ships compared with other targets, applying
classical object detection algorithms directly results in low detection accuracy and missed
detection. Therefore, this section summarizes the reasons for the low accuracy in SDORSIs,
including complex marine environments, insufficient discriminative features, large scale
variations, dense and rotated distributions, large aspect ratios, and imbalances between
positive and negative samples. Furthermore, the corresponding solutions based on CNNs
and their advantages and disadvantages are analyzed in detail. Challenges and solutions
are shown in Figure 8.

Figure 8. Challenges and solutions for improvement.



Remote Sens. 2024, 16, 1145 12 of 41

3.1. Complex Marine Environments

Optical remote-sensing images can provide rich information, but they are susceptible
to factors such as light and weather. These adverse background factors bring significant
interference to ship detection, resulting in missed or false detection. At the same time, there
are usually only a few ships in remote-sensing images of the sea, while the background
occupies the majority of the area. The extreme imbalance phenomenon causes the detector
to overly focus on background regions, but ignores the effective extraction of ships. There-
fore, it is a necessary processing strategy to guide the network to pay more attention to
ships and ignore irrelevant background in SDORSIs. At present, there are several main
solutions for complex backgrounds: image preprocessing, attention mechanisms, and
salience constraints.

3.1.1. Image-Preprocessing-Based Method

Image preprocessing is one of the feasible methods to deal with complex background.
It primarily suppresses the expression of background through prior information during
the image preparation stage to reduce the contribution of the background, allowing the
model to focus on learning ship features. Through the method of active guidance, image
preprocessing greatly reduces the impact of complex background in SDORSIs.

Yu et al. [59] developed an embedded cascade structure. It removes the majority of
irrelevant background in advance, and selects regions containing ships for training. The
method alleviates the imbalance of the foreground and background, and reduces the inter-
ference of the background. Zheng et al. [60], Song et al. [61], and Yang et al. [62] designed
image dehazing algorithms to restore images, addressing the issues of cloud occlusion in
ocean scenes. Dehazing algorithms improve the image quality and are beneficial for enhanc-
ing detection accuracy. However, Li et al. [63] argued that existing dehazing algorithms
did not distinguish between blurry and clear images. Excessive deblurring of clear images
could lead to degrading image quality. Therefore, they proposed the blurred classification
and deblurring module which obtained clear images and improved detection accuracy.

However, it should be noted that some image preprocessing methods require pro-
cessing images independently based on prior knowledge, lacking generalization ability.
Furthermore, some methods may introduce more convolutional layers which require addi-
tional training for the network.

3.1.2. Attention-Mechanism-Based Method

Due to the bottleneck in information processing, human cognitive systems always
tend to selectively focus on important information and ignore secondary information. The
core idea is to weight different parts of the input sequence according to the importance of
features, and enhance the contrast between ships and the background at the feature level.
Without human intervention, the attention mechanism operates end-to-end. Attention-
mechanism-based methods generate prominent feature maps, which effectively highlight
ship regions and suppress the expression of irrelevant background regions. Therefore,
introducing attention mechanism is one of the effective methods to deal with complex
background issues.

Li et al. [64] introduced the channel attention mechanism, as shown in Figure 9b, into
multiple receptive field fusion modules to suppress irrelevant background information.
Wang et al. [65] attached the channel attention mechanism to the backbone to enhance
the capability of extracting ship features in complex backgrounds. Hu et al. [66] and
Qin et al. [67] incorporated both a spatial attention mechanism, as shown in Figure 9a, and
a channel attention mechanism to highlight the ships. Chen et al. [68] designed a coordinate
attention module. It effectively combines spatial attention and channel attention to enhance
the ability of ship feature representation. Qu et al. [69] added a convolutional attention
module to YOLOv3, as shown in Figure 9c, highlighting ship features and improving
detection accuracy.
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Figure 9. Schematic diagram of attention mechanisms. (a) Spatial attention mechanism. (b) Channel
attention mechanism. (c) Convolutional block attention module.

However, an attention mechanism increases the complexity of network computing.
Furthermore, if the network overly relies on it in SDORSIs, it may lead to a decreased
ability to generalize.

3.1.3. Saliency-Constraint-Based Method

The saliency-constraint-based method adopts the idea of multi-task learning, con-
straining the network to focus on ships by designing the loss function, as shown in Figure
10. Firstly, the method utilizes prior information to create significance maps as labels. The
values on labels reflect the importance of pixel positions, and the higher value indicates
the higher attention of the ship. Then, a saliency prediction branch is added to output
the predicted saliency maps. Through pixel-level loss constraints, the model pays more
attention to ship regions during the training phase, thereby suppressing the impact of the
background. The method enables the network to prioritize focusing on saliency regions
with obvious visual features, and ignore the irrelevant background. It can narrow down
the detection range and enhance detection efficiency.

Figure 10. Schematic diagram of saliency constraint, the red square is the saliency constraint.
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Ren et al. [70] added a saliency prediction branch to introduce saliency information
with stronger foreground expression ability in SDORSIs. It improves the ship detection
capability in complex environments. Chen et al. [71] designed a degradation reconstruction
enhancement network. By selective degradation, the network obtains “pseudo saliency
maps”. Then, the maps are used to guide the network to focus more on ship information
and ignore the irrelevant background in the training stage.

Visual saliency employs pixel-level supervision to guide the network and greatly
addresses the challenge of complex backgrounds in SDORSIs. However, the generation of
saliency maps requires clearer spatial distribution, which has demands on the details and
resolution of feature maps. Furthermore, the weight of multi-task loss needs to be adjusted
manually.

3.1.4. Summary

Complex environmental interference is one of the main challenges for the difficult
improvement of SDORSI results. The existing research indicates that optimization strategies
such as image preprocessing, attention mechanisms, and saliency constraints contribute to
improving detection performance. The essence of these methods is to highlight ships and
make the network focus on ship features. However, the methods are inevitably associated
with some disadvantages. Simple methods are not suitable for more complex environments.
Furthermore, paying too much attention to the background of a specific dataset leads to
overfitting, hindering the network from generalizing. In order to provide readers with a
more intuitive understanding, the methods and the main advantages and disadvantages in
complex marine environments are shown in Table 2.

Table 2. Methods and main advantages and disadvantages of complex marine environments.

Methods Advantages Disadvantages References

Image
Preprocessing

Exclude
Background

It filters out untargeted images in ad-
vance.

Introducing convolutional layers re-
quires additional training for the net-
work.

[59]

Dehazing
Algorithm

It improves the quality of the image
by eliminating the impact of clouds
and fog.

Excessive dehazing may result in in-
formation loss. Simple algorithms
are not suitable for complex scenes.

[60–63]

Attention
Mechanism

Channel
Attention

Mechanism

It adjusts channel weights dynami-
cally to focus on ships.

It has limitations in extracting global
information. [64–67]

Spatial Attention
Mechanism

It highlights important information
in the image to focus on ships.

It may excessively focus on local
structures, leading to a decreased
ability to generalize.

[66,67]

Convolutional
Attention
Module

It adjusts convolutional kernel
weights dynamically at different
positions to focus on ships.

Introducing additional computation. [68,69]

Saliency
Constraint

Saliency
Constraint

It uses the concept of multi-task
learning and pixel-level supervision
to focus on ships.

It has a high requirement for the res-
olution of the images. The weight
needs to be adjusted manually.

[70,71]

3.2. Insufficient Discriminative Features

Unlike occupying a large proportion in natural images, ships usually cover only a few
dozen pixels in optical remote-sensing images, which makes them challenging to detect.
As a deep network continuously compresses and extracts features, the crucial information
of small ships is easily suppressed. Therefore, insufficient discriminative features of small
ships are the main reason for missed detection. It remains a challenge in ship detection, and
has not been effectively solved. Currently, context information mining and feature fusion
are effective methods to improve the accuracy of small ship detection. These methods focus
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on extracting effective information from the surroundings or inside of ships to enhance the
feature expression ability.

3.2.1. Context Information Mining-Based Method

Context information mining refers to enhancing the information processing ability of
the network by obtaining the environment information around the ship. The information is
closely related to ships and helps to identify small ships with network uncertainty, thereby
improving the accuracy and robustness. When detecting small ships, exploring contextual
information that is closely connected with the ship can help obtain contents conducive to
detection. It can alleviate the issue of insufficient discriminative features of small ships and
improve the detection accuracy.

Ship-wake-based method: Ships navigating at sea usually occupy only a few dozen
pixels in optical remote-sensing images, but their wake often reaches hundreds of pixels,
as shown in Figure 11a. Wake refers to the visual trace created by the movement of ships,
such as waves or disturbances on the sea. It is closely associated with ships and provides
crucial contextual information, which can be used to enhance ship detection performance.
Liu et al. [72], Xue et al. [73], Liu et al. [74], Liu et al. [75], and Liu et al. [76] introduced
wake as contextual information. By employing a cascaded method of ships and wake, the
network achieved excellent performance.

Figure 11. Schematic diagram of context information mining. (a) Comparison between the ship
and its wake. (b) Comparison between standard convolution (kernel size=3, rate=1) and dilated
convolution (kernel size=3, rate=2).

Dilated-convolution-based method: Increasing the receptive fields while maintaining
resolution can help obtain more contextual information, helping the network to detect small
ships better. Using a large kernel to extract information is regarded as an effective method
for increasing the receptive fields. However, the parameters of it increase the computational
burden. Therefore, the dilated convolution is developed as the context information mining
method, as shown in Figure 11b. Xu et al. [77], Chen et al. [78], and Zhou et al. [79]
used dilated convolution instead of regular convolution to extract ship features. Dilated
convolution can capture more context information without bringing too many parameters,
introducing more references in SDORSIs.

It is worth noting that the extraction of context information requires a balance, as
introducing irrelevant information may harm the performance. Furthermore, because of
gaps in the dilated convolution kernel, the feature extraction may result in discontinuity of
information. Therefore, the network needs to stack multiple dilated convolutions to ensure
the integrity of feature.

3.2.2. Feature-Fusion-Based Method

A CNN has a hierarchical structure, and generates features with multiple resolutions.
Shallow features contain more detailed information, such as ship boundary, which is bene-
ficial for ship localization. Furthermore, deep features contain more semantic information,
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such as the discriminant parts of the ship, which is more conducive to ship classification.
Feature fusion can obtain rich semantic information and localization information on a
feature map to enhance the discriminative features of small ships.

Liu et al. [80] integrated three feature maps of different sizes in the same channel
dimension, enhancing discriminative features. Li et al. [81] first proposed a pooling-based
method to integrate features, fully leveraging the advantages of features with different
resolutions in ship detection. Tian et al. [82] designed a dense feature reconstruction
module. By integrating high-resolution detailed information with low-resolution semantic
information, small ship features were enhanced. Qin et al. [83] aggregated features based
on residual network to improve the accuracy of ship detection. Han et al. [84] proposed
a dense feature fusion network. It effectively integrated information without consuming
additional memory space. Wen et al. [85] proposed a method of cross-skip connection to
flexibly fuse information.

Feature fusion is an effective method to detect insufficient discriminative features
of small ships. However, it increases the computation and model complexity, which are
detrimental to detection speed. Furthermore, improper fusion methods may result in loss
or confusion of information.

3.2.3. Summary

Insufficient discriminative features are a major challenge in SDORSIs, and enhancing
the feature representation ability of ships is a key technology to alleviate this problem. The
experiments indicate that methods of context information mining and feature fusion can
enhance the discriminative ability of small ships, further improving the detection effect.
However, the significant performance gap between small and large ships indicates that there
is still considerable room for improvement. Specifically, the unfairness in Intersection over
Union (IoU) evaluation and the indifference in regression loss contribute to the disregard of
small ships in detection. Therefore, in order to effectively address this challenge, increasing
the attention of small ships detection is the key point for future work. The methods and
the main advantages and disadvantages of insufficient discriminative feature are shown in
Table 3.

Table 3. Methods and main advantages and disadvantages of insufficient discriminative feature.

Methods Advantages Disadvantages References

Context
Information

Mining

Ship Wake
The wake is closely related to the
ship and can provide additional dis-
criminative information.

Excessive context information may
compromise detection performance. [72–76]

Dilated
Convolution

It enhances the receptive field with-
out introducing additional parame-
ters while maintaining resolution.

There are gaps in the dilated convo-
lution kernel, which leads to infor-
mation discontinuity.

[77–79]

ine
Feature
Fusion

Feature
Fusion

Integrating information from feature
maps with different resolutions can
extract rich semantic information
and localization information to en-
hance information interaction capa-
bilities.

Improper fusion methods may result
in loss or confusion of information. [80–85]

3.3. Large Scale Variation

Compared with natural images, the scale variation of ships in optical remote-sensing
images is larger. With the down sampling of optical remote-sensing images, the spatial
resolution decreases. The information of small ships may vanish in deep features, causing
the detector to fail to identify crucial discriminative features. Therefore, only relying on
single-scale information for detecting ships of various scales cannot achieve desirable
results. The current research challenge lies in achieving satisfactory detection results for
ships with different scales using the same network. At present, the introduction of multi-
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scale information is an effective method to address this issue. The essence is to perform
hierarchical processing for large, medium, and small ships.

3.3.1. Multi-Scale Information-Based Method

Due to the absence of excessive down sampling in shallow features, important high-
frequency information can be preserved, such as texture, color, and edges. The information
helps with the prediction of small ships. After multiple down samplings, the deep features
can obtain larger receptive fields, which is helpful for the prediction of large ships. There-
fore, utilizing multi-scale feature maps can better complete the fine-grained detection of
different scales. However, they are independent from each other in the early prediction of
ships, lacking mutual correlation. Then, a multi-scale information-based method based on
feature fusion is proposed to alleviate this problem. It enhances the information interaction
ability of different scale feature maps, and is widely applied in ship detection.

Feature Pyramid Network (FPN) [86] is a representative method that uses feature
fusion to enhance multi-scale information. Through the lateral connection and the top-
down pathway, a high-level feature transfers downward and fuses with a low-level feature,
as shown in Figure 12. It combines the semantic information and positional information of
feature maps, improving the representational ability of multi-scale information. Therefore,
FPN can more comprehensively detect multi-scale ships. Tian et al. [87] and Ren et al. [70]
proposed a multi-node feature fusion method based on FPN. It fully integrates information
from feature maps at different scales, and improves the detection ability of multi-scale
ships. Si et al. [88] and Yan et al. [89] used an improved bidirectional FPN to enhance the
interactive ability of multi-scale features. Li et al. [90] and Yang et al. [50] improved FPN
using the Network Architecture Search algorithm (NAS). It can learn features adaptively
and choose more suitable fusion paths to enrich information. Chen et al. [91] combined
FPN with the recursive mechanism to further enhance the representational capacity of
multi-scale information. Xie et al. [92] proposed an adaptive pyramid network. It can
enhance important features, improving detection accuracy. Zhang et al. [93] proposed SCM,
which addresses the issue of channel imbalance during the feature fusion. Guo et al. [33]
proposed Balanced Feature Pyramid (BFP). It adjusts multi-scale feature maps to the same
medium size by interpolation and down sampling. Then, the balanced semantic features
are generated by scaling and refining the features. The method alleviates the impact of
different size feature maps during fusion. Guo et al. [94] improved BFP and proposed
Adaptive Balanced Feature Integration (ABFI). The module can assign different weights to
the different feature maps during feature fusion, enabling more accurate detection.

Figure 12. Schematic diagram of FPN.

In conclusion, addressing the multi-scale challenge in SDORSIs requires a comprehen-
sive consideration of factors such as scale differences, algorithm design, FPN construction,
and so on. It is essential to ensure that the network can accurately and efficiently detect
ships of different scales.

3.3.2. Summary

The large-scale variation in SDORSIs is one of the key factors limiting the improvement
of performance. Introducing multi-scale information is one of the commonly used methods.
Simultaneously, the key factor contributing to the low detection accuracy of large-scale
targets detection is the poor performance in small vessels. In the future, enhancing the
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feature representation capability of small ships and designing multi-branch detection
networks are also strategies to address this issue. Furthermore, the research trend lies
in how to enhance the light weight of the network and reduce the application threshold
in portable mobile devices while ensuring the accuracy of multi-scale ship detection.The
methods and the main advantages and disadvantages of large scale variation are shown in
Table 4.

Table 4. Methods and main advantages and disadvantages of large scale variation.

Methods Advantages Disadvantages References

Multi-Scale
Information

FPN and
Improvements

It enables the model to handle ships
of different scales through the
pyramid structure and the feature
fusion is used to enhance the
information interaction ability to
improve the detection accuracy.

By introducing the pyramid
structure, it increases the
computational complexity and
training time.

[33,50,70,86–94]

3.4. Dense Distribution and Rotated Ships

Due to the arbitrary orientation of ships in optical remote-sensing images, using
horizontal bounding boxes (HBBs) cannot accurately represent the orientation of ships, and
also introduce excessive background information. At the same time, ships often exhibit
a trend of dense and rotated distribution in areas such as nearshore docks. Excessive
overlap between bounding boxes leads to the suppression of correct boxes, which further
exacerbates the phenomenon of low recall. Therefore, achieving accurate detection of ships
with a dense rotated distribution is a challenge in optical remote-sensing images. Currently,
employing arbitrary orientation bounding boxes (OBBs) is an effective strategy for detecting
rotated ships. OBBs accurately represent the position and orientation information of ships
while effectively reducing the introduction of background information. Additionally,
improved methods for Non-Maximum Suppression (NMS) alleviate the issue that detection
results are incorrectly suppressed in densely distributed ships to a certain extent.

3.4.1. OBB Representation and Regression-Based Method

OBBs introduce angle information based on HBBs. The angle information can effec-
tively represent the sailing direction of the ship. Therefore, OBBs can better highlight the
position and orientation information. OBBs also effectively reduce the introduction of back-
ground information and separate the densely distributed ships. Accurately representing
and generating arbitrary OBBs to locate ships holds higher application value in optical
remote-sensing images.

Representation with five parameters: The method with five parameters is one of
the classical representations of OBBs, represented by (x, y, w, h, θ ). Specifically, (x, y)
represents the center point, (w, h) represents the width and height, and θ represents the
rotated angle. The representation of 90◦ cycle defines the height as a rectangular edge that
forms an acute angle with the x-axis, and the range of values for θ is [0◦, 90◦), as shown in
Figure 13a. However, the defined width and height are exchanged when the rotated angle
exceeds 90◦, as shown in Figure 14a. It affects the convergence effectiveness of the network.
The representation of 180◦ cycle defines the long side of a rectangular box as the height,
and the range of values for θ is [−90◦, 90◦), as shown in Figure 13b. It can effectively avoid
the issue of exchanging width and height. However, there is a value difference when there
is an overlap of −90◦ and 90◦ at the boundary, which produces the boundary discontinuity
problem, as shown in Figure 14b. It results in a sharp increase in loss at the boundary,
affecting the detection performance. Liu et al. [95], Ouyang et al. [96], and Ma et al. [97]
used OBBs represented as (x, y, w, h, θ) to locate ships.
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Figure 13. Schematic diagram of classical representations. (a) Five parameters (90◦ cycle). (b) Five
parameters (180◦ cycle). (c) Eight parameters.

Figure 14. Schematic diagram of the issues of classical representations. The ground truth boxes are
shown in red, and the bounding boxes are shown in blue. (a) Five parameters (90◦ cycle). (b) Five
parameters (180◦ cycle). (c) Eight parameters.

Representation with eight parameters: The method with eight parameters is another
classical representation for OBBs, represented by (x1 , y1 , x2 , y2 , x3 , y3 , x4 , y4). Specifically,
(xn, yn) represents the coordinates of the four vertices of OBBs, as shown in Figure 13c.
The method determines a unique direction by artificially setting the reference point, rather
than representing angle values. However, it also exhibits an issue of loss discontinuity
during the regression process. As shown in Figure 14c, the ideal regression process from
the blue bounding box to the red ground truth box should be (a→a), (b→b), (c→c), (d→d).
However, the actual regression process is (a→b), (b→c), (c→d), (d→a). At the same time,
the representation requires more parameters, increasing the learning burden of the network.
Zhang et al. [98] used OBBs represented as (x1, y1, x2, y2, x3, y3, x4, y4) to locate ships.

Others: The issue of loss discontinuity, calculated by representations with five pa-
rameters and eight parameters, significantly impacts the convergence effectiveness of the
model. Therefore, proposing new representations to alleviate this problem is the focus
of current research. Su et al. [99] proposed the method represented by (x, y, w, h, OH,
OV) to locate ships, as shown in Figure 15a. OH and OV were normalized horizontal
and vertical distance. The method fundamentally addressed the boundary issue of angle
regression. Zhou et al. [100] proposed an ellipse method, represented by (x, y, |u|, |v|, m,
α), as shown in Figure 15b, where α=0 represents that the ship belongs to the second and
fourth quadrants; α=1 represents that the ship belongs to the first and third quadrants.
Furthermore, m is the difference between the length of the major axis and the focal vector.
It uses vectors to represent angles, avoiding the issue of loss discontinuity caused by direct
angle prediction. Yang et al. [101] and Zhang et al. [93] converted the representation with
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five parameters into a 2D Gaussian distribution, as shown in Figure 15c. It abandons angle
representation, avoiding the issue of discontinuity in angles.

Figure 15. Schematic diagram of others. (a) Six parameters represented by (x, y, w, h, OH, OV). (b)
An ellipse method represented by (x, y, |u|, |v|, m, α). (c) Gaussian distribution, and the confidence is
highest in the red area.

Anchor-based regression: It is a common method to use the anchor-based detector
to generate OBBs. The detector first presets a set of rotated anchor boxes and overlays
the input image with pixel-wise prediction. Then, the detector regresses parameters of
the rotated angle, center position, width, and height of positive samples by a predefined
method to generate OBBs. For example, KOO et al. [102] used the width or height distance
projection to predict the angle and generate OBBs. Ouyang et al. [96] first preset a series of
horizontal anchor boxes. Then, the rotated proposal regions were generated by bilinear
interpolation. Furthermore, through fully connected layers, OBBs were generated. Li et al.
[64] proposed the boundary regression module, which achieved more accurate regression
by predicting the offset values for the four edges of each bounding box.

Anchor-free regression: The method of generating OBBs using the anchor-free detec-
tor is not constrained by anchor boxes. It usually uses keypoints or segmentation techniques
to directly generate the OBBs of ships. Furthermore, compared with the anchor-based detec-
tor, it reduces hyperparameters and demonstrates greater generalization. Zhang et al. [93]
converted the ship detection into a binary semantic segmentation based on the anchor-free
detector. The method generates OBBs directly by selecting pixels above the set threshold.
Chen et al. [103] used the network to detect three keypoints: the bow, the stern, and the
center. Furthermore, they combined the bow and stern to generate a series of prediction
boxes. Then, OBBs were generated using the center points and angle information. Zhang
et al. [104] used the bow and the center points to determine the orientation and generate
OBBs. Cui et al. [105] used the anchor-free detector to predict the center point and shape of
ships for accurately generating OBBs.

Using OBBs in rotated ship detection alleviates the issues introduced by HBBs and
achieves good results. However, there are certain limitations in OBBs. The loss discontinu-
ity of classical representations seriously impacts efficiency. Currently, some representations
solve this problem, but the calculations are complex. Furthermore, the predefined dimen-
sions, aspect ratio, and angles of anchor boxes are closely related to the dataset. The design
of different hyperparameters affects the performance of detection. However, the prior
knowledge of anchor boxes is crucial. Their absence may cause the detection accuracy to
decrease.

3.4.2. NMS-Based Method

Due to the dense distribution of ships, the use of OBBs for close ship detection may
also produce the significant overlap. When the IoU between different ships exceeds the
predefined parameter, traditional NMS retains only one bounding box with the highest
confidence, and completely discards the other. The operation may lead to the suppression
of a correct prediction, resulting in the instance of a missed detection. Therefore, in order to
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eliminate redundant prediction boxes while maximally preserving correct predictions, the
improvement methods of NMS have been proposed.

Bodla et al. [106] proposed Soft-NMS, which considers both the confidence and
the overlap of different bounding boxes. It weights the overlapping bounding boxes to
reduce their scores, rather than simply removing them with non-maximum confidence.
Nie et al. [34] and Zhang et al. [107] employed Soft-NMS instead of traditional NMS, im-
proving the recall in ship detection. Inspired by Soft-NMS, Cui et al. [105] proposed
Soft-Rotate-NMS. It combines Soft-NMS with rotated features, making it more suitable for
ships with arbitrary orientations.

It is important to note that the setting of the IoU threshold has a significant impact on
NMS, requiring constantly manual adjustment to find the optimal threshold during the
training process. Therefore, an adaptive threshold NMS algorithm is more in line with the
current environment.

3.4.3. Summary

The dense and rotated distribution of ships is one of the challenges in SDORSIs. Exist-
ing research indicates that the generation of arbitrary OBBs and the improvement methods
of NMS have positive effects. OBBs can more accurately locate the position and orientation
of rotated ships. Furthermore, the improvement methods of NMS greatly alleviate the prob-
lem of missed detection of dense ships. Solving the issue of boundary discontinuity caused
by OBBs has significant research value in the future. However, current OBB representations
introduce additional parameters, and require a balance between detection accuracy and
speed in practical applications. The methods and the main advantages and disadvantages
of dense distribution and rotated ships are shown in Table 5.

Table 5. Methods and main advantages and disadvantages of dense distribution and rotated ships.

Methods Advantages Disadvantages References

OBB
Representation

Five
Parameters

It is represented by (x, y, w, h, θ )
and more accurately represents the
position and orientation information
of ships.

At the angle boundary, angle change
leads to a sharp increase in loss. [95–97]

Eight
Parameters

It is represented by (x1 , y1 , x2 , y2
, x3 , y3 , x4 , y4) and does not use
angles to represent direction.

It produces loss discontinuity and a
large number of parameters. [98]

Others It can alleviate the problem of loss
discontinuity.

Some methods increase the compu-
tational complexity and the training
time.

[93,99–101]

OBB
Regression

Anchor-Based
It utilizes predefined anchor boxes
for the OBB’s more accurate regres-
sion.

The performance is greatly influ-
enced by hyperparameters, which
are related to sizes and aspect ratios
of predefined anchor boxes.

[64,96,102]

Anchor-Free
It is not constrained by sizes and as-
pect ratios of anchor boxes, reducing
hyperparameters.

Due to the absence of prior infor-
mation provided by anchor boxes,
the results are sometimes lower than
anchor-based methods.

[93,103–105]

NMS

Soft-NMS
It alleviates the problem of missed
dense ships by weighting overlap-
ping bounding boxes.

It is not combined with rotated fea-
ture of the ship. [35,106,107]

Soft-Rotate
-NMS

It combines rotated features with
Soft-NMS, making it more suitable
for ship detection.

The IoU threshold has a significant
impact on NMS. [105]

3.5. Large Aspect Ratio of Ships

The large aspect ratio is one of the most crucial features of ships. The standard
convolution struggles to adapt to the geometric shapes in feature extraction. It inevitably
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leads to insufficient feature extraction and carries redundant information. Traditional ROI
pooling usually extracts square-shaped features during the feature sampling stage. It leads
to an uneven distribution of feature samples in two directions, affecting the detection
performance. Therefore, it is important to design effective processing methods according to
the geometric shapes of ships. Currently, the Deformable Convolutional Network (DCN)
and improved methods of feature sampling are effective strategies. These methods aim to
adapt to the geometric shapes of ships with large aspect ratios, and enhance the ability to
extract irregular features.

3.5.1. DCN-Based Method

DCN [108] achieves the effect of random sampling by adding the offset variable to
each sampling point. Moreover, by dynamically adjusting offsets, DCN can adaptively
extract feature information from irregularly shaped ships, as shown in Figure 16a. There-
fore, compared with the standard convolution, DCN is better able to adapt to geometric
deformations such as the shape and size of the ship. It can extract ship features adequately
while reducing the introduction of background information.

Figure 16. Schematic diagram of methods for large aspect ratios, orange indicates sampling points. (a)
Comparison between standard convolution and deformable convolution, and the latter is deformable
convolution. (b) Comparison between standard sampling and improved sampling, and the latter
better matches the shape.

Su et al. [99] and Chai et al. [109] utilized DCN instead of standard convolution to
extract features, enhancing the ability to capture irregular ship features. Guo et al. [94] and
Cui et al. [110] integrated DCN into FPN to better adapt to the geometric features of ships.
Zhang et al. [52] employed DCN for up sampling, which ensured the robust convolutional
process and improved the detection ability for ships with various shapes.

However, it is worth noting that the offsets entirely rely on the compensatory predic-
tions of the network. It may result in unstable performance at the beginning of training.
Furthermore, DCN consumes more memory compared to the standard convolution.

3.5.2. Feature Sampling-Based Method

Feature sampling refers to the operation of using ROI pooling or ROI align to obtain
the fixed-size feature map. However, traditional feature sampling outputs the same number
of feature samples along the width and height directions. It leads to a dense distribution of
feature samples in the short side, but a sparse distribution in the long side, significantly
impacting detection performance. Therefore, it is necessary to propose a new feature sam-
pling method that adapts to ship geometric shapes. The improved method can match ship
shapes and extract feature samples uniformly in both directions, as shown in Figure 16b.

Different from the typical ROI pooling, Li et al. [81] designed a shape-adaptive
pooling. It obtains uniformly distributed feature samples in both length and width ac-
cording to the shapes of ships. Then, it combines these samples into a fixed-size feature
map. Guo et al. [111] designed a shape-aware rotated ROI align. It alleviates the problem
of uneven feature distribution caused by the typical square-shaped sampling approach.
Furthermore, it achieves more accurate feature representations with fewer parameters.
Zhang et al. [112] performed three different shape-aware ROI align operations on each ROI.
It captures information more accurately for ships with large aspect ratios.
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The improved method is an effective approach to enhance the detection result of ships
with large aspect ratios. However, it maps multiple feature points to one feature point,
which may cause some degree of information loss.

3.5.3. Summary

The large aspect ratio is one of the key factors which constrains the development in
SDORSIs. Furthermore, enhancing the ability of network to extract irregular features is
a critical technology for alleviating this issue. The experiments show that using DCN to
extract features and improving the feature sampling methods are effective strategies. These
methods can better adapt to ship shapes and uniformly extract feature samples. However,
when extracting features from large images, DCN tends to heavily consume memory
which limits application scenarios. Simultaneously, feature sampling maps multiple feature
samples to a single feature point, which may cause a certain degree of information loss
and calculation errors. The large aspect ratio is the essential distinction between ships and
other targets. Therefore, exploring more detection methods designed for the large aspect
ratio is one of the future development trends. The methods and the main advantages and
disadvantages of large aspect ratio of ships are shown in Table 6.

Table 6. Methods and main advantages and disadvantages of large aspect ratio of ships.

Methods Advantages Disadvantages References

DCN DCN
It can adaptively extract feature
information for irregularly shaped
ships by randomly sampling.

The offset of sampling points
entirely relies on the prediction of
network and DCN consumes more
memory compared to the standard
convolution.

[52,94,99,109,110]

Feature
Sampling

ROI Pooling
ROI Align

It adapts to the ship geometry of
the large aspect ratio, and extracts
features uniformly in different
directions.

It maps multiple feature points to
one feature point, which may
cause some degree of information
loss and computational error.

[81,111,112]

3.6. Imbalance between Positive and Negative Samples

Ships usually occupy only a small portion in optical remote-sensing images, generating
a large number of negative samples [113]. Meanwhile, due to the shapes of ships with
large aspect ratios and rotated distribution, IoU-based matching strategy imposes stricter
constraint. Even a slight angular deviation between the detection boxes seriously disrupts
the calculation of IoU, as shown in Figure 17, resulting in insufficient positive samples.
The imbalance between positive and negative samples significantly impacts the training
of the network. Therefore, it is important to alleviate this problem for the development
of SDORSIs. At present, improving the calculation method of IoU and loss function are
effective strategies. These methods aim to explore more positive samples to mitigate the
impact of insufficient positive samples.
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Figure 17. Schematic diagrams of IoU at different angles. The ground truth boxes are shown in red,
and the bounding boxes are shown in yellow. (a) The angle difference is 7.5◦, the IoU is 0.73. (b) The
angle difference is 15◦, the IoU is 0.46. (c) The angle difference is 30◦, the IoU is 0.27.

3.6.1. IoU-Based Matching Methods

There is a certain deviation between the prediction box and ground truth box, and
IoU is sensitive to angular changes. Even a small angular deviation leads to a large change
in the IoU value. Meanwhile, the traditional hard-threshold sample matching strategy
also severely limits the selection of positive samples, leading only a small number of high-
quality positive samples to meet the filtering criteria. However, these positive samples are
insufficient to support the training, constraining the performance of the network. Therefore,
improving the calculation method of IoU and dynamically adjusting the IoU threshold are
effective strategies to alleviate the imbalance of positive and negative samples.

Zhang et al. [114] and Li et al. [115] proposed a dynamic soft label assignment method,
which adjusts the IoU threshold dynamically according to aspect the ratios of ships. It
ensures that ships with extreme aspect ratios can still retain sufficient positive samples for
training. Song et al. [116] used Skew IoU to calculate the overlapping area between the
prediction box and ground truth box. Ma et al. [97] designed a ship orientation classification
network. The network first roughly predicts the angular range of each ship. Then, several
more precise angles are established within this range. It limits the angular difference to a
smaller range, mitigating the impact of angular factors on IoU. Li et al. [81] proposed the
orientation-agnostic IoU. The prediction box aligns with the label in orientation, assisting
the network in obtaining more positive samples.

The method can better adapt to the features of ships, achieving the exploration of
more positive samples. However, improving the calculation method of IoU may introduce
additional computation. Furthermore, dynamical threshold requires designing a suitable
threshold mapping function and constraining the range of the threshold. Inappropriate
mapping ranges may introduce interfering samples.

3.6.2. Loss-Function-Based Method

There is the fact that ships usually occupy a small area in optical remote-sensing
images. The number of negative samples is larger than positive samples. It results in
the imbalance between positive and negative samples during training. Furthermore, the
traditional cross-entropy loss function tends to focus on more negative samples, seriously
affecting the detection performance. Therefore, proposing the loss function that can assign
more weight to positive samples is an important way to alleviate this problem.

Focal Loss [43] introduced a weighting factor before each category in the loss function
to balance the cross-entropy loss:

FL(pt) = −αt(1 − pt)
γ log(pt) (1)

It can alleviate the imbalance of the network. Liu et al. [117] applied Focal Loss in ship
detection and it also enabled to focus more on hard samples, enhancing the robustness
of the model. Chen et al. [103] assigned the higher weight to pixels near keypoints when
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calculating loss. It effectively addressed the imbalance caused by the smaller number of
keypoints compared with the total pixels in the image.

The method mitigates the impact of the imbalance between positive and negative
samples by increasing the contribution of positive samples during training. However, it
is worth noting that the weighting factor requires constant manual search for the optimal
value.

3.6.3. Summary

The imbalance between positive and negative samples seriously impacts the perfor-
mance and constrains the development in SDORSIs. The existing research shows that the
improvements of the loss function and IoU are the primary ways to alleviate this problem.
Improving the calculation method of IoU and dynamically adjusting IoU threshold aim to
explore more positive samples during training. Furthermore, the improved loss function
aims to assign more weight to positive samples, preventing the model from focusing more
on the larger quantity of negative samples. However, the method of dynamically adjust-
ing the IoU threshold relies on the choice of the dataset. The same network may behave
differently on different datasets. Furthermore, there is a certain difficulty in selecting
hyperparameters for the loss function. Therefore, alleviating the imbalance of samples has
great development potential. The methods and the main advantages and disadvantages of
imbalance between positive and negative samples are shown in Table 7.

Table 7. Methods and main advantages and disadvantages of imbalance between positive and
negative samples.

Methods Advantages Disadvantages References

IoU

Improved IoU
Calculation

It can obtain more positive samples
to participate in training by improv-
ing the calculation method of IoU.

It introduces additional computation
and increases the complexity of the
network.

[81,97,116]

Dynamical IoU
Threshold

It dynamically adjusts the threshold
based on the shape of the ship to ob-
tain more positive samples.

It requires designing a suitable
threshold mapping function and
constraining the range of threshold.
Inappropriate mapping ranges may
introduce interfering samples.

[114,115]

Loss Function Improved Loss
Function

It assigns more weight to positive
samples during loss calculation, and
improves their contribution in train-
ing.

It relies on hyperparameters tuning,
and requires constant manual search
for the optimal value.

[43,103,117]

4. Datasets, Evaluation Metrics, and Experiments

High-quality datasets are the foundation for the successful development of deep
learning and play a crucial role in ship detection. In this section, we summarize the publicly
available ship datasets of optical remote-sensing images and evaluation metrics. It is worth
noting that we separated ship information from comprehensive datasets to provide more
detailed data for the development of SDORSIs. Furthermore, we meticulously recorded the
number of ships and the approximate distribution of ship sizes for each dataset, enabling
readers to gain a more intuitive understanding of the data distribution. In addition, we
compared and analyzed some representative models on different datasets. Furthermore,
we summarized the improvement effects of optimization strategies for ship detection
challenges. Finally, by analyzing the feature extraction capabilities of different backbones,
we provided new insights into the development of SDORSIs.

4.1. Datasets

For the first time, we separated ships from comprehensive datasets and compiled
specific ship information from seven commonly used optical remote sensing image datasets,
as shown in Table 8. We used a box diagram to depict the pixel distribution of ships in
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each dataset. As shown in Figure 18a, ShipRSImageNet and HRRSD-ship exhibit larger
variations in ship scales, which can be effectively alleviated by introducing multi-scale
information during detection. The pixels of ships in DIOR-ship and LEVIR-ship are smaller,
and focusing on small targets can effectively improve detection accuracy. Additionally, we
visually represented the number of ships in each dataset using a bar chart. As shown in
Figure 18b, the number of ships in DIOR-ship and DOTA-ship is higher than in others.

Table 8. Summary of public optical remote sensing image ship datasets.

Dataset Year Image Category Instance Resolution Image Size Label

HRSC2016 [118] 2016 1070 4 2976 0.4–2 m 300 × 300–1500 × 900 HBB, OBB
DOTA-ship [119] 2017 434 1 37,028 0.5 m 800 × 800–4000 × 4000 HBB, OBB
DIOR-ship [120] 2018 2702 1 62,400 0.5–30 m 800 × 800 HBB

HRRSD-ship [121] 2019 2165 1 3886 0.5–1.2m 270 × 370–4000 × 5500 HBB
FGSD2021 [104] 2021 636 20 5274 1 m 1202 × 1205 OBB

ShipRSImageNet [122] 2021 3435 50 17,573 0.12–6 m 930 × 930 HBB, OBB
LEVIR-ship [71] 2021 3896 1 3119 16m 512 × 512 HBB
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Figure 18. Statistical chart of specific ship information. (a) Box diagram of ship pixel distribution. (b)
Bar chart of instance numbers.

HRSC2016: The HRSC2016 [118] dataset was published by Northwestern Polytech-
nical University in 2016. The dataset consists of 1070 images from six different ports and
2976 labeled ships from Google Earth. The image size ranges from 300 × 300 to 1500 × 900
pixels, and the resolution from 0.4 m to 2 m. It is labeled with HBB and OBB.

DOTA-ship: The DOTA-ship dataset is collected from the DOTA [119] dataset. It
includes 434 ship images and 37028 ships. The image size ranges from 800 × 800 to 4000 ×
4000 pixels, and the resolution from 0.1m to 1m. It is labeled with HBB and OBB.

DIOR-ship: The DIOR-ship dataset is collected from the DIOR [120] dataset. It
includes 2702 ship images and 62,400 ships. The image size is 800 × 800, and the resolution
ranges from 0.5 m to 30 m. It is labeled with HBB.

HRRSD-ship: The HRRSD-ship dataset is collected from the HRRSD [121] dataset.
It includes 2165 ship images and 3886 ships. The image size ranges from 270 × 370 to
4000 × 5500 pixels, and the resolution from 0.5 m to 1.2 m. It is labeled with HBB.

FGSD2021: Zhang et al. [104] introduced an FGSD2021 dataset at a ground sam-
ple distance in 2021. The dataset consists of 636 images from Google Earth and the
HRSC2016 dataset. It includes 5274 labeled ships and 20 categories. The average size
is 1202 × 1205 pixels, and the resolution is 1m. It is labeled with OBB.

ShipRSImageNet: The ShipRSImageNet [122] dataset is composed of 3435 images
from the xView dataset, HRSC2016 dataset, FGSD dataset, Airbus Ship Detection Challenge,
and Chinese satellites. It includes 17,573 ships and 50 categories. The size of most original
images is 930 × 930 pixels, and the resolution ranges from 0.12 m to 6 m. It is labeled with
HBB and OBB.
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LEVIR-ship: Chen et al. [71] introduced a LEVIR-ship dataset in 2021, which is a
medium-resolution ship dataset. The images were captured from GaoFen-1 and GaoFen-6
satellites. It includes 3896 ship images and 3119 ships. The image size is 512 × 512 pixels,
and the resolution is 16 m. It is labeled with HBB.

4.2. Evaluation Metrics

IoU: IoU [123] is a metric used to measure the overlap between the prediction box and
the ground truth box. In general, positive samples are filtered by setting the IoU threshold,
defined as follows:

IoU =
area(Proposal ∩ GroundTruth)
area(Proposal ∪ GroundTruth)

(2)

However, IoU lacks consideration for the distance between the prediction box and the
ground truth box, failing to accurately reflect their spatial relationship. Therefore, metrics
such as GIoU [124] and DIoU [125] were introduced. Based on IoU, GIoU introduces
geometric factors to calculate the distance between two bounding boxes. Furthermore,
DIoU calculates the distance between the centers of two bounding boxes on the basis of
GIoU.

Accuracy, Precision, and Recall: First, we define as follows: true positives (TP)
indicate that the prediction is positive and the ground truth is also positive; false positives
(FP) indicate that the prediction is positive but the ground truth is negative; false negatives
(FN) indicate that the prediction is negative but the ground truth is positive; true negatives
(TN) indicate that the prediction is negative and the ground truth is also negative. Then, the
definitions of accuracy rate, precision rate, and recall rate are given as follows: Accuracy
rate represents the proportion of all correctly predicted samples out of the total samples:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision rate represents the proportion of correctly predicted positive samples out of all
predicted positive samples:

Precision =
TP

TP + FP
(4)

Recall rate represents the proportion of correctly predicted positive samples out of all actual
positive samples:

Recall =
TP

TP + FN
(5)

Average precision (AP) and mean average precision (mAP): The curve plotted with
the recall rate as the horizontal axis and the precision rate as the vertical axis is called the
precision recall curve (PRC). Furthermore, the area under the PRC is called AP. AP is used
to characterize the detection accuracy for a single category:

AP =

1∫
0

P(R)dR (6)

Each category corresponds to an AP value, and the average AP value across all categories is
called mAP. The mAP is used to evaluate the overall accuracy of the dataset. Furthermore,
a higher mAP value indicates better performance of the detector:

mAP =
1
C

C

∑
i=1

AP =
1
C

C

∑
i=1

1∫
0

Pi(Ri)dRi (7)
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Frames Per Second (FPS): The speed is as important as the accuracy of detection when
measuring the effect of a model. Furthermore, a commonly used metric to evaluate the
detection speed is FPS, which represents the number of images recognized per second.

4.3. Experimentation and Analysis
4.3.1. Algorithm Performance Comparison and Analysis

To visually demonstrate the progress in SDORSIs, we compiled some representative
models in recent years and listed them in Tables ?? and 9. According to the data in Table ??,
it can be observed that, for the simple ship category datasets, such as HRSC2016, the mAP
reaches more than 90%, and the performance is generally saturated since 2023. 3WM-
AugNet achieves 90.69% on the HRSC2016 dataset, demonstrating a leading performance.

Table 9. The performance of each algorithm on HRSC2016 datasets. mAP refers to the mAP computed
on the PASCAL VOC2007. The optimal results are shown in bold, and sub-optimal results are shown
in underline.

Method Year Publication Backbone Input_size mAP

Anchor-based (Two-stage)

R2CNN [126] 2017 ICPR ResNet-101 800 × 800 73.07
RRPN [127] 2018 TMM ResNet-101 800 × 800 79.08
RoI_Trans [128] 2019 CVPR ResNet-101 512 × 800 86.20
Gliding Vertex [129] 2021 TPAMI ResNet-101 512 × 800 88.20
OPLD [130] 2021 JSTAR ResNet-50 1024 × 1333 88.44
Oriented R-CNN [131] 2021 ICCV ResNet-101 1333 × 800 90.50

Anchor-based (One-stage)

DAL [132] 2021 AAAI ResNet-101 416 × 416 88.95
R3Det [133] 2021 AAAI ResNet-101 800 × 800 89.26
DLAO [99] 2022 GRSL DCNDarknet25 800 × 800 88.28
RIDet-Q [134] 2022 GRSL ResNet-101 800 × 800 89.10
CFC-Net [135] 2022 TGRS ResNet-101 800 × 800 89.70
S2A-Net [136] 2022 TGRS ResNet-101 512 × 800 90.17
DSA-Net [67] 2022 GRSL CSPDarknet-53 608 × 608 90.41
DAL-BCL [137] 2023 TGRS CSPDarknet-53 800 × 800 89.70
3WM-AugNet [63] 2023 TGRS ResNet-101 512 × 512 90.69

Anchor-free

Axis Learning [138] 2020 RS ResNet-101 800 × 800 78.15
TOSO [139] 2020 ICASSP ResNet-101 800 × 800 79.29
SKNet [105] 2021 TGRS Hourglass-104 511 × 511 88.30
BBAVectors [140] 2021 WACV ResNet-101 608 × 608 88.60
CHPDet [104] 2022 TGRS DLA-34 512 × 512 88.81
LCNet [141] 2022 GRSL RepVGG-A1 416 × 416 89.50
CMDet [51] 2023 GRSL ResNet-50 640 × 640 90.20
AEDet [100] 2023 JSTAR CSPDarknet-53 800 × 800 90.45
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Table 10. The performance of each algorithm on FGSD2021 datasets. The short name of the class is
defined as (abbreviation-full name): AIR-AIRCRAFT CARRIERS, WAS-WASP CLASS, TAR-TARAWA
CLASS, AUS-AUSTIN CLASS, WHI-WHIDBEY ISLAND CLASS, SAN-SAN ANTONIO CLASS,
NEW-NEWPORT CLASS, TIC-TICONDEROGA CLASS, BUR-ARLEIGH BURKE CLASS, PER-
PERRY CLASS, LEW-LEWIS CLARK CLASS, SUP-SUPPLY CLASS, KAI-HENRY J. KAISER CLASS,
HOP-BOB HOPE CLASS, MER-MERCY CLASS, FRE-FREEDOM CLASS, IND-INDEPENDENCE
CLASS, AVE-AVENGER CLASS, SUB-SUBMARINE, and OTH-OTHER. mAP refers to the mAP
computed on the PASCAL VOC2007. The optimal results are shown in bold, and sub-optimal results
are shown in underline.

Method BackboneAir Was Tar Aus Whi San NewTic Bur Per Lew Sup Kai Hop Mer Fre Ind Ave Sub Oth mAPFPS

Anchor-based (Two-stage)

R2CNN [126] Resnet50 89.9 80.9 80.5 79.4 87.0 87.8 44.2 89.0 89.6 79.5 80.4 47.7 81.5 87.4 100 82.4 100 66.4 50.9 57.2 78.1 10.3
RoI_Trans [128] Resnet50 90.9 88.6 87.2 89.5 78.5 88.8 81.8 89.6 89.8 90.4 71.7 74.7 73.7 81.6 78.6 100 75.6 78.4 68.0 66.9 83.5 19.2
Oriented

R-CNN [131]

Resnet50 90.9 89.7 81.5 81.1 79.6 88.2 98.9 89.8 90.6 87.8 60.4 73.9 81.8 86.7 100 60.0 100 79.4 66.9 63.7 82.5 27.4

DEA-Net [142] Resnet50 90.4 91.4 84.6 93.5 88.7 94.5 92.1 90.7 92.4 88.9 60.6 81.6 85.4 90.3 99.7 83.1 98.5 76.6 68.5 69.2 86.0 12.1
SCRDet [143] Resnet50 77.3 90.4 87.4 89.8 78.8 90.9 54.5 88.3 89.6 74.9 68.4 59.2 90.4 77.2 81.8 73.9 100 43.9 43.8 57.1 75.9 9.2
ReDet [144] ReResnet50 90.9 90.6 80.3 81.5 89.3 88.4 81.8 88.8 90.3 90.5 78.1 76.0 90.7 87.0 98.2 84.4 90.9 74.6 85.3 71.2 85.4 13.8

Anchor-based (One-stage)

Retinanet [43] Resnet50 89.7 89.2 78.2 87.3 77.0 86.9 62.7 81.5 83.3 70.6 46.8 69.9 80.2 83.1 100 80.6 89.7 61.5 42.5 9.1 73.5 35.6
CSL [145] Resnet50 89.7 81.3 77.2 80.2 71.4 77.2 52.7 87.7 87.7 74.2 57.1 97.2 77.6 80.5 100 72.7 100 32.6 37.0 40.7 73.7 10.4
R3Det [133] Resnet50 90.9 80.9 81.5 90.1 79.3 87.5 29.5 77.4 89.4 69.7 59.9 67.3 80.7 76.8 72.7 83.3 90.9 38.4 23.1 40.0 70.5 14.0
DCL [146] Resnet50 89.9 81.4 78.6 80.7 78.0 87.9 49.8 78.7 87.2 76.1 60.6 76.9 90.4 80.0 78.8 77.9 100 37.1 31.2 45.6 73.3 10.0
RSDet [147] Resnet50 89.8 80.4 75.8 77.3 78.6 88.8 26.1 84.7 87.6 75.2 55.1 74.4 89.7 89.3 100 86.4 100 27.6 37.6 50.6 73.7 15.4
S2A-Net [136] Resnet50 90.9 81.4 73.3 89.1 80.9 89.9 81.2 89.2 90.7 88.9 60.5 75.9 81.6 89.2 100 68.6 90.9 61.3 55.7 64.7 80.2 33.1

Anchor-free

BBAVectors

[140]

Resnet50 99.5 90.9 75.9 94.3 90.9 52.9 88.5 90.0 80.4 72.2 76.9 88.2 99.6 100 94.0 100 74.5 58.9 63.1 81.1 83.6 18.5

CHPDet [104] DLA34 90.9 90.4 89.6 89.3 89.6 99.1 99.4 90.2 90.2 90.3 70.7 87.9 89.2 96.5 100 85.1 100 84.4 68.5 56.9 87.9 41.7
CenterNet [48] DLA34 67.2 77.9 79.2 75.5 66.8 79.8 76.8 83.1 89.0 77.7 54.5 72.6 77.4 100 100 60.8 74.8 46.5 44.1 6.8 70.5 48.5
RepPoint [148] Resnet50 91.2 89.2 85.6 89.3 87.6 93.1 94.2 91.5 88.7 83.3 71.4 81.1 89.4 91.5 95.6 82.6 100 86.6 64.7 57.5 85.7 36.7
GF-CSL [149] Resnet50 92.6 90.3 86.6 90.5 88.2 95.3 97.9 89.8 91.2 86.9 69.7 85.6 92.7 92.5 99.7 85.1 98.6 86.7 79.4 70.4 88.5 40.3
DARDet [150] Resnet50 90.9 89.2 69.7 89.6 88.0 81.4 90.3 89.5 90.5 79.7 62.5 87.9 90.2 89.2 100 68.9 81.8 66.3 44.3 56.2 80.3 31.9
DDMNet [151] DDRNet39 98.2 89.8 92.5 97.1 91.6 94.9 90.9 90.0 90.5 79.0 80.2 91.7 90.0 93.6 100 93.2 100 74.8 48.7 69.4 87.3 43.8

In contrast, FGSD2021 includes more ship categories and quantities, making it more
challenging in SDORSIs. According to the data in Table 9, compared with single-stage
detectors, the mAP of two-stage detectors is improved by about 5–10%, meaning that
two-stage detectors have the advantage of higher accuracy. Furthermore, compared with
anchor-based detectors, the real-time performance of anchor-free detectors is improved
by approximately 20–30 FPS. At the same time, it also can achieve satisfactory accuracy.
GF-CSL achieves 88.5%, exceeding other algorithms. CenterNet-Rbb demonstrates the best
real-time performance. In the 20 categories of FGSD2021, the accuracy of Ave, Sub, and Oth
is significantly lower than others. Therefore, it is helpful to design a classification algorithm
with stronger discrimination ability to improve the overall detection performance of the
model.

4.3.2. Performance of Optimization Strategies Comparison and Analysis

The mAP intuitively proves that a series of optimization strategies for ship charac-
teristics are effective in Table 10. Specifically, attention mechanism is the primary method
used to address complex background issues. It can enhance the contrast between ships and
the background. Compared with the baseline model, the mAP of the algorithm employing
this strategy is improved by about 1 to 4%. As one of the primary methods of multi-scale
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feature representation, FPN is widely applied in SDORSIs. It can enhance the information
interaction ability of feature maps, and effectively identify ships with significant scale
variations. The improved methods of FPN can enhance the ability to detect multi-scale
ships. Table 10 shows an improvement in mAP of approximately 1 to 6%. Furthermore,
OBB representation and regression address the issue of loss discontinuity associated with
rotation angles. The mAP in Table 10 is improved by about 0.5 to 7%, confirming its
effectiveness. DCN and feature sampling are more adaptive to large aspect ratios. They can
reduce the introduction of irrelevant information while adequately extracting ship features.
The mAP of the algorithm using this strategy is improved by about 1 to 8%.

Table 11. The performance of optimization strategies on HRSC2016 datasets. The improve values are
shown in bold.

Challenges Strategies Methods Year mAP

Complex environment
Attention Mechanism

AM [45] 2021 82.67 (+1.81)
CDA [64] 2021 87.20 (+0.70)
CLM [67] 2022 86.18 (+1.13)
GCM [67] 2022 87.75 (+2.70)

DFAM [84] 2022 78.65 (+3.70)
Image Preprocessing De_haze [61] 2023 95.27 (+1.59)
Saliency Constraint SPB * [70] 2022 86.51 (+0.99)

Large Aspect Ratio
Feature Sampling AP [81] 2021 89.20 (+0.80)

OP [105] 2021 88.30 (+1.80)

DCN DCN [99] 2022 86.42 (+8.46)
DRoI [67] 2022 89.21 (+0.61)

Dense and Rotated ship

OBB Representation

Gaussian-Mask [93] 2021 88.38 (+0.87)
Six Parameters [99] 2022 88.28 (+3.55)

ICR-Head [67] 2022 89.17 (+0.57)
MDP-RGH [152] 2023 89.69 (+4.75)

DAL [137] 2023 89.70 (+0.20)

OBB Regression

EL [50] 2021 87.70 (+1.92)
BR [64] 2021 87.40 (+2.00)

OAC [98] 2023 91.07 (+6.89)
KLD [68] 2023 89.87 (+3.94)

Large Scale Variation Multi-scale Information

SCM [93] 2021 88.43 (+0.92)
FFM [45] 2021 83.34 (+2.48)

NASFCOS-FPN [50] 2021 88.20 (+2.42)
FES * [70] 2022 87.01 (+1.49)
DFF [84] 2022 74.95 (+2.63)

FE-FPN [98] 2023 84.11 (+6.05)
AF-OSD [152] 2023 89.69 (+1.80)
RFF-Net [68] 2023 83.91 (+3.96)

* means that the model used only partial data.

4.3.3. Exploration of Transformer Application

The performance of some competitive detection models are listed in Tables ?? and 9.
It can be observed that most algorithms prioritize the classical CNN models as the primary
choice for feature extraction networks. However, the rate of performance growth is slow-
ing down in recent years, indicating that the development of CNN-based algorithms is
approaching maturity. To address this, it is an urgent need to break through the bottleneck
of algorithmic development to further enhance detection capabilities. In view of the strong
performance advantages of Transformer in other computer vision domains, we attempted
to explore the feature extraction capability of Transformer for SDORSIs. We compared the
detection performance of two representative CNN-based backbones (ResNet and ResNext)
and two representative Transformer-based backbones (Swin Transformer and PV Trans-
former) on the HRSC2016 dataset. At the same time, to ensure the robustness of the results,
we chose two detection networks (RetinaNet and RoI_Trans) as baselines. We selected mAP,
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GFlops, and Parameters as the objective criteria for performance evaluation, as shown in
Tables 12 and 13. Furthermore, in order to intuitively demonstrate the relationship between
the parameters’ count and performance of different backbones, we drewthe experimental
results in a line chart, as shown in Figure 19.

Table 12. The performance of different backbones for RetinaNet on HRSC2016 datasets. The optimal
results are shown in bold, and sub-optimal results are shown in underline.

Backbones Params(M) GFLOPs(G) mAP

ResNet-18 [153] 11.02 38.07 73.55
ResNet-50 [153] 23.28 86.10 81.07
ResNet-101 [153] 42.28 163.99 82.57
ResNext-50-32 × 4d [154] 22.77 89.25 82.93
ResNext-101-32 × 4d [154] 41.91 167.83 83.73
ResNext-101-64 × 4d [154] 81.00 324.99 84.45
Swin-tiny [56] 27.50 95.36 84.32
Swin-small [56] 48.79 188.10 85.22
Swin-base [56] 86.68 334.16 85.70
PVT-tiny [57] 9.24 32.40 85.15
PVT-small [57] 17.65 63.51 85.62
PVT-Medium [57] 41.07 108.96 85.93

Table 13. The performance of different backbones for RoI_Trans on HRSC2016 datasets. The optimal
results are shown in bold, and sub-optimal results are shown in underline.

Backbones Params(M) GFLOPs(G) mAP

ResNet-18 [153] 11.02 38.07 72.35
ResNet-50 [153] 23.28 86.10 87.24
ResNet-101 [153] 42.28 163.99 88.62
ResNext-50-32 × 4d [154] 22.77 89.25 88.26
ResNext-101-32 × 4d [154] 41.91 167.83 89.61
ResNext-101-64 × 4d [154] 81.00 324.99 89.40
Swin-tiny [56] 27.50 95.36 90.23
Swin-small [56] 48.79 188.10 90.41
Swin-base [56] 86.68 334.16 90.49
PVT-tiny [57] 9.24 32.40 89.69
PVT-small [57] 17.65 63.51 90.04
PVT-Medium [57] 41.07 108.96 90.23

 PV Transformer

R18

R50

R101

PVT-T
PVT-S PVT-M

Swin-T
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X101-32×4d
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Figure 19. The performance for different backbones. (a) Line chart of performance for RetinaNet. (b)
Line chart of performance for RoI_Trans.
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It can be observed that under the same parameter level, the feature extraction capa-
bilities of Transformer-based backbones are generally higher than those of CNN-based
backbones. In Table 12, PVT-Medium achieves the best mAP of 85.93% when choosing Reti-
naNet as the baseline. Compared to ResNet-101 and ResNext-101 with the same parameter
level, PVT-Medium improves by 3.36% and 2.20%, while significantly reducing GFlops.
Swin Transformer also takes a leading position in competition with ResNext at the same
parameter level. Specifically, under three model parameters (tiny, small, and base), Swin
Transformer improves mAP by 1.39%, 1.49%, and 1.25%. In Table 13, Swin-base achieves
the highest mAP when RoI_Trans is selected as the baseline. Furthermore, compared to
ResNet-18, PVT-tiny improves the mAP by 17.34%. As shown in Figure 19, it is concluded
that under the same parameter level, Transformer exhibits stronger feature extraction capa-
bility than CNN, leading to better network performance. This is because Transformer can
effectively capture dependencies between targets over long distances, building the ability
of global information awareness, while CNNs can only extract information within a small
window, and the information is quite limited. Exploring the connections between ship and
ship or ship and ocean from a global perspective can provide important clues for SDORSIs.
Therefore, Transformer has great potential in SDORSIs. Furthermore, further research is
important to explore optimization strategies for Transformers based on the characteristics
of ships.

We visualize feature heatmaps of each backbone at the low, middle, and high levels
to compare the differences in feature extraction capabilities between CNNs and Trans-
former. The feature heatmaps for RetinaNet and RoI_Trans are, respectively, presented in
Figures 20 and 21. According to the figures, as the network depth increases, CNN-based
backbones (ResNet and ResNext) gradually pay more attention to ship regions. This is be-
cause the receptive field of deep-layer features increases, resulting in the feature collecting
a wider range of information, so that the network can learn the comprehensive features
of ships. However, the convolution is still a locally sliding feature extraction operation,
and the extracted features are only concerned with the local scenes. Transformer-based
backbones (Swin and PVT) process information from a global perspective, and the core
self-attention operation can capture correlations between all pixels. For ship detection, the
network can gather all ship-related clues to assist in prediction, avoiding the limitations of
feature extraction confined to local windows. As shown in Figures 20 and 21, the feature
heatmaps of PVT focus on the edge details of ships at shallow feature levels, while the deep-
level features establish global dependencies, thereby activating more associated regions
to assist ship detection. Furthermore, in order to reduce the computational burden, Swin
Transformer limits self-attention within a window and realizes the interaction between
windows through sliding operations. The heatmaps in figures also indicate that attention is
more concentrated within certain windows.
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Figure 20. Feature heatmaps of each backbone for RetinaNet. (a) Inputs. (b) Shallow feature heatmaps.
(c) Intermediate feature heatmaps. (d) Deep feature heatmaps. (e) Predicted boxes and confidence
scores.
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Figure 21. Feature heatmaps of each backbone for RoI_Trans. (a) Inputs. (b) Shallow feature heatmaps.
(c) Intermediate feature heatmaps. (d) Deep feature heatmaps. (e) Predicted boxes and confidence
scores.

5. Discussions and Prospects

The rapid development of deep learning has led to significant progress in SDORSIs.
However, there is still a considerable gap to reach mature applications, due to the six
factors summarized in this paper that constrain the development of SDORSIs. Therefore,
we discuss and prospect the future development directions in this section:

1. Utilizing super-resolution and other feature enhancement methods to selectively
enhance the feature representation ability of small-scale ships, which improve the
recall for small ships when the scale variation is extensive. It contributes to further
enhancing the overall detection accuracy.

2. To address the challenge of imbalance between positive and negative samples, sup-
plementing the quantity of positive samples, such as methods of mining samples
from the ignored set and using adaptive IoU thresholds, are helpful to increase the
contribution of positive samples during network training.

3. Directly transferring common object detection networks to ship detection often fails
to produce satisfactory results. Therefore, it is one of the future trends to mine the
inherent features of ships, such as the wake of moving ships, large aspect ratios and
so on, and design targeted ship detection networks.

4. Utilizing image fusion methods of different modalities, such as spatial information
and frequency domain information, optical remote-sensing images and SAR images,
enables the advantageous complementarity of information. Therefore, It helps to
improve the detection accuracy of ships with cloud and fog cover and small-scale
ships.

5. Designing compact and efficient detection models is more in line with the needs
of applications. Therefore, the research on lightweight models, such as knowledge
distillation, network pruning, and NAS, is an important strategy for deploying models
to embedded devices.
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6. By comparing the feature extraction capabilities of CNNs and Transformer, this paper
preliminarily verifies that the global modeling concept of Transformer is helpful
to improve the detection accuracy of the network. Therefore, drawing inspiration
from the latest research achievements in computer vision is the direction for future
development.

6. Conclusions

Ship detection in optical remote-sensing images has broad application prospects in
both civilian and military domains, and is the focal point in object detection. However, a
comprehensive and systematic survey that addresses the challenges faced by SDORSIs in
realistic scenarios is lacking. To address this gap, this paper based on the characteristics
and challenges of ships, systematically reviews the development and current research
status in SDORSIs. Specifically, this paper provides a systematic review of object detection
methods, including both traditional and deep learning-based methods. Furthermore, the
analysis of the application scenarios of these methods is conducted in SDORSIs. Secondly,
we analyze the challenges faced in detection based on the characteristics of ships, including
complex marine environments, insufficient discriminative features, large scale variations,
dense and rotated distributions, large aspect ratios, and imbalances between positive
and negative samples. The improvement strategies for these six issues are summarized
in detail. Then, we firstly compile ship information from comprehensive datasets and
compare the performance of representative models. We explore the application prospects
of Transformer in SDORSIs through experiments. Finally, we put forward the prospects for
the development trends in SDORSIs.

We hope that this review can promote development in SDORSIs. In the future, we will
continue to monitor the latest technologies in ship detection. Furthermore, we are eager
to successful deploy ship detectors into embedded devices and achieve high-precision
real-time detection.
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