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Abstract: The article aims to analyze the pollution with Volatile Organic Compounds (VOC) emitted 

from the biggest refinery in Romania, using the daily and monthly series registered for two years in 

two sites on the industrial platform, and the carcinogenic and noncarcinogenic risks for workers at 

the industrial plant. Since the values of the basic statistics (minimum, maximum, and average) and 

outliers indicate that most recorded values exceed the maximum admissible limits established by 

law, the Peaks Over Threshold (POT) method was utilized to model the maximum values of the 

series and determine the return levels for benzene and total VOC (TVOC). Given the high values 

obtained for relatively short return periods, indicating potential danger for the workers, we assessed 

the noncarcinogenic and carcinogenic risks to benzene and TVOC exposure by computing the haz-

ard index (HI) and lifetime cancer risk (LCR). The results indicate that 43.75% of the HI values are 

above 1, indicating a relatively high noncarcinogenic risk for different categories of workers. LRC 

indicates a high LRC for 93.75% of the workers in all considered categories exposed to TVOC. 
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1. Introduction 

VOCs are substances with the property that at least a fifth of their weight is formed 

by vapor whose pressure exceeds 300 Pa at 20 °C [1]. They are pollutants whose presence 

in the atmosphere may impact the population and environmental health [2,3]. About 150 

compounds are classified as VOCs. They are predominantly hydrocarbons with 4–12 car-

bon atoms (paraffin, olefins, and aromatic hydrocarbons), benzene and its derivatives, 

etc., which have a high carcinogenic potential [2,4]. Total volatile organic compounds, 

expressed as non-methane volatile organic compounds (NMVOCs), including aromatic 

hydrocarbons (benzene, toluene, ethyl-benzene, and ortho-, meta-, and para-xylene, etc.) 

with moderate volatility, are found in different concentrations in urban and suburban re-

gions [5–10], shoreline areas [11], and industrial zones [12–15]. 

Scientists have proved that environmental air pollution impacts the population dra-

matically, increasing morbidity and mortality, with over 4.2 million related deaths esti-

mated to occur annually [16–20]. Cheng et al. [21] show that VOCs can provoke irritation 

in the throat, nose, and eyes, headaches, shortness of breath, skin problems, fatigue, diz-

ziness, and nausea. Prolonged or elevated exposures may lead to lung irritation, kidney 

and liver impairment, cancer, and damage to the central nervous system. The health 
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effects induced by VOCs depend on the concentration levels and the extent of exposure 

to the pollutants. Cao et al. [22] assessed the health risks for residents in the surrounding 

petrochemical and industrial parks located in the YRD region of China by computing the 

Health Index (HI) and the lifetime cancer risk (LCR) of TVOCs. 

Various investigations show that long-term exposure to benzene can cause hemato-

logical diseases, such as acute and chronic lymphocytic leukemia, acute myeloid leuke-

mia, multiple myeloma, non-Hodgkin’s lymphoma, and aplastic anemia [23–25]. Benzene 

has also been reported to induce mammary cancer [26–29]. Benzene has been classified as 

a group 1A carcinogen [30] as its toxic effects on the hematopoietic system are well known 

[31]. Other well-researched VOCs include polycyclic aromatic hydrocarbons, formalde-

hyde, and benzo[a]pyrene, with their cancer-causing potential confirmed by comprehen-

sive data [32–34]. One study [35] emphasized that exposure to vinyl chloride can provoke 

a relatively rare cancer, liver angiosarcoma [35]. It was indicated that 70–75% of the esti-

mated cancer risk was attributable to exposure to polycyclic organic matter, formalde-

hyde, 1,3-butadiene, and benzene [36]. An experimental study on mice pointed to the car-

cinogenicity of ethylbenzene [37]. Only one experimental study evaluated the effects of 

human exposure to ethylbenzene for 10 years. No tumor was reported, but the period is 

too short for cancer latency [38]. 

Studies have demonstrated that the oil refining and processing industry significantly 

contributes to VOC emissions [39,40]. There is an estimation that most refineries in Europe 

release a considerable amount of VOCs into the atmosphere (150–6500 tons/year, respec-

tively, 50–1000 tons/106 tons of processed crude oil) [18], while in China, VOC emissions 

from this industrial sector are estimated to range between 17.9% and 39.6% of the total 

emissions [41]. Critical sources of VOC emissions include petroleum product storage 

yards, maritime terminals, and (auto and rail) loading/unloading stations for petroleum 

products [42]. 

VOC emissions quickly disperse in the environment, where they persist for a long or 

short period depending on the climatic conditions. VOCs react with other pollutants (such 

as NOx) in the presence of light. Therefore, they are the primary precursors of the tropo-

spheric ozone and particles in suspension (the smog’s main compounds). During the re-

actions in which they participate, VOCs can form organic compounds with higher molec-

ular weight, which condense and produce secondary organic aerosol [43]. In these circum-

stances, VOC emission control has become a benchmark in European air quality monitor-

ing programs [44]. 

Various interpolation methods have been utilized to evaluate the concentrations of 

gaseous compounds in the atmosphere at different locations. For example, Choi and 

Chong [45] proposed a modified version of the inverse distance weighting (IDW) method 

and conducted the pollutants zoning for 45 monitoring stations. Their results show sig-

nificant improvement compared to those presented by Kianisadr et al. [46] for the pollu-

tants in Khorramabad, Iran. The concentrations of VOC species typically exhibit substan-

tial temporal and spatial variations. Hong et al. [47] studied the BTEX accumulation on 

road surfaces encompassing typical commercial, industrial, and residential lands using 

multiple linear and nonlinear regression and ANNs. 

In Romania, special attention is paid to aligning with the EU Directive on air quality. 

Therefore, the study of atmospheric pollution (as a first step in taking measures to dimin-

ish it based on informed insight) and its impact on population health has become a topic 

of interest for scientists [6–9,48–51]. 

This research’s aim is twofold: (1) to assess VOC pollution levels from the second-

biggest refinery in Romania and (2) to evaluate the noncarcinogenic and carcinogenic risks 

of benzene and TVOC exposure to the workers. We investigated the exceedance of maxi-

mum admissible values to achieve the first goal. The Peak Over Threshold method was 

utilized to model the maximum concentration series and determine the return periods. 

Given the high return levels for short return periods, extending the research to the second 

goal was found to be necessary. 
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The combined approach used here has the advantage of providing the expected high-

est pollution levels and correlating the results with the expected impact on public health. 

From another point of view, since high pollution could lead to a drastic decrease in tour-

ism in the studied zone (the refinery is located in the neighborhood of the most renowned 

resorts on the Romanian Seaside), the study raises an alarm signal to the authorities to 

take urgent measures to reduce human and economic damages. 

2. Study area and Methodology 

2.1. Study Site 

Data were gathered from two monitoring stations (Figure 1) at the largest refinery in 

Romania and one of the most advanced in southeastern Europe. The oil refining complex 

is located on DJ 226, at Km 23, in Constanta County. The industrial platform (44°19′58″–

44°20′55.7″ N and 28°38′13.3″–28°41′01.14″ E, respectively) is situated within the perimeter 

of the town of Năvodari, on the southern shore of the Tașaul Lake and the isthmus be-

tween it and the Siutghiol Lake. The main settlements in the area are the village of Corbu 

(2.5 km to the north), the town of Năvodari (3 km to the west-southwest), the village of 

Mamaia (4 km to the southwest), the resort of Mamaia (10 km to the south), and the city 

of Constanța (17 km to the south) [52]. 

 

Figure 1. The map of Romania and the study area. Station 1 (S1)—44°20′06.96″ N, 28°38′26.40″ E 

(Loading/unloading auto ramp area); Station 2—44°20′19.01″ N, 28°39′20.94″ E (Loading/unloading 

railway ramp). The green circle represents the Refinery area. 

The region has a continental climate with sea influence, manifested through alternat-

ing daytime and nighttime breezes. The annual average temperature is about 11.2 °C. The 

annual average humidity (approximately 81%) is determined by continuous seawater 

evaporation, a factor that prevents excessive heating during the summer. The annual pre-

cipitation is below 400 mm. The wind rose is presented in Figure 2. 

Considering the need for suitable storage space for both intermediate and final pe-

troleum products and the distribution of petroleum products through loading into rail-

way wagons, vehicles, and maritime terminals, the area experiences VOC emissions at 

concentrations that may exceed the legislatively prescribed upper limit values, the alert 

threshold for human health, and the critical level for the protection of vegetation and 

fauna, depending on weather conditions. 
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Figure 2. The windrose. 

2.2. Data Series 

The studied dataset is formed of the benzene and TVOC daily and monthly series 

collected during January 2021–December 2022 at Site 1 (44°20′06.96″ N, 28°38′26.40″ E)—

the loading/unloading auto ramp area—and Site 2 (44°20′19.01″ N, 28°39′20.94″ E)—the 

loading/unloading railway ramp. These sites were chosen for study given that research 

from other countries indicated high concentrations of TVOC in such areas, as will be dis-

cussed in Section 3.4. 

The monthly (daily) benzene series recorded at Site 1 and Site 2 will be denoted by 

SB1 (SB3) and SB2 (SB4), respectively. Similarly, the monthly (daily) TVOC series regis-

tered at Site 1 and Site 2 will be denoted by TB1 (TB3) and TB2 (ST4), respectively. The 

daily series are represented in Figure 3. 

 

Figure 3. The series SB3, SB4, ST3, and ST4. 

The sniffing method was used to measure the fugitive emissions of VOCs emanating 

from process equipment [53]. Accordingly, any detector type is permitted (e.g., based on 

catalytic oxidation, infrared absorption, flame ionization, or photoionization), provided it 

adheres to the specifications and performance criteria outlined in the standard. Addition-

ally, EN 15446:2008 Standard outlines a procedure for estimating the emission rate from 

individual sources and the total emissions of the installation over a specified reporting 

period (typically a year) through a set of correlations [1]. 

The on-site air quality monitoring was carried out by the Best Available Techniques 

for Refineries (BATs) requirements as per Directive 2010/75/EU [54]. The quantitative 
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analysis of the recorded data was conducted based on the limit values for the protection 

of human health (annual limit of benzene immission—5 μg/Nm³) imposed by Romanian 

Law no. 104/2011 [55] on environmental quality, the Directive 2001/81/EC [56], and Di-

rective 2010/75/EU [54]. The Romanian Law no. 264/2017 [57] specifies that the hourly av-

erage concentration of vapors discharged from the vapor recovery unit, with the necessary 

correction applied for the dilution occurring during the process, must not exceed 

35g/Nm³/h. Moreover, emission levels associated with BAT for emissions directed by VOC 

into the air should have a daily average or an average over the sampling period for total 

volatile organic carbon in the air in the range of 1–20 mg/Nm³ [58]. 

In the operation of gasoline loading and unloading facilities in tanks at terminals, the 

minimum requirements are: (1) the total measurement error of the calibration gas mixture 

must not exceed 10% of the measured value, and (2) the measurement equipment used 

must be capable of measuring concentrations of at least 3 g/Nm3 and have an accuracy of 

at least 95% of the measured value [59]. 

The VOC concentration series were obtained through fixed sensors: (1) AIT-102 (Ion-

science Titan model), with the monitor consisting of a GC column and photoionization 

detector used for measuring the ambient concentration of benzene with internal data log-

ging and (2) SD-D58-AC/DC (Riken Keiki model), with a continuous-monitoring detector 

head TVOCs providing a 4–20 mA signal indicating the target gas reading for use by a gas 

monitoring controller, recording device, or programmable controller, respectively. Mobile 

laboratories equipped with a modern air emissions analysis system (VOC analyzer with 

FID detection, Thermo Environmental Instruments model) and a meteorological station 

connected to a PC were utilized. The meteorological station enables online visualization 

of the registered concentration values. 

Generally, the atmospheric evaporation profile of gasoline indicates high proportions 

of VOCs during the summer. Therefore, chemical compositions with Reid vapor pressure 

(RVP) ranging between 45 and 60 kPa are formulated in the warm season, while compo-

sitions with RVP values between 60 and 90 kPa are prepared in the cold season, depending 

on the volatility class of the petroleum product. However, due to meteorological phenom-

ena, significant modifications may occur regarding fugitive emissions of VOCs into the 

atmosphere. 

2.3. Data Analysis 

The dataset was subject to statistical analysis to determine its characteristics and the 

similarities between the series recorded simultaneously at different locations. The steps 

followed were: 

(1) Compute the basic statistics (mean, minimum, maximum, coefficient of variation, 

and skewness) and plot the histograms and boxplots to determine the series charac-

teristics and emphasize the shapes of the series distribution and possible outliers. 

(2) Apply the Anderson–Darling (AD) test [60] to test the hypothesis that the series is 

Gaussian against the hypothesis that the series is not normally distributed. 

(3) Apply the Fligner–Killeen (KF) test [61] to check the homoskedasticity of each time 

series. The null (alternative) hypothesis is that the series is homoskedastic 

(heteroskedastic). The choice of this nonparametric test was based on the research of 

Conover et al. [62], which shows that this test is better than the alternatives in terms 

of power and when the normality hypothesis is not satisfied. 

(4) Apply the Mann–Kendall (MK) [63] test to check the hypothesis that the series is ran-

dom against the existence of a monotonic trend. When the null hypothesis was re-

jected, Sen’s [64] procedure was used to compute the slope of a linear trend. 

(5) Apply the KPSS test [65] to test the null hypothesis of the series trend (or level) sta-

tionarity against its nonstationarity. 

(6) Test the hypothesis that the series has no change points (breakpoint) against the 

hypothesis that it has at least one by performing the Buishand [66], Pettitt [67], Lee 
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and Heghinian [68] tests, and Hubert segmentation procedure [69]. A change point 

appears when the series changes the mean, variance, or distribution from which it 

arose. The first three tests can determine only the most probable breakpoint. 

Moreover, the Buishand and Lee and Heghinian tests can be performed only if the 

series is Gaussian. If the series fails the normality test but can reach it by a 

transformation, the changepoint tests are run on the transformed series; otherwise, 

only the Pettitt and Hubert procedures can be performed. KhronoStat 1.01 

(Hydrosciences Montpellier, France) [70] was utilized to conduct the tests. 

(7) Apply the Kruskal–Wallis (K-W) test [71] to test if the series in a group originate from 

the same distribution against the alternative that at least one comes from a different 

distribution. When the null hypothesis was rejected, the post-hoc Dunn’s test [72], 

with the adjustment proposed by Hochberg [73], was run. 

All tests were performed at a significance level 𝛼 =5%. A p-value less than 0.05 com-

puted in a test (except Dunn’s) leads to rejecting the corresponding null hypothesis. In 

Dunn’s test, the null hypothesis is rejected if the p-value < 𝛼/2. 

2.4. Modeling the VOC Series 

According to Lenox and Haimes [74], extreme events have a low probability of appa-

rition and high consequences. Extreme value theory is a statistical approach that focuses 

on the behavior of the probability distribution tails, describing the probabilities and mag-

nitudes of extreme events. This method can help model people’s risks and exposures to 

high levels of pollutants that may pose acute or chronic health risks in the short and long 

term. These exposures have the most significant health impact and require accurate mod-

eling [75]. 

For the series with the highest variability and showing mostly exceedances of the 

legal pollution limit, a Generalized Pareto Distribution (GPD) [76] was fitted using the 

Peak Over Threshold method (POT). POT models are employed when observations in a 

time series with high values, compared to the others, exceed a threshold. It was proved 

that these models are efficient when using sets (sometimes relatively small) of extreme 

values [77]. 

GPD has the following distribution function: 
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where 0  and   are the scale and shape parameters, respectively. The x > 0 when

,0  and  /x −0  when .0  

Depending on the shape parameter’s value ( ,0 ,0=  or 0 ), a particular dis-

tribution is obtained (Pareto (reparameterized), exponential, or Pareto type II). 

Denote by uN  the number of exceedances of a threshold u, F the distribution func-

tion of a random variable, and 𝐹𝑢 the distribution function of exceedances above u [78]: 

𝐹𝑢(𝑦) =
𝐹(𝑦 + 𝑢) − 𝐹(𝑢)

1 − 𝐹(𝑢)
. (2) 

It was shown that for a large class of distributions, when the threshold u increases, 

𝐹𝑢 converges to a generalized Pareto distribution [79]. We work here in the hypothesis that 

if a pollutant series follows a theoretical distribution, F, and there is a threshold, u, then 

𝐹𝑢(y) = 
u,G  . Maximum Likelihood Estimation [80,81] was utilized to estimate   and 
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 . The threshold u is the lowest value for which the estimated   and  uu −=  ( ̂ ,

u̂ ) are almost constant in the plots of ̂  and u̂ . 

Using the fitted models, the return levels for different period units are also reported. 

In the case of POT, the return period T is expressed as a function of the probability distri-

bution function F and the average waiting time between two extreme events, 𝜇𝑇, [82,83]: 

𝑇 =
𝜇𝑇

1 − 𝐹(𝑥)
 . (3) 

The return value is defined as a value that is expected to be equaled or exceeded on 

average once every interval of time T (with a probability of 1/T) [84]. 

The return period is useful for risk analysis. An extended return period indicates a 

low probability that an extreme value of a hazard will occur in any selected period (in our 

case, month or day). 

The R packages extRemes and ismev were utilized for modeling. 

2.5. Health Risk Assessment 

The noncarcinogenic risk associated with VOCs is estimated by the hazard index (HI) 

for benzene and TVOC. 

To assess the noncarcinogenic risk to workers in the industrial park from inhalation 

of VOCs, we computed HI for professionals in the categories: (1) Young, aged 18–25, with 

<5 years of experience, (2) aged 25–35, with 5–10 years of experience, (3) Experienced, aged 

35–50, with 10–15 years of experience, (4) Seniors, aged 40–65, with 15–25 years of experi-

ence, using the equation [22,85,86]: 

𝐻𝐼 =  
𝐶𝑠 × 𝐸𝑇 × 𝐸𝐹 × 𝐸𝐷

365 × 𝐴𝑇𝑛𝑐  ×  24
 × 

1

𝑅𝑓𝐶𝑠
 (4) 

where: 

- 𝐶𝑠  (μg/m3) is the average daily concentration of VOCs; 

- 𝐸𝑇 is the daily exposure time, considered 8 h/day for all workers; 

- EF is the exposure frequency. EF has the following values function of the worker 

categories: (1) 350 days/year, (2) 340 days/year, (3) 325 days/year, (4) 340 days/ year. 

- ED is the exposure duration. ED has the following values function of the worker 

categories: (1) 5 years, (2) 10 years, (3) 15 years, (4) 25 years. 

- 𝐴𝑇𝑛𝑐 is the average exposure time to noncarcinogenic risk, estimated at 74.8 years; 

- 𝑅𝑓𝐶𝑠 ( μg/m3) represents the reference concentration of VOC species for the 

noncarcinogenic risk assessment. 

The values of 𝑅𝑓𝐶𝑠 are presented in Table 1. In the computation of HI for benzene, 

𝑅𝑓𝐶𝑠 =30 μg/m3, whereas for TVOC, 𝑅𝑓𝐶𝑠 =1000 μg/m3, computed as a weighted average 

of the values from column 2 with the weight from column 4 of Table 1. 

HI < 1 indicates the absence of potential noncarcinogenic health risks, while an HI 

exceeding 1 indicates the presence of potential chronic noncarcinogenic health risks. 

Table 1. VOC species, 𝑅𝑓𝐶𝑠, 𝐼𝑈𝑅𝑠, and the percentages in TVOC [85,87]. 

VOC Species 𝑹𝒇𝑪𝒔 (μg/m3) 𝑰𝑼𝑹𝒔 (μg/m3)−1 Percentage 

benzene(C6H6) 30 7.8 × 10−6 37.00 

toluene (C7H8) 5000 - 14.00 

ethylbenzene (C8H10) 1000 2.5 × 10−6 
7.50 

styrene (C8H10) 1000 - 

m-,p-xylene (C8H10) 100 - 8.30 

o-xylene (C8H10) 100 - 1.80 

1,2,3-trimethylbenzene (C9H12) 60 - 3.00 

n-hexane (C6H14) 700 - 28.00 
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cyclohexane (C6H12) 6000 - 0.10 

We also computed the carcinogenic risk by Lifetime Cancer Risk (LCR) for the same 

categories of workers according to the equation: 

𝐿𝐶𝑅 =  
𝐶𝑠 × 𝐸𝑇 × 𝐸𝐹 × 𝐸𝐷

365 ×  𝐴𝑇𝑐  ×  24
 ×  𝐼𝑈𝑅𝑠 (5) 

where: 

- 𝐶𝑠 , ET, EF, and ED have the same meaning and values as in Equation (3). 

- 𝐴𝑇𝑐 is the average time under exposure to carcinogenic risk, estimated at 70 years. 

- 𝐼𝑈𝑅𝑠  represents the inhalation unit risk of VOC species for carcinogenic risk 

assessment. A cumulative value of 𝐼𝑈𝑅𝑠 = 2.5 × 10−6 (μg/m3)−1 was considered in the 

computation of LCR for TCOVs. 

The permissible values for LCR are within the range of 10−6–10−4. 

3. Results and Discussion 

3.1. Results of the Statistical Analysis 

Table 2 displays the basic statistics of the studied series. One can observe high varia-

tions of all but the SB2 series. The maximum TVOC concentrations are 102.76—ST3 and 

298.58—ST4. ST4 and ST3 have the biggest standard deviations (stdev), indicating the 

highest dissipation around the series mean values. The highest coefficients of variation 

(cv) correspond to ST4, followed by SB4, confirming the high variability of these series. 

The skewness coefficients show that all series are right-skewed (the highest skewness be-

ing for SB4), confirmed by the histograms from Figure 4 (middle and right). SB4 is the 

series with the highest number of outliers (Figure 4, left). 

Table 2. Basic statistics for benzene and TVOCs series. 

Statistics SB1 SB2 SB3 SB4 ST1 ST2 ST3 ST4 

mean 15.50 4.36 14.89 4.42 40.26 41.16 37.19 38.39 

stdev 8.27 2.84 9.07 5.19 14.96 13.43 17.44 38.54 

minimum 4.61 0.80 0.00 0.00 16.80 22.84 9.78 0.42 

maximum 31.13 12.96 48.45 56.00 69.97 68.87 102.76 298.58 

cv (%) 53.35 65.13 60.92 117.28 37.17 32.63 46.88 101.15 

skewness 0.69 1.52 0.84 3.69 0.43 0.53 0.69 1.47 

 

Figure 4. Boxplots and histograms of the data series. 

Given the p-values lower than 0.05, the Anderson–Darling test (Table 3, row 2) re-

jected the normality hypothesis for all but ST1 and ST2 at a significance level of 5%. p-

values (Table 3, row 3) less than 0.05 were obtained after running FK tests for all but SB2, 

ST1, and ST2, so there is enough evidence to reject the homoskedasticity hypothesis. 
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From a practical viewpoint, heteroskedasticity and non-normality are critical draw-

backs when using different modeling techniques. Moreover, heteroskedasticity may indi-

cate the series nonstationarity. 

Table 3. The p-values in the AD, FK, MK, and KPSS tests. The values inside brackets are Sen’slopes. 

Blank space means that the slope is not significant. 

p-val  SB1 SB2 SB3 SB4 ST1 ST2 ST3 ST4 

p-val AD 0.0111 0.0207 0.0000 0.0000 0.2564 0.1450 0.0000 0.0000 

p-val FK 0.0421 0.5093 0.0000 0.0000 0.1202 0.4720 0.0000 0.0001 

p-val MK/ 

(Sen’slope) 

0.0395/ 

(0.4775) 

0.0161/ 

(−0.1916 

0.0013/ 

(0.0049) 

0.0040/ 

(−0.001) 

0.0106/ 

(1.2596) 

0.2059 

 
0.4415 

0.0000/ 

(−0.0151) 

p-val KPSS-level 0.0825 0.0464 0.0100 0.0100 0.0336 0.1000 0.0100 0.0407 

p-val KPSS-trend 0.0691 0.0823 0.0100 0.0100 0.100 0.1000 0.0100 0.1000 

The MK test could not reject the randomness only for ST2 and ST3. Therefore, Sen’s 

slopes were estimated (row 5 of Table 3). The negative slopes of SB2, SB4, and ST4 indicate 

a decrease in the pollution trend. By contrast, the positive slopes of SB1, SB3, and ST1 

indicate the augmentation of the pollution level (the highest for ST1, with a slope of 

1.2596). The results indicate an inhomogeneous pollution trend at temporal and spatial 

scales that deserves further investigation in another study. 

The KPSS rejected the series level stationarity for all but SB1, ST3, and ST4 (Table 2, 

row 5). The series trend stationarity was rejected only for SB3, SB4, and ST3 (Table 2, row 

6). These findings confirm the results of the FK test, indicating that SB3, SB4, and ST3 have 

the highest variability, which makes it challenging to model and forecast the series evolu-

tion. For such an approach, stationarization is a must before modeling. The existence of 

change points in all series concurs with the KPSS test’s results. 

The rejection of the null hypothesis K-W for the (SB1, SB2), (ST1, ST2), and (SB3, SB4) 

pairs indicates that the series in each pair did not come from the same underlying distri-

bution. The Cumulative Distribution Functions (CDFs) represented in Figure 5, together 

with the theoretical curve—lognormal for the monthly series (a) and Gaussian for the 

daily series (b)—emphasize the series differences, confirming that the TVOC series have 

different patterns at different temporal and spatial scales. 

 

Figure 5. The Empirical and Theoretical Cumulative Distribution Functions—in the same color—

for (a) SB1, SB2, ST1, and ST2; (b) SB3, SB4, ST3, and ST4. 

3.2. Models for the Benzene and TVOC Series 

The first step in the POT is to determine the threshold above which the extreme val-

ues are further selected for building the models. The threshrange plot utilized in the case 

of ST3 is shown in Figure 6, and the thresholds in the POT models for all series are 
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presented in Table 4, column 4. Columns 2 and 3 of the same table contain the estimated 

values ( ̂  and ̂ ) of the scale and shape parameters. 

 

Figure 6. The threshrange plot containing the reparameterized scale and shape values, used for se-

lecting the threshold in the model for ST3. 

Table 4. Results of the GPD models. 

Series ̂  ̂  Threshold 
 Return Period 

2 3 4 6 12 24 

SB1 13.2525 −0.2714 5.55 46.13 46.99 47.55 48.26 49.31 50.18 

SB2 2.7860 0.0005 5.55 20.09 21.22 22.02 23.16 25.09 27.03 

ST1 42.8420  −0.7807 16.2 70.75 70.84 70.89 70.94 71.00 71.03 

ST2 39.9693 −0.8323 19.35 67.18 67.23 67.26 67.30 67.33 67.35 

Series ̂  ̂  Threshold 
 Return Period 

2 5 10 20 50 100 

SB3 12.8678  −0.2331 8 51.82 54.89 56.89 59.49 60.64 61.94 

SB4 3.7235  0.2069 4.25 43.61  55.59 66.28 78.62 97.90 115.12 

ST3 38.4456  −0.6441 17.40 76.15 76.57 76.76 76.88 76.97 77.02 

ST4 71.4874 −0.5441 15.00 141.54 143.44 144.36 145.00 145.54 145.81 

All standard errors associated with ̂  are under 0.3, whereas those associated with 

̂  are less than 1.35, indicating a good fit of the parameters (better for ξ than for β). 

The Anderson–Darling goodness of fit test validated the obtained models. The dia-

grams of the empirical quantiles vs. the model’s quantiles (Figures 7a and 8b), theoretical 

density function vs. the data series (Figures 7c and 8c), the chart of the quantiles from the 

model simulate data vs. empirical quantiles (Figure 7b) are provided to illustrate the 

goodness of fit of the models. Figures 7 and 8 contain the mentioned charts for the SB1 

and SB3. The dotted curves in Figures 7c,d, and 8c,d represent the limits of the confidence 

interval at the confidence level of 95%, and the continuous ones are the charts of the return 

level as a function of the return period. 
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Figure 7. SB1 model: (a) QQ-plot; (b) QQplot2—Quantiles from Model Simulate Data vs. Empirical 

Quantile; (c) Data density plot and the model fitted density; (d) Return level plot. 

In the case of a ‘perfect’ model, there should be a perfect match between the theoret-

ical model and the data series (the dots Figures 7a,b and 8a,b should be situated on the 

black lines). 

The computed return levels for different return periods (2, 3, 4, 6, 12, 24 months for 

the monthly series and 2, 5, 10, 20, 50, and 100 days for the daily series) and are presented 

in Table 4, columns 5–10. All are above the maximum admissible levels established by 

legislation. The lowest return level corresponds to SB2 (between 20.09 and 27 μ g/m3), 

whereas the highest is for ST4. In all cases, the return levels are very high, even those 

corresponding to high return periods, indicating alarming levels of atmospheric pollu-

tants. 

 

Figure 8. SB3 model: (a) QQ-plot; (b) QQplot2—Quantiles from Model Simulate Data vs. Empirical 

Quantile; (c) Data density plot and the model fitted density; (d) Return level. 

3.3. Health Risk Indicators 

Table 5 contains the values of HI and LCR with respect to the VOC emissions from 

the studied sites. 

Table 5. The maximum values of HI and LCR with respect to Benzene and TVOC. 

Species Site Health Index Categ (1) Categ (2) Categ (3) Categ (4) 

Benzene 

1 HI 4.93 × 10−1 8.38 × 10−1 1.20 × 100 1.84 × 100 

 LCR 1.23 × 10−4 2.09 × 10−4 3.00 × 10−4 4.62 × 10−4 

2 HI 1.70 × 100 2.89 × 100 4.15 × 100 6.39 × 100 

 LCR 1.42 × 10−4 2.42 × 10−4 3.47 × 10−4 5.34 × 10−4 

TVOCs 

1 
HI 3.13 × 10−2 5.33 × 10−2 7.64 × 10−2 1.17 × 10−1 

LCR 8.38 × 10−5 1.42 × 10−4 2.04 × 10−4 3.14 × 10−4 

2 
HI 2.73 × 10−1 4.64 × 10−1 6.65 × 10−1 1.02 × 100 

LCR 2.43 × 10−4 4.14 × 10−4 5.93 × 10−4 9.13 × 10−4 

Categ (1)–(4) are the categories of professionals according to Section 2.5. The HI val-

ues in italics exceed one, and the LCR values in bold are higher than the permissible limit. 
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HI values are between 3.13 × 10−2 (TVOCs at Site 1) for a young professional with less than 

5 years of work experience and 6.39 × 100 (benzene at Site 2) for a senior professional with 

15–25 years of experience. LCR values are between 8.38 × 10−5 (TVOCs at Site 1) for a young 

professional with under 5 years of work experience and 9.13 × 10−4 (TVOCs at Site 2) for a 

senior professional with 15–25 years of experience. 

All HI values for benzene are above 1 at Site 2, and half are above 1 at Site 1, indicating 

a high noncarcinogenic risk; with respect to TVOC, HI > 1 only for the fourth category. 

Overall, 43.75% of HI values are above one, indicating a relatively high noncarcinogenic 

risk for benzene and TVOCs, predominantly at the loading/unloading railway ramp. Over 

93.75% of LCR values exceed the upper admissible limit, meaning there is also a high car-

cinogenic risk for all considered categories of workers. 

These findings align with the high recorded VOC concentrations, which are mainly 

over the admissible limits, during the entire study period. 

3.4. Discussions 

Many researchers have noted that volatile pollutants could accumulate in urban and 

suburban areas and roads near industrial oil refinery parks [2,4,5,11,20,39,41,88–90]. 

Zhang et al. [89] indicate that the emission rates of Chinese refineries have consistently 

exceeded those of certain developed countries with traditions in crude oil processing, in-

cluding in European countries [2,5] and the northern and southern states of the USA. For 

example, the total annual emission (with dominant VOC species of aliphatic and aromatic 

hydrocarbons emitted in nearly all units) from an oil refinery in China’s Pearl River Delta 

region was around 12,600 kg [90]. The authors found that the spatial arrangement of VOCs 

revealed that 87.5% of airborne VOCs consisted of benzene, toluene, xylene, and ethylben-

zene, with a higher concentration (146 μg/m3) observed in the northern oil refinery indus-

trial areas. Toluene, benzene, and p-xylene concentrations reached 41.5, 33.3, and 79.7 

μg/m3, respectively. Assessing the benzene dispersion during four seasons at a petroleum 

waste depot on Kharg Island (Iran), Karbasi et al. [91] estimated that about 1151 m3 of 

hydrocarbons evaporated annually from the surface of the terminal’s reservoirs. Wei et al. 

[92] indicated that during the research period (in a refinery in China), the TVOCs accu-

mulated in the neighborhood increased by 61 ppb. A study from a refinery in Thailand 

[20] emphasized that the highest predicted concentrations of pentane exceeded the odor 

and 𝑅𝑓𝐶𝑠 threshold. Our findings are concordant with those of the mentioned studies. 

In all cases, measures to reduce VOC emissions from refineries are necessary. Among 

the VOC emission sources (valves, flanges, single seals in pumps and compressors, and 

leaks in equipment and pipelines), valves contribute 50–60% of fugitive emissions. There-

fore, the study of Saikomol [20] suggested adding a secondary seal to the floating roof of 

the oil storage tank, which would decrease the emission and concentration of pollution at 

the ground level. He also indicates this solution to be the cheapest from the point of view 

of the cost per unit of concentration reduction. Virdi et al. [93] emphasized the necessity 

of employing vapor recovery units and proved the practical results in their study. 

Other measures must include petroleum product storage and loading areas, such as 

tanks for crude oil and light products, which must be supplied with double-sealed floating 

or fixed roofs. High-efficiency seals—including enhanced primary seals and additional 

secondary or tertiary seals (depending on existing losses)—are devices designed to limit 

vapor losses. Currently, these models are considered to be the best available techniques. 

Still, their use may be restricted when retrofitting tertiary seals in existing tanks. In addi-

tion, various techniques are applied in industrial processing units to reduce losses due to 

evaporation caused by the heating of stored chemical products. 

The loading ramps must have automated loading systems and volatile recovery 

units. During venting operations, pump leaks, sampling for analysis, and water leaks from 

tanks, vessels, and boilers with products, strict supervision must be maintained to prevent 

excessive leakage, ensuring the flow of petroleum products into the appropriate collecting 

basin only. 
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Industrial installations and equipment must be regularly inspected and maintained 

to ensure proper functioning. Periodic integrity and tightness checks must be conducted 

to operate industrial machinery and equipment safely, including valves, pumps, pipe-

lines, tanks, pressure vessels, vessels for capturing drops, and hazard warning systems. 

Moreover, the people who work on the platform must be equipped with protective masks 

during specific operations. 

4. Conclusions 

This article proposes the analysis of the TVOC series collected in one of the most 

important refineries in Romania and the impact of pollution from VOCs on workers at the 

refinery. This study emphasized a high variability of the emission series, with most of the 

monthly and daily recorded values above the permissible limits. Some series have 

negative trends with very low slopes, so it is impossible to conclude that there is an 

accentuated tendency for pollution decrease. Moreover, most have at least a breakpoint 

and are trend- or level-nonstationary, indicating a high variability in VOC emissions. 

These contrasting results should be further investigated after sampling from other points 

and correlating with other variables. 

The POT analysis found high return values for all return levels, indicating an elevated 

degree of pollution. Therefore, urgent measures must be taken to determine the causes of 

the high recorded VOC concentrations in the atmosphere and control the emissions from 

the studied industrial plant. Some involve employing vapor recovery units or double seals 

for floating roof storage of the tanks to avoid atmospheric contamination. Periodic 

inspection of the installation and the loading/unloading ramps and immediate measures 

to eliminate or reduce possible oil leakage are also necessary. 

A comprehensive action plan must be designed after deeply analyzing each factor 

contributing to atmospheric pollution. This study will be presented in a further article. 

Implementation of such a plan is crucial to ensure adequate air quality for workers and 

nearby populations in areas with high potential risks. 
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