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Abstract

Cancer models are instrumental as a substitute for human studies and to expedite basic,

translational, and clinical cancer research. For a given cancer type, a wide selection of mod-

els, such as cell lines, patient-derived xenografts, organoids and genetically modified

murine models, are often available to researchers. However, how to quantify their congru-

ence to human tumors and to select the most appropriate cancer model is a largely unsolved

issue. Here, we present Congruence Analysis and Selection of CAncer Models (CASCAM),

a statistical and machine learning framework for authenticating and selecting the most rep-

resentative cancer models in a pathway-specific manner using transcriptomic data. CAS-

CAM provides harmonization between human tumor and cancer model omics data,

systematic congruence quantification, and pathway-based topological visualization to deter-

mine the most appropriate cancer model selection. The systems approach is presented

using invasive lobular breast carcinoma (ILC) subtype and suggesting CAMA1 followed by

UACC3133 as the most representative cell lines for ILC research. Two additional case stud-

ies for triple negative breast cancer (TNBC) and patient-derived xenograft/organoid (PDX/

PDO) are further investigated. CASCAM is generalizable to any cancer subtype and will

authenticate cancer models for faithful non-human preclinical research towards precision

medicine.

Author summary

Cancer research relies on models, such as cell lines, patient-derived xenografts (PDX),

and patient-derived organoids (PDO), as essential alternatives to human studies.
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However, it is crucial to determine how well these models mimic human patients and to

quantify their congruence in disease-relevant genes and regulatory pathways. As the num-

ber of cancer models grows, researchers face the challenge of selecting the most represen-

tative model based on molecular profiles. Existing methods are machine learning based

and are limited to prediction using genome-wide information without mechanistic

insights. To address this, we developed a comprehensive suite of bioinformatics tools,

namely Congruence Analysis and Selection of CAncer Models (CASCAM). The frame-

work develops a multi-stage systems approach to quantify pathway and gene specific con-

gruence and allow prioritization and selection of the most congruent cancer model(s),

which provides a paradigm shift towards gene regulatory and systems investigations.

Introduction

Cancer models, inheriting genetic properties of the tumors of origin, are essential tools in can-

cer research for exploring carcinogenesis and developing drugs in basic, translational and clin-

ical studies. For a given cancer subtype, a wide selection of models, such as cell lines, patient-

derived xenografts (PDX), patient-derived organoids (PDO), and genetically modified murine

models, are often available to researchers. Specifically, patient-derived cancer models, such as

PDO, are increasingly available with molecular profiling and are expected to play a heightened

role in disease understanding, drug response prediction and precision medicine [1, 2]. For

example, the PDCM Finder (Patient Derived Cancer Model Finder), funded by National Can-

cer Institute, provides an open catalog of patient-derived cancer models with an established

“minimal information standard” for researchers to upload new cancer models [3], which cur-

rently includes 4,661 xenograft models, 1547 cell lines and 108 PDO as of 10/20/2022.

Despite advances in technology and reduced cost, cancer models can be mislabeled [4] and

genomic/epigenomic alterations may accumulate across passages in culture. Many cancer

models may be potentially mis-annotated from their origins or the quality of congruence may

vary or decay over time [4–6]. Due to increasing availability of new cancer models and associ-

ated comprehensive omics data, evaluation and comparison of cancer models with human

tumors using transcriptomic and multi-omics data have drawn increasing attention in recent

years [4, 5, 7–18]. However, existing evaluation tools mostly belong to two major categories,

congruence (correlation-based) analysis and authentication (machine-learning-based) analy-

sis, and do not sufficiently serve the purpose of identifying appropriate models for precision

medicine. In congruence analysis, correlation/association measures are usually applied to

quantify similarity of a cancer model to the target tumor cohort in a genome-wide scale [5, 10,

11, 14, 15, 18]. In contrast, authentication analysis develops machine learning models, such as

suitability score [16], random forest, ridge regression and nearest template prediction, for

accurate assignment of cancer models to human cancer types. S1 Table outlines features and

shortcomings of the existing methods. Overall, these tools have significant limitations in the

following four areas: (1) Machine-learning-based authentication methods focus on predication

accuracy but are not designed to prioritize candidate cancer models that best mimic the target

tumor cohort; (2) On the other hand, correlation-based congruence methods can prioritize

cancer models but they often produce lower prediction accuracy; (3) Current congruence or

authentication methods cannot characterize pathways or molecular mechanisms that are most

or least mimicked by a cancer model, which is essential in precision medicine development;

(4) Data compatibility and harmonization between cancer model and human tumor data have
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not been systematically considered and evaluated in the current literature, which is a critical

step to achieve high accuracy and avoid misleading mechanistic conclusions.

To this end, we developed CASCAM with three modules to overcome the aforementioned

shortcomings of existing methods (see Fig 1). In the first “data harmonization” module, we

applied the recently developed Celligner method to correct for batch effects and obvious varia-

tions between cancer models and tumors that prevent analysis of congruence. In the second

“transparent machine learning pre-selection” module, we developed a transparent machine

learning approach, integrating prediction assignment probability from sparse linear discrimi-

nant analysis (SDA) and deviance score derived from the SDA projected space. The integrative

framework combines advantages of high classification accuracy by machine-learning-based

authentication analysis and prioritization by correlation-based congruence analysis to pre-

select, say, the top * 10 promising cancer models from up to hundreds of initial candidates.

The pre-selected cancer models then enter the final “pathway and mechanistic-based selec-

tion” module. By integrating pathway and regulatory network information, multiple bioinfor-

matic and visualization tools, including differential expression, pathway enrichment analysis,

heatmaps, violin plots and topological network plots, iteratively investigate disease-relevant

biological mechanisms that are best or least mimicked by each cancer model. We note that the

two-stage selection by global (genome-wide congruence) pre-selection in Module 2 and then

targeted (pathway- and gene-based congruence) evaluation in Module 3 is an essential and

innovative aspect of CASCAM. We demonstrate that the highest genome-wide congruent can-

cer models selected from Module 2 may not harbor critical pathways and genes relevant to the

target tumor subtype and thus show a lower score in essential pathways. On the other hand,

pre-selection in Module 2 is necessary to reduce the number of cancer model candidates for

allowing detailed mechanistic investigation in Module 3.

For demonstration purposes, two case studies in this paper focused on invasive lobular

breast carcinoma (ILC), a histological subtype containing 10–15% of all breast cancers and

Fig 1. Flowchart of CASCAM for congruence quantification and selection. Tumor and cancer model gene expression data are first harmonized

(Module 1). Transparent machine learning by sparse discriminant analysis (SDA) is applied by combining predication accuracy and SDA-based

deviance score for pre-selecting candidate cancer models (Module 2). Pathway-specific mechanistic explorations are iteratively investigated to conclude

the final representative cancer model (Module 3). Blue frames represent input data, orange frames for essential output results, parallelogram frames for

intermediate results, rectangular frames for analysis process, bullet-shaped frames for visualization, and rhombus frames for decision making.

https://doi.org/10.1371/journal.pcbi.1011754.g001
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with a hallmark genomic feature consisting of CDH1 gene (E-cadherin) mutation and subse-

quent loss of cell-cell adherent junctions. There is a compelling need to develop and identify

representative cancer models for ILC since previous breast cancer models mostly focus on the

more prevalent (*80%) invasive ductal carcinoma (IDC) subtype (also known as no special

type (NST)). Indeed, there are very few ILC annotated cell lines publicly available; however, a

previous study identified numerous breast cancer (BC) cell lines which lack ILC annotation

but harbor CDH1 mutations—they were named ‘ILC-like’ and these potentially could serve as

representative models of human-ILC disease [19]. Beyond ILC, we performed an additional

analysis on identifying the most representative cell line for triple negative breast cancer

(TNBC) and note that CASCAM is applicable in general cancer research by quantifying con-

gruence and identifying the most appropriate cancer model for any given tumor (sub)type.

Results

Case study 1: Selection of cell line for ILC

Data harmonization between cancer model and tumor transcriptomic data. The criti-

cal first step for quantifying congruence and selection of cancer model(s) is to ensure omics

data harmonization between cancer models and human tumors. This is important as cell lines

do not contain many genes expressed in the tumor microenvironment. We accessed bulk tran-

scriptomic data of 9,264 pan-cancer tumor samples across 24 cancer types from The Cancer

Genome Atlas Program (TCGA) (960 samples are breast cancer, BC), and 1,257 pan-cancer

cell lines from Cancer Cell Line Encyclopedia (CCLE) and Invasive Lobular Cancer Cell Line

Encyclopedia (ICLE) (65 annotated as BC cell lines) (see Materials and methods section). We

then evaluated performance of normalization using five approaches—A) no normalization; B)

quantile normalization [20] to normalize BC tumors and BC cell lines; C) ComBat [21] to nor-

malize BC tumors and BC cell lines; D) Celligner [5] to normalize BC tumors and BC cell

lines; E) Celligner to normalize pan-cancer tumors and pan-cancer cell lines. We visualized

the relationship of BC tumors and BC cell lines when different normalization approaches were

applied using UMAP [22] (see in Fig 2). Biased separation of tumors and cell lines was clearly

found when no normalization or conventional quantile normalization were implemented (see

Fig 2A and 2B). Combat and Celligner using BC tumors and BC cell lines (see Fig 2C and 2D)

produced improved normalization although systematic bias was still observed from small clus-

ters of cell lines, showing insufficient quality of data harmonization. In contrast, Celligner

using pan-cancer tumors and pan-cancer cell lines (see Fig 2E) best eliminated batch effects

between BC tumors and BC cell lines.

To further examine the quality of Celligner normalization in approach E (Fig 2E), we inves-

tigated eight cell lines each with three experimental replicates from different sources (see Mate-

rials and methods section) and confirmed their high reproducibility in the UMAP plot (Fig

3A). From breast cancer subtype annotation [23], we confirmed that TCGA tumors in the

lower-right cluster were mostly annotated as basal-like (118 out of 160) (Fig 3B). Reassuringly,

26 of 28 CCLE cell lines in that cluster were also annotated as basal-like. As a result, we per-

formed Celligner normalization before all down-stream analysis in this paper.

Transparent machine learning pre-selection. We next extended and applied a transpar-

ent machine learning (ML) method, namely sparse discriminant analysis (SDA), and com-

bined with a deviance score (DS) derived from SDA to pre-select from up to hundreds of

candidate cancer models and narrow down to<10 of the most promising cancer models. The

machine learning (ML) setting here was similar to existing literature, where a prediction

model was constructed using human tumor data (e.g., TCGA) as the training set and then was

used to classify cancer models to the targeted group (ILC) versus comparison group (IDC). To
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justify application of SDA, Table 1 shows performance of 16 popular machine learning meth-

ods, six of which were used to classify cancer models according to TCGA cancer types in the

literature. Detailed description of these machine learning methods can be found in S1 Table

and Materials and methods section. In existing publications, machine learning analysis aimed

to classify cancer models into major cancer types, such as the 24 cancer types in TCGA. We

note that since the two subtypes we focus on (ILC and IDC) are two histological subtypes

within breast cancer, the differences are more subtle. The machine learning and congruence

analysis tasks are expected to be more difficult but biologically more impactful.

Table 1 shows evaluation result of the 16 machine learning methods in BC machine learn-

ing tasks from three different aspects (tumor type, histological subtype, and molecular sub-

type). Convolutional neural network (CNN) is a category of deep learning methods commonly

designed for classification problems [24–26]. In this study, we included three CNN models ini-

tially optimized for pan-cancer classification [25]. Columns 2–4 contain prediction accuracy

results: 5-fold cross validation of ILC versus IDC using TCGA BC data, ER+ versus ER- classi-

fication using TCGA as training data and CCLE as test data, and BC versus other cancer types

using TCGA as training data and CCLE as test data. The result shows SDA and elastic net to

have the highest average accuracy, followed by 2D-Hybrid-CNN and ridge regression meth-

ods. Specifically, SDA achieved 91% accuracy for ILC vs IDC cross-validated tumor

Fig 2. UMAP for comparison of multiple data harmonization approaches. UMAP for normalized BC tumors (n = 960) and BC cell lines (n = 65) to

compare five normalization approaches: (A) no correction and (B) quantile normalization (C) ComBat and (D) Celligner utilizing BC tumors and BC

cell lines (E) Celligner utilizing pan-cancer tumors and pan-cancer cell lines. The final approach best eliminates batch effects by mixing well the BC

tumors and BC cell lines.

https://doi.org/10.1371/journal.pcbi.1011754.g002

PLOS COMPUTATIONAL BIOLOGY Congruence and selection of cancer models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011754 January 10, 2024 5 / 24

https://doi.org/10.1371/journal.pcbi.1011754.g002
https://doi.org/10.1371/journal.pcbi.1011754


Fig 3. UMAP after data harmonization with replicates and basal subtype information. (A) Three replicates (cell line; cell line_C; cell line_I) for

each of the eight cell lines are highly reproducible. (B) The lower-right cluster contains dominantly tumors and cell lines annotated as basal-like (118/

160 tumors and 26/28 cell lines).

https://doi.org/10.1371/journal.pcbi.1011754.g003

Table 1. Evaluation and properties of 13 popular machine learning methods. Six methods applied for cancer model prediction in previous papers are highlighted (*).
Prediction accuracies are shown in three machine learning evaluation examples. Parentheses in the second column are standard deviations of accuracies in five repeats of

five-fold cross-validation.

Machine learning evaluation Machine learning relevant properties

ILC vs IDC ER+ vs ER- BRCA vs other cancers Gene

selection

Assignment

probability

Deviance

scoreTCGA; 5-fold

CV

Training data: TCGA; Test data:

CCLE

Training data: TCGA; Test data:

CCLE

SDA 0.91 (0.02) 0.91 0.86 Yes Yes Yes

ElasticNet 0.90 (0.03) 0.93 0.85 Yes Yes No

2D-Hybrid-

CNN

0.87 (0.03) 0.93 0.86 No No No

RidgeRegress* 0.88 (0.02) 0.91 0.84 Yes Yes No

Pearson25* 0.86 (0.01) 0.86 0.9 No No No

KNN 0.85 (0.03) 0.86 0.91 No Yes No

2D-Vanilla-

CNN

0.86 (0.04) 0.88 0.85 No No No

1D-CNN 0.86 (0.03) 0.86 0.86 No No No

RandomForest* 0.85 (0.01) 0.91 0.82 Yes Yes No

RSLDA 0.81 (0.11) 0.77 0.86 Yes Yes Yes

CancerCellNet* 0.79 (0.03) 0.82 0.79 Yes Yes No

LDA 0.80 (0.03) 0.68 0.82 No Yes Yes

NTP 0.61 (0.03) 0.86 0.82 No No Yes

SpearmanMed* 0.40 (0.03) 0.84 0.61 No No Yes

PearsonMed* 0.38 (0.04) 0.84 0.62 No No Yes

Logistic 0.52 (0.04) 0.43 0.65 No Yes No

https://doi.org/10.1371/journal.pcbi.1011754.t001
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classification, 91% for ER+ vs ER- cell line prediction and 86% for BRCA vs other cancers in

cell line prediction. The CNN methods produced reasonably high accuracy in the three tasks

but not among the best, possibly due to limited sample size. 2D-Hybrid-CNN was proposed to

benefit from having two-dimensional inputs with simple one-dimensional convolution opera-

tions and had better performance than 1D-CNN and 2D-Vanilla-CNN, consistent with previ-

ous results in the cancer subtype classification [25].

In addition to binary prediction accuracy performance, Table 1 lists three machine-learning

relevant properties that are critical for evaluation and selection towards precision medicine:

feature (gene) selection, prediction assignment probability and deviance measure. Explicit

gene selection identifies gene signatures involved in the prediction model and provides trans-

parent machine learning. Assignment (prediction) probability reports prediction confidence

and ranking for cancer models predicted into the target tumor subtype. Many methods,

including ElasticNet and 2D-Hybrid-CNN, produce hard label predictions, while only a few,

such as LDA, SDA, and RSLDA, offer soft assignments with classification probabilities. How-

ever, these soft assignment probabilities often tend towards binary values, as evidenced in S1

Fig. This limits their utility for model prioritization and underscores the limitation of relying

solely on classification probabilities for model prioritization. Consequently, we devised a strat-

egy that combines classification probabilities with deviance scores to more effectively prioritize

and pre-screen cancer models, as detailed in Module 2. Finally, deviance measure (e.g., dissim-

ilarity measure or lack-of-association measure) provides supplemental information to predic-

tion assignment probability for cancer model suitability.

Of the 16 methods in Table 1, only SDA and a robust variant, RSDA, can be extended for

all three transparent machine learning properties. Taken together, SDA was among the most

accurate machine learning methods and provided three essential properties of gene selection,

assignment probability (denoted as PSDA) and deviance score (denoted as DSSDA); it was cho-

sen to be the core machine learning method in CASCAM. Particularly, we defined deviance

score DSSDA as the (signed) standardized distance between a cell line to the center of the target

tumor cohort on the SDA projected space. Bootstrap analysis was then performed in the

tumor data to calculate the confidence interval and two-sided p-value, denoted as pval(DSSDA)

(see Materials and methods section for details).

Since nearly all ILC cases are luminal ER-positive (i.e. basal negative or non-basal [27]), we

focused on the large luminal non-basal cluster in Fig 3B, which contains 798 BC tumors and

37 BC cell lines. DU4475 [28] was manually included to explore the performance of a basal

positive cell line. Of the 38 cell lines, we pre-selected 14 candidate cell lines using Module 2 by

high prediction assignment probability (PSDA> 0.5) and small deviance score such that the

corresponding p-value is not statistically significant (i.e., pval(DSSDA)> 0.05) (S3 Table). We

note that the selection of cell lines with large p-value is not conventional since hypothesis test-

ing with small p-value is usually designed for capturing differences, while we are interested in

congruence (i.e., no difference) here. S2 Table contains the 153 genes selected by SDA for con-

structing machine learning model: Column 1 represents gene weights for the model and the

other columns are harmonized gene expression for all evaluated cell lines, sorted by DSSDA.

The pathognomonic feature of ILC is mutation of CDH1 and a subsequent reduction CDH1

mRNA expression. Thus, as expected the weight for CDH1 was -10.428 and was at least 5–10

fold greater than all the other predictive genes.

The necessity of using PSDA and DSSDA simultaneously can be seen in the SDA projected

scatter plot of the 38 cell lines in Fig 4A. If we only used PSDA information (marked by red

color), cell lines such as UACC812 and ZR751 were predicted to be ILC with PSDA = 100%, dis-

regarding the fact that these cell lines’ expression patterns were highly dissimilar to the aver-

aged expression pattern (center) of ILC tumor cohort on SDA projection (large DSSDA = 2.991
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and 2.970 to ILC, respectively) (S3 Table). In contrast, if we only used DSSDA (marked by

round shape), cell lines such as OCUBM and UACC893 had a relatively small deviance score

to ILC (DSSDA = 1.597 and 1.667 to ILC, respectively), but they were also close to the center of

IDC tumor cohort. By applying the combined criteria of DSSDA and PSDA, 14 of the 38 cell

lines were identified as well-resemblance to the ILC subtype (PSDA = 54.8 − 100% and DSSDA =

0.024–1.892). Specifically, CASCAM identified SUM44PE (DSSDA = 0.024 and PSDA = 98.7%)

and DU4475 (DSSDA = 0.188 and PSDA = 99.2%) as the two most genome-wide representative

cell lines for ILC. UACC3133 was ranked the third with small deviance DSSDA = 0.452 but had

a wide 95% confidence interval [0.067, 3.040]. The congruent finding of SUM44PE is consis-

tent with literature, as it has been reported to have anchorage-independence and limited

migration and invasion ability, which are unique properties to the ILC-like cell lines [29] and

are widely studied in ILC [30, 31]. To avoid the ambiguous assignment probabilities, we fur-

ther restricted the selection criteria to PSDA> 0.8 (enclosed by green dashed rectangle) and

pval(DSSDA)>0.1 (enclosed by orange dashed rectangle). ZR7530 (PSDA = 0.764), MDAMB453

(PSDA = 0.670), SKBR3 (DSSDA = 2.615, pval = 0.052) and AU565 (DSSDA = 2.405, pval = 0.062)

were filtered out, and the 9 cell lines that met the criteria were used for further investigation.

We note that MDA-MB-134VI (PSDA = 0.548) was manually included for further evaluation as

it is widely used in ILC research [32, 33] In Fig 4B, the 9 unbiased-selected and 1 manually-

included cell lines were ranked by DSSDA with 95% confidence interval provided, with

SUM44PE and HCC2185 occupying the highest and lowest ranks, respectively.

Pathway and mechanistic-based selection of cancer model(s). Next, we applied Module

3 with pathway-specific and gene-specific evaluation for further prioritization of the 10 pre-

Fig 4. Genome-wide cell line congruence and pre-selection. (A) SDA projected scatter plot. y-axis represents the projected values for 38 cell lines,

the red and blue horizontal lines represent the median projected value (center) of ILC and IDC tumor samples respectively. The density plots on the

right shows distributions of 769 IDC (blue) and 191 ILC (red) tumors. Red color of the dots represents SDA classification to ILC (threshold PSDA>
50%), and the solid dots represent small SDA-based deviance scores (threshold pval(DSSDA)>0.05). More stringent criteria were indicated by the

dashed rectangle. Cell lines with PSDA> 0.8 were enclosed by green dashed rectangle and the ones with pval(DSSDA)>0.1 were enclosed by orange

dashed rectangle. (B) SDA projected deviance score (absolute value) with 95% confidence interval. 9 unbiased-selected and 1 manually-included

(marked with asterisk) cell lines are ranked based on |DSSDA|, and 95% confidence intervals are obtained by bootstrap analysis on log-scale.

https://doi.org/10.1371/journal.pcbi.1011754.g004

PLOS COMPUTATIONAL BIOLOGY Congruence and selection of cancer models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011754 January 10, 2024 8 / 24

https://doi.org/10.1371/journal.pcbi.1011754.g004
https://doi.org/10.1371/journal.pcbi.1011754


selected breast cancer cell lines. While SDA and other machine learning methods offer gene

selection aimed at maximizing predictive accuracy, they can miss driver or regulatory genes

essential for mechanistic understanding [34]. Therefore, in our CASCAM framework,

machine learning via SDA serves only as a pre-screening tool in Module 2. The subsequent

gene-based and pathway-based deviance scores, along with mechanistic investigations in Mod-

ule 3, are crucial for conducting biologically insightful congruence analysis.

Using a similar definition of DSSDA, we calculated gene- and pathway-specific deviance

scores, DSgene and DSpath, for characterizing congruence of each candidate cell line. Differen-

tial expression analysis on 769 IDC versus 191 ILC samples in TCGA identified 3,065 DE

genes. For pathway investigation, 236 pathways in Hallmark and KEGG from MSigDB [35]

were first identified, and 53 pathways with more than 20 DE genes were used for GSEA path-

way analysis [36].

We visualized pathway-specific deviance scores (DSpath) for the 53 selected pathways (rows)

and 10 selected cell lines (columns) in the heatmap (see in S2 Fig). The side-bar on the top

shows genome-wide congruence DSSDA for each cell line and the side-bar on the left margin

shows size and normalized enrichment score (NES) for each pathway. In general, genome-

wide resemblance does not guarantee similar performance in specific pathways. SUM44PE,

for example, was the most congruent ILC cell line with the smallest DSSDA. However, it was

second to worst congruent cell line in Hallmark heme metabolism, where heme is an iron-con-

taining porphyrin with multifaceted roles in cancer (DSpath = 1.029). When users have prior

knowledge of known relevant pathways, the most congruent cell line can be selected by the

smallest averaged DSpath of the pre-selected pathways. If no prior biological knowledge is used,

we recommend using pathways with adequate pathway size (e.g., 30< size <200) and enrich-

ment (e.g., |NES| >1.5) for final cell line decision. This criterion selected 14 pathways and the

heatmap of their pathway-specific deviance score was shown in Fig 5A (detailed values avail-

able in S4 Table). Among the 14 pathways, the majority of pathways were cancer related

(marked star in Fig 5A). For example, Hallmark E2F Targets has the most significant NES

(NES = −2.18, adjusted pval< 0.0001, 79 DE genes), which includes genes encoding cell cycle

related targets of E2F transcription factors. Related to the loss of E-cadherin, E2F was reported

to show difference in ILC compared with IDC [30, 37]. KEGG PPAR Signaling Pathway,

including genes related to peroxisome proliferator-activated receptors (PPARs) signaling, is

significantly enriched (NES = 1.55, adjusted pval = 0.048, 22 DE genes), and is also widely

reported for its upregulation in ILC tumors in multi-omics studies [38, 39].

Given that loss of CDH1 [40] and subsequent dysfunction of cell-cell adhesion [41] is the

hallmark of ILC, we manually included “KEGG Cell Adhesion Molecules” pathway for analysis

shown in Fig 5 and S4 Table, in addition to the 14 unbiased selected pathways. The pathway

was not selected because its |NES| = 0.854 did not meet the prespecified criterion. The second

to the last row in criterion. The second to the last row in Fig 5A shows average DSpath of the 14

pathways for each cell line, in which CAMA1 had the smallest average deviation. CAMA1 was

also congruent to ILC in the “KEGG Cell Adhesion Molecules” pathway (22 DE genes, DSpath
= 0.468, pval = 0.634). Although SUM44PE, DU4475 and UACC3133 outperformed CAMA1

in the genome-wide SDA-based deviance score (Fig 4), each of them did not mimic well in at

least part of the 14 pathways (one circle: pval< 0.1; two concentric circles: pval< 0.05; three

concentric circles: pval< 0.01, showing non-congruence) while CAMA1 had uniformly high

congruence. For example, DU4475 did not mimic ILC in several important cancer and ILC-

related pathways, such as “Hallmark TNFA Signaling Via NFKB”, “Hallmark Glycolysis”,

“Hallmark MTORC1 Signaling”, etc.

For a pathway of interest, CASCAM further generated a gene-specific deviance score

(DSgene) heatmap. The heatmap of 22 DE genes in the “KEGG Cell Adhesion Molecules”
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Fig 5. Pathway- and gene-specific analysis for selection of representative cell line(s). (A) Heatmap of pathway-

specific deviance scores (DSpath) with 14 unbiased-selected and 1 manually-included pathways (30< size< 200, |NES|

>1.5; shown on the rows) and 9 unbiased-selected and 1 manually-included cell lines (columns). The genome-wide

SDA projected deviance score (DSSDA) is shown on the top side-bar and the pathway size and normalized enrichment

score (NES) are on the left. Positive (negative) NES indicates up-regulation (down-regulation) in ILC compared to

IDC. Average of the 14 pathways and the pre-selected “KEGG Cell Adhesion Molecules” pathway are shown at the

bottom. The p-values of DSpath are annotated in the heatmap (one circle: p − value< 0.1; two concentric circles: p −
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pathway provides gene-level resolution of congruence information (Fig 5B). BCK4 appeared

to be the least congruent cell line in this pathway with 10 genes having large deviance scores (|

DSgene|>2; Fig 5B). Next, we utilized KEGG topological regulatory network information [42]

to investigate gene-specific congruence to ILC in KEGG Cell Adhesion Molecules for selected

cell lines. The well-known ILC hallmark gene CDH1 only showed congruence in CAMA1 and

DU4475 (CDH1 highlighted in Fig 5B). Although the MDA-MB-134VI cell line has been

widely used in ILC research, it was shown to have similar congruence to both ILC and IDC

(Fig 5A and S3 Table, PSDA to ILC = 0.548). Furthermore, although MDA-MB-134VI was con-

gruent to ILC in many of the 14 pathways, it was not congruent in the “KEGG Cell Adhesion

Molecules” pathway and many ILC-relevant genes in this pathway (Fig 5A and 5B). Among

the 10 cell lines, the BCK4 cell line (DSpath = 1.323, pval = 0.005) had the largest DSpath, indicat-

ing worst genome-wide congruence (Figs 5B and S3). We employed KEGG PathView plots to

illustrate the gene network discrepancies in the Cell Adhesion Molecules pathway, focusing on

BCK4 and CAMA1 (see Fig 5C for part of the network).

BCK4 had many discordant genes to ILC: 2 genes highly up-regulated to ILC (DSgene> 2;

CLDN11 and NRCAM) and 8 genes highly down-regulated to ILC (DSgene< −2; CADM1,

CDH1, PVR, L1CAM, CLDN1, CLDN16, CDH4, and JAM2). Of these genes, cadherin genes

(CDH1, CDH4 and CDH15) were cell adhesion molecules that are critical in the formation of

adhesion junctions for cells to adhere to each other [43]. Similarly, claudin genes (CLDN1,

CLDN11 and CLDN16) are proteins essential for the formation of tight junctions in epithelial

and endothelial cells [44].

As shown in this ILC representative cell line selection example, CASCAM provided multi-

ple visualization tools and interactive software functions, including violin plot (S3 Fig), path-

way-specific congruence heatmap (DSpath; Fig 5A), gene-specific congruence heatmap (DSgene;
Fig 5B), and KEGG topological network plot (Fig 5C), to allow researchers to iteratively inves-

tigate concordance and discordance of cell lines with the target tumor cohort. In conclusion, 5

of the 10 cell lines are determined as ILC-like in the “KEGG Cell Adhesion” pathway (pval
(DSpath)>0.05)), and we recommend them as appropriate ILC cell lines in the order of average

DSpath of the 14 selected pathways: CAMA1 (DSpath = 0.505), UACC3133 (DSpath = 0.667),

SUM44PE (DSpath = 0.689), HCC2218 (DSpath = 0.748), IPH926 (DSpath = 0.754).

Specificity evaluation for irrelevant cell lines from other cancers. To evaluate the speci-

ficity of CASCAM when an irrelevant cell line belonging to neither ILC nor IDC is included,

we selected 24 liver cancer cell lines from CCLE as negative controls in the analysis. As shown

in S4(A) Fig, five of the 24 liver cell lines were selected under the same classification probability

PSDA and deviance score DSSDA criteria. When further analyzed by the deviance score heatmap

of selected pathways in S4(B) Fig, the five selected liver cell lines exhibit extremely large devi-

ance scores in all pathways, demonstrating the increased specificity to avoid false positives by

pathway-based mechanistic evaluation in Module 3 and the shortcoming of relying on Module

2 machine learning alone.

Case study 2: Selection of cell line for TNBC

To demonstrate the generalizability of CASCAM beyond ILC samples, we applied the algo-

rithm to three major molecular subtypes of breast cancer (HER2+, ER+/PR+/HER2- and

value< 0.05; three concentric circles: p − value< 0.01), and smaller p-values indicate worse congruence. (B) Gene-

specific heatmap showsDSgene for the 10 selected cell lines and 22 DE genes in “KEGG Cell Adhesion Molecules”

pathway. (C) Part of KEGG PathView topological networks for BCK4 (DSpath = 1.323) for the “KEGG Cell Adhesion

Molecules” pathway. The result shows discordance of 10 genes in BCK4 (orange stars showing up-regulation

compared to ILC tumors and blue start showing down-regulation).

https://doi.org/10.1371/journal.pcbi.1011754.g005
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TNBC) [45] using the TCGA and CCLE datasets. By matching the samples with their molecu-

lar information [46, 47], our analysis included 326 patients with ER+/PR+/HER2-, 152 with

HER2+, and 98 with TNBC, along with 6, 12, and 25 cell lines for these respective subtypes.

On the genome-wide analysis, we employed a one-vs-rest approach with the same threshold

before and the result is shown in (S5 Table). CASCAM predicted 8 and 12 cell lines to HER2

+ and TNBC, respectively, which is consistent to existing annotations. However, among the

seven cell lines categorized to ER+/PR+/HER2-, two cell lines showed discrepancy (HCC1500

originally annotated to TNBC and UACC812 originally annotated to HER2+). Notably,

HCC1500’s annotation has varied in the literature, oscillating between ER+/HER2- and ER-/

HER2- [48–52]. This heterogeneity might explain the false prediction of this cell line. Overall,

CASCAM achieves 25/27 = 92.6% agreement between its prediction and the existing

annotation.

Among the 12 cell lines identified as TNBC on the genomic level, we further narrowed the

analysis to WNT signaling pathway to identify the most representative cell lines. The WNT sig-

naling pathway plays an important role in TNBC, affecting various cellular processes such as

metastasis, cell proliferation and apoptosis [53–55]. As shown in S5 Fig, HCC1599 and BT549

were found to be the best and the worst congruent model, respectively, in terms of WNT sig-

naling. Thus, CASCAM is useful in and suitable for identifying biologically relevant cell line

models outside of ILC and in other cancer types.

Case study 3: Selection of PDO and PDX for ILC

To extend the algorithm to PDO and PDX, we applied CASCAM to 11 PDO and 136 PDX

breast cancer models from the NCI PDMR (https://pdmr.cancer.gov/) database to select con-

gruent cancer models for ILC versus IDC. These 147 cancer models were first normalized by

the data harmonization module with the 9,264 TCGA pan-cancer tumor samples, and 960

TCGA BC samples were used for further investigation after normalization. UMAP in S6(A)

Fig showed three distinct clusters. Except for the basal and non-basal group observed before

(Fig 2), there was a small third cluster with 15 samples (2 PDO models, 12 PDX models, and 1

TCGA sample) from four patients. All four samples were annotated with triple-negative IDC,

and two patients from PDMR have a metaplastic squamous cell carcinoma diagnosis. Due to

the rare and unique subtype features of these tumors, we excluded these samples from further

analysis and reproduced UMAP in S6(B) Fig. Similarly, we also excluded the samples in basal

cluster, and 4 PDO and 25 PDX models were then kept for downstream analysis. The normali-

zation result demonstrated excellent performance of Celligner for PDO and PDX.

We next applied the criteria (PSDA> 0.5 and pval(DSSDA)> 0.05) in the “transparent

machine learning pre-selection” module and identified four candidate cancer models (3 PDX

and 1 PDO) to represent ILC tumors (S6 Table). Cross-referencing with the PDMR database

revealed that all four cancer models originated from the same patient (PRMR ID:171881–

019-R). Table 2 showed 5 PDX and 1 PDO (denoted as PDO.1) originate from this patient.

The 5 PDX samples contained one sample with passage 0 (denoted as PDX.0), two samples

with passage 1 (denoted as PDX.1A and PDX.1B), and two samples with passage 2 (denoted as

PDX.2A and PDX.2B). Intriguingly, the three highly congruent ILC PDX models were of pas-

sage 0 and 1 (PDX.0, PDX.1A and PDX.1B) while two PDX models with passage 2 (PDX.2A

and PDX.2B) were not selected. A clear pattern emerged in Fig 6A, indicating that PDX.0

exhibits nearly perfect DSSDA congruence to represent ILC but the deviance score increased

with increasing passage numbers (also see Table 2 Column 5), suggesting that the xenografts

may evolve and be affected by the microenvironments in mice and deviate from the original

tumor over time.
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Stromal cells, such as fibroblasts and immune cells, have been reported to diminish across

PDX passages [56]. To assess their role in passage variability (Fig 6A), we queried the Molecu-

lar Signatures Database (MSigDB) with “fibroblast AND immune” for all pathways and “fibro-

blast OR immune” for hallmark (H) and curated (C2) gene sets [57, 58]. This yielded 108

pathways, of which 7 were manually selected for their relevance to immune and fibroblast

functions, comprising 357 genes. Among these, 35 were differentially expressed (Fisher’s exact

test, pval = 0.053). Analysis across six cancer models showed a weak correlation between

DSSDA and a derived score, DSpath, based on these 357 genes (Pearson correlation = 0.16,

pval = 0.76, S9(A) Fig). Conversely, pathways such as xenobiotic metabolism by cytochrome

P450 (KEGG ID: hsa00980) and cell death (MSigDB ID: M5902) are strongly correlated with

DSSDA (Pearson correlation = 0.91 and 0.87; pval = 0.01 and 0.02, respectively, S9(B)–S9(C)

Fig). These results seem to indicate a minor role for immune and fibroblast functions in PDX

passage variability. This conclusion is, however, suggestive and should be interpreted with cau-

tion due to the small number of cancer models (N = 6) and the use of bulk RNA analysis. For a

more solid conclusion, future studies should employ higher-resolution methods such as

scRNA-seq.

We next investigated clinical annotation of the patient PRMR ID:171881–019-R. Although

the specific histological subtype was not annotated in the database, an insertion frameshift

mutation (p.T115Nfs*53) for CDH1 was reported. Since loss of CDH1 is a key determinant of

ILC, it strongly suggests that the original tumor was of lobular histology. It validates the con-

gruence analysis above that the PDO and three PDXs (PDX.0, PDX.1A and PDX.1B) are repre-

sentative of the ILC tumor cohort compared to IDC.

We then applied the default pathway selection criteria, adequate size (30< size<200) and |

NES|>1.5 and selected 14 pathways as in the first cell line case study. As rationalized before, we

again manually included the KEGG Cell Adhesion Molecules in addition to the 14 pathways.

The pathway-specific congruence heatmap revealed performance of the six cancer models orig-

inating from the same patient (171881–019-R) (Fig 6B). Variations in performances were seen

in the models even though they were developed from the same patient. Of the four pre-selected

cancer models, PDO.1 had the largest pathway deviance score (DSpath = 0.455) while PDX.1B

has the smallest (DSpath = 0.294) in “KEGG Cell Adhesion Molecules” pathway (Fig 6B)

although none of them was statistically significant in lack of congruence. We next investigated

KEGG topological network plot (S8 Fig) for the “KEGG Cell Adhesion Molecules” pathway

comparing PDO.1 and PDX.1B. The expression of CADM1, CADM3, CDH2 was down-regu-

lated (DSgene< −1.5) while expression of three other genes (CDH15, NRXN2, L1CAM) was up-

regulated (DSgene> 1.5) in PDO.1 (S8(B) Fig), compared with average expression of ILC

tumor, while we observed better congruence in PDX.1B (S8(A) Fig). The comparison between

PDX.1B and PDO in violin plots, with the gene expression distribution in IDC and ILC tumors

as reference, verified that PDX.1B was a better model for ILC (Figs 6C and S7).

Table 2. SDA-based genome-wide congruence summary for six models from patient 171881–019-R. Later passages of PDX models have worse congruence (i.e., larger

deviance scores).

Sample ID Label name Model type Passage DSðILCÞSDA PðILCÞSDA
Identified as ILC

APW-DS2 PDX.0 PDX 0 0.12 1.00 Yes

APYF68 PDX.1A PDX 1 0.56 0.99 Yes

APWG05 PDX.1B PDX 1 1.15 0.90 Yes

APWG05PF7 PDX.2A PDX 2 1.93 0.34 No

APVG40_RG-G15 PDX.2B PDX 2 3.56 0.00 No

V1-organoid PDO PDO 1.73 0.51 Yes

https://doi.org/10.1371/journal.pcbi.1011754.t002
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Fig 6. Selecting representative PDO/PDX for ILC. (A) SDA projected positions for PDO and PDX models from PDMR. Four models (three PDXs

and one PDO; red circles) from the same patient (171881–019-R) were identified as candidate ILC models. Six models from this patient are labeled with

the sample ID. High consistency was observed between SDA deviance scores and passages among PDX models. (B) Six models originated from the

same patient were used for pathway-specific analysis. Six models show high congruence in the majority of 14 pathways and the Cell Adhesion pathway.

(C) Violin plot shows the position of PDO.1 and PDX.1B on the six genes on which PDO.1 is discordant with.

https://doi.org/10.1371/journal.pcbi.1011754.g006
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Discussion

Cancer models play a crucial role in cancer research for understanding carcinogenesis and

drug development. However, how to best select the most congruent cancer model to faithfully

represent a specific tumor subtype remains mostly unsolved, which is an urgent gap to fill

given the increasing number of cell lines and PDOs being generated. In contrast to pure

machine-learning-based methods in the literature, we developed a pipeline, CASCAM, to pro-

gressively select the most representative cancer model(s) by genome-wide pre-selection and

pathway-specific mechanistic investigation using transcriptomics data. First, tumor and cancer

model data are harmonized by Celligner (Module 1). The congruence evaluation combines

merits of both machine learning and correlation-based approaches to pre-select cancer models

(Module 2). In-depth bioinformatic tools provide iterative exploration of the most and least

mimicked biological mechanisms of selected cancer models (Module 3).

The first example of this framework used ILC breast cancer data to select the most represen-

tative cell line(s), and it is demonstrated that CASCAM is suitable either in a supervised man-

ner with prior knowledge of disease mechanism (e.g., cell adhesion pathway in ILC) or drug

targeted pathways, or in an unsupervised manner when no prior knowledge is given. 14 cell

lines were credentialed as ILC cell lines on the genome-wide evaluation by Module 2, and 10

of them (including user-specified MDA-MB-134VI) were used for pathway-specific analysis in

Module 3. Though widely used in ILC research [32, 33], MDA-MB-134VI was not congruent

with ILC tumors on the genome wide and in the “KEGG cell adhesion molecules” pathway.

All results combined together indicated that CAMA1, UACC3133, SUM44PE, HCC2218, and

IPH926 were recommended in order as appropriate cell lines for ILC research.

DU4475 is an example of the necessity of pathway-specific analysis (Module 3). As this cell

line is E-cadherin positive, estrogen receptor positive [59], and without CDH1 mutation

detected [60], DU4475 does not exhibit features of the classic ILC subtype. However, as epithe-

lial-mesenchymal transition (EMT) preferentially occurs in basal cell lines [61], it often

accounts for reduced CDH1 and CDH2 expression, which is also the key features of ILC

tumors. Therefore, DU4475 was genome-wide classified as ILC. Importantly, pathway-specific

analysis provided higher resolution to differentiate IDC and ILC, with DU4475 being dissimi-

lar to ILC on average of the 14 selected pathways (DSpath = 0.734, pval = 0.093) and in the

“KEGG cell adhesion molecules” pathway (DSpath = 0.917, pval = 0.026) and finally was not

selected as a representative ILC cell line by CASCAM.

In practice, researchers tend to credential cell lines according to the annotation of their ori-

gin or pre-specified mutations (e.g., CDH1 for ILC) if available. However, the origins might be

mislabeled, and the cell line evolution in culture has uncovered the possibility of genetic diver-

sification, weakening the credibility of the original annotation. On the other hand, selected

mutations cannot guarantee eligibility for a cell line. In our study; for example, we observed

large genomic differences between SUM44PE (PSDA = 0.987, DSSDA = 0.024) and 600MPE

(PSDA = 0.125, DSSDA = 2.013) although both have CDH1 mutation and are ER+, which are

essential features of ILC. Therefore, the proposed CASCAM captures systems information in

pathways, topological networks and genes and provides a thorough congruent investigation of

the cell lines.

We also extended our framework to examine congruence of PDO and PDX cancer models

to ILC tumors in the second case study. Of 11 PDOs and 136 PDXs in the PDMR database,

only four from the same patient were credentialed as ILC in Module 2 evaluation. Strikingly,

this tumor and model while not annotated as ILC has a CDH1 mutation, suggesting that CAS-

CAM authenticated a new model of ILC. Aside from offering a “yes” or “no” answer, CAS-

CAM can score the cancer models according to how similar they are to the targeted tumor

PLOS COMPUTATIONAL BIOLOGY Congruence and selection of cancer models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011754 January 10, 2024 15 / 24

https://doi.org/10.1371/journal.pcbi.1011754


cohort. We therefore observed a progressive deviation trend for PDX samples over passages,

which is consistent with recent reports that PDX often undergo murine-specific tumor evolu-

tion and congruence decays over passages [62, 63]. In fact, due to discrepancies in drug

response for late-passage PDXs, recent studies have suggested design to use early-passage PDX

models [64]. In addition, our result shows inconclusive comparative performance of PDO and

PDX, which is consistent with current reports in the literature. PDOs offer advantages such as

being an in vitro system with lower costs yet maintaining cellular heterogeneity [65, 66]. How-

ever, they lack of immune system components and loss of stromal components over time rep-

resent limitations in representing the tumor microenvironment [67]. On the other hand,

PDXs preserve the original tumor architecture and include stromal and at least some immune

components [68, 69], but again, PDX development and maintenance is time and resource

intensive.

The current CASCAM has limitations and multiple directions of development are on-

going. The methodologies are now developed for transcriptomic data evaluation. As multi-

level omics data (e.g., mutation, copy number variation, methylation and miRNA expression)

are becoming affordable and prevalent, an extended congruence framework for evaluating

cancer models with multi-omics data will provide deeper insight. Secondly, congruence analy-

sis using single cell RNA-seq or single cell multi-omics data will provide a high-resolution

understanding of clonal and micro-environment information for selecting the most represen-

tative cancer model, which is also an on-going work. Thirdly, the current framework is built

upon binary contrast (i.e., ILC versus IDC). An extension to evaluating multi-class (i.e., three

or more tumor subtypes) scenario is also a future direction. Currently, the molecular congru-

ence we focus is on transcriptomic resemblance in genome-wide, pathway or gene level. The

method can be extended to incorporate additional information, such as drug response, when

available. Finally, the goal of CASCAM is to identify the most congruent cancer model from a

long list of candidates to represent a target tumor cohort. For precision medicine, one may be

interested in quantifying congruence of a PDO compared to the tumor from the patient origin.

CASCAM can be easily extended for that purpose.

Collectively, we demonstrated CASCAM as a comprehensive and effective congruence eval-

uation tool for selecting the most representative cancer model for investigating cancer path-

ways and ultimately for precision medicine. An R package, CASCAM, with an interactive app

is publicly available (https://github.com/jianzou75/CASCAM) to facilitate the use of our pro-

posed framework.

Materials and methods

Gene expression data

Gene expression matrices in raw read count and transcripts per million (TPM) versions for

9,264 The Cancer Genome Atlas (TCGA) pan-cancer tumor samples were downloaded from

Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo) with query ID GSM1536837

[46], and there were 960 breast cancer primary tumor samples with histology annotated as

IDC or ILC. Log2-TPM gene expression data for 1,248 Cancer Cell Line Encyclopedia

(CCLE) pan-cancer cell line samples were taken from DepMap Public 19Q4 file [70] (https://

depmap.org/portal/ccle), and there were 65 breast cancer cell lines. Due to the limited repre-

sentation of ILC cell lines in the CCLE project, we further included seventeen cell lines from

an ongoing project (R01CA252378), namely Invasive Lobular Cancer Cell Line Encyclopedia

(ICLE). The following eight cell lines were overlapping in ICLE and CCLE datasets: CAMA1,

HCC1187, HCC2218, MDA-MB-134, MDA-MB-453, MDA-MB-468, SKBR3, and ZR7530.

Those from ICLE were annotated as I, those from CCLE (sequencing data from Sequence
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Read Archive (SRA) under accession number PRJNA523380) were annotated as C, and the

processed CCLE data directly from DepMap were not annotated. Gene expression data of

the breast cancer PDO and PDX models in TPM were obtained from NCI Patient-Derived

Models Repository (PDMR) database (https://pdmr.cancer.gov/), and was log transformed

for downstream evaluation. The genetic variants (e.g. mutations) in PDMR was extracted

from whole genome sequence and annotated through oncoKB annotation pipeline version

1.1.0 [71].

Gene expression normalization between tumor and cell lines

The gene expression matrices from tumors and cell lines are not directly comparable. We eval-

uated three different approaches for normalization. Quantile normalization is a widely used

method to achieve equal quantiles across all the samples (“normalize.quantiles” function in

preprocessCore [72] package). ComBat [21] is method for batch effect correction under

empirical Bayes frameworks, where we treated tumor and cell lines as two different batches

(“ComBat” function in sva [73] package). Celligner is a two-step machine learning method

specifically developed for tumor and cell line normalization. The first step is to remove sys-

temic differences, such as normal cell contamination, between tumor and cell lines using con-

trastive principal component analysis (cPCA). The second step is to perform further

normalization using mutual nearest neighbors (MNN) [74]. We used the default parameters in

Celligner implementation (celligner package), using either 960 breast cancer tumor samples or

all 9,264 pan-cancer samples to harmonize the datasets.

Differential expression analysis and gene set enrichment analysis

We applied DESeq2 [75] R package using TCGA tumor read count data for differential expres-

sion analysis (IDC vs. ILC). A gene with absolute fold change >1.5 and two-sided Benjamini-

Hochberg adjusted p-value [76]<0.05 was defined as “differentially expressed (DE)”. For gene

set enrichment analysis, we used fgsea R package. Kyoto Encyclopedia of Genes and Genomes

(KEGG) and Hallmark gene sets in the Molecular Signatures Database (MSigDB) were ana-

lyzed, and log2 fold changes from the differential expression analysis were used for gene

ranking.

Machine learning methods

We compared 16 machine learning methods, including sparse discriminant analysis (SDA),

random forest on pre-filtered transformed data* (CancerCellNet), robust sparse discriminant

analysis (RSDA), logistic regression with elastic net (ElasticNet), logistic regression with ridge

penalty* (RidgeRegress), K nearest neighbors (KNN), majority voting according to 25 highest

Pearson correlated tumor samples* (Pearson25), linear discriminant analysis (LDA), random

forest* (RandomForest), nearest template prediction* (NTP), subtype assignment according

to the median of within subtype Spearman correlations* (SpearmanMed), subtype assignment

according to the median of within subtype Pearson correlations* (PearsonMed), logistic

regression (Logistic), and three convolutional neural networks which were originally opti-

mized on pan-cancer datasets (1D-CNN, 2D-Vanilla-CNN, and 2D-Hybrid-CNN) [25]. Six of

these methods (marked with asterisk in Table 1) have been extended and used in publications

for cancer model prediction analysis. The following three prediction evaluations were per-

formed: (1) Five-fold cross-validation on breast cancer histology (769 IDC vs. 191 ILC) using

960 TCGA BC samples. (2) Construction of prediction model on Celligner aligned TCGA BC

samples (training set, 712 ER+ and 205 ER-) and validated on Celligner aligned CCLE BC cell

line samples (testing set, 19 ER+ and 37 ER- cell lines). (3) Construction of prediction model
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on Celligner normalized TCGA pan-cancer samples (training set, 960 BC and 960 non-BC)

and validated on Celligner normalized CCLE cell line samples (testing set, 56 BC and 56 non-

BC cell lines). To avoid accuracy calculation issue of imbalanced sample sizes, 960 TCGA non-

BC tumor samples and 56 CCLE non-BC cell lines were randomly subsampled from 8,304

TCGA pan-cancer non-BC samples and 1,192 CCLE pan-cancer non-BC cell lines.

SDA projected deviance score

The SDA projected deviance score, DSSDA, was designed based on the sparse discriminant

analysis (SDA) method [77] to quantify genome-wide dissimilarity between a cancer model

and the targeted tumor subtype. We denote the tumor gene expression N × G matrix as X with

N samples and G DE genes, the N × 2 class indicator matrix as Y with Yik = 1(i 2 Ck) for tumor

sample i belonging to targeted tumor subtype, and the cancer model gene expression as C.

SDA extends linear discriminant analysis with elastic net to identify (θ, β) by

minimizeβ;θ

n
k Yθ � Xβ k2 þ gβTIβþ lk β k1

o

subject to
1

n
θTYTYθ ¼ 1

where θ is the optimal scores, β is the sparse discriminant vector, I is the identity matrix, γ and

λ are nonnegative tuning parameters selected by cross-validation. An iterative algorithm is

applied to solve the pair (θ, β). The tumor and cancer model gene expressions are then pro-

jected to the direction of estimated β–Xβ and Cβ. The assignment probability, PSDA, was calcu-

lated from the standard LDA on the reduced data matrix Xβ and Cβ in selected gene features.

To simplify annotation, we use ci to denote the projected value for cancer model i and tk to

denote the projected tumor sample vector for subtype k. The SDA projected deviance score for

cancer model i in class k, is defined as DSði;kÞSDA ¼ jci � m̂kj=ŝ where m̂k ¼ mediankðtkÞ,
ŝ ¼ madkðtk � m̂kÞ, and mad is abbreviation for scaled median absolute deviation. Intuitively,

m̂k and ŝ are robust forms of mean and standard deviation, and DSSDA can be seen as a robust

form of absolute t-statistics as the standardized distance of the cancer model to the center of

tumor cohort on the SDA projected space. Smaller deviance score indicates higher congruence

of the cancer model to the desired tumor subtype cohort. By setting the null hypothesis as ci =

μk, the p-value of DSði;kÞSDA, denoted as pvalðDSði;kÞSDAÞ, is obtained from the distribution of tumor

tk* N(μk, σ), where (μk, σ) are estimeated by ðm̂k ; ŝÞ. The ordinary bootstrap [78] with 1,000

times on the tumor projected data is performed to obtain the 95% confidence interval of DSði;kÞSDA

on the log2 scale. The implementation of this method is based on sparseLDA [77], caret [79]

and boot [80] R package.

Gene and pathway specific deviance score

We denoted the Celligner aligned gene expression for cancer model i and gene g as cg,i and for

tumor samples in subtype k and gene g as tg,k. Similar to SDA-projected deviance score, we

defined the gene specific deviance score (DSgene) for model i and subtype k in gene g as

DSðg;i;kÞgene ¼ ðcg;i � m̂g;k=ŝg , where m̂g;k ¼ mediankðtg;kÞ and ŝg ¼ madkðtg;kÞ. The pathway specific

deviance score (DSpath) for pathway p, cancer model i, and tumor subtype k is then defined,

based on the DSgene, as DSðp;i;kÞpath ¼ geometric meang2PðDEÞ ðjDSðg;i;kÞgene jÞ, where P(DE) is the set of DE

genes in pathway p. The geometric mean is proposed to reduce the effects of outliers. The sig-

nificance levels of DSpath (one-sided p-values) were defined similar to pval(DSSDA), which were

obtained from the null distribution empirically constructed by DSpath of the tumor samples.
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Supporting information

S1 Table. Summary of relevant publications.

(DOCX)

S2 Table. Celligner aligned data for 38 candidate cell lines and SDA projection weights.

(XLSX)

S3 Table. Summary table of the 38 candidate cell lines.

(DOCX)

S4 Table. Summary table of the pathway specific analysis for 9 unbiased-selected + 1 man-

ually-included cell lines and 14 unbiased-selected +1 manually-included pathways.

(DOCX)

S5 Table. Confusion matrix of genome-wide predication for HER2+, ER+/PR+, and TNBC

prediction.

(DOCX)

S6 Table. Summary table of the 11 PDO and 136 PDX BC models.

(DOCX)

S1 Fig. Assignment probabilities of three different methods. (A) LDA; (B) SDA; (C) RSLDA.

(TIF)

S2 Fig. Heatmap of pathway-specific deviance scores (DSpath) with 53 pathways (rows) and

9 genome-wide pre-selected cell lines +1 manually selected cell line (MDA-MB-134VI)

(columns). The genome-wide SDA projected deviance score (DSSDA) is shown on the top side-

bar and the pathway size and normalized enrichment score (NES) are on the left.

(TIF)

S3 Fig. Violin plot for CAMA1 and CDK4 in KEGG Cell Adhesion Molecules.

(TIF)

S4 Fig. Cross-cancer validation of CASCAM. (A) Genome-wide preselection identifies 5 out

of 24 liver cell lines as ILC. (B) Pathway-based heatmap reveals that these 5 preselected cell

lines significantly diverge from the ILC tumor center in terms of differentially expressed genes

and associated pathways.

(TIF)

S5 Fig. Selection of representative cell lines for TNBC. (A) SDA projected scatterplot shows

the position of each candidate cell line and 12 cell lines were selected for down-stream analysis.

(B) heatmap for the comparison of cell lines in KEGG WNT signaling pathway (BT549 and

HCC1599 highlighted).

(TIF)

S6 Fig. UMAP of Celligner alignment between tumors and PDX/PDO models. (A) Three

distinct clusters were observed. The small cluster on the left consists of a seemingly rare breast

cancer subtype, the upper-right cluster includes mostly non-basal samples, and the lower-right

cluster includes mostly basal samples. (B) UMAP is redrawn when the small cluster in (A) is

removed.

(TIF)

S7 Fig. Violin plot for PDO.1 and PDX.1B in KEGG Cell Adhesion Molecules.

(TIF)
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S8 Fig. Topological plots for APWG05PF7 (PDX.1B) and V1-organoid (PDO) from the

same patient (171881–09-R) in KEGG Cell Adhesion Molecules. (A) APWG05 (PDX.1B).

(B) V1-organoid (PDO.1).

(TIF)

S9 Fig. Scatterplot for relation between DSSDA and DSpath in PDO and PDX models across

(A) fibroblast and immune pathway, (B) metabolism of xenobiotics by cytochrome P450

(KEGG ID: hsa00980) and (C) cell death (MSigDB ID: M5902).

(TIF)
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