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Abstract: With the rising popularity of virtual worlds, the importance of data-driven parametric
models of 3D meshes has grown rapidly. Numerous applications, such as computer vision, procedural
generation, and mesh editing, vastly rely on these models. However, current approaches do not
allow for independent editing of deformations at different frequency levels. They also do not benefit
from representing deformations at different frequencies with dedicated representations, which would
better expose their properties and improve the generated meshes’ geometric and perceptual quality.
In this work, spectral meshes are introduced as a method to decompose mesh deformations into low-
frequency and high-frequency deformations. These features of low- and high-frequency deformations
are used for representation learning with graph convolutional networks. A parametric model for
3D facial mesh synthesis is built upon the proposed framework, exposing user parameters that
control disentangled high- and low-frequency deformations. Independent control of deformations at
different frequencies and generation of plausible synthetic examples are mutually exclusive objectives.
A Conditioning Factor is introduced to leverage these objectives. Our model takes further advantage
of spectral partitioning by representing different frequency levels with disparate, more suitable
representations. Low frequencies are represented with standardised Euclidean coordinates, and high
frequencies with a normalised deformation representation (DR). This paper investigates applications
of our proposed approach in mesh reconstruction, mesh interpolation, and multi-frequency editing. It
is demonstrated that our method improves the overall quality of generated meshes on most datasets
when considering both the L1 norm and perceptual Dihedral Angle Mesh Error (DAME) metrics.

Keywords: shape modelling; spectral meshes; multi-frequency deformations; graph neural networks

1. Introduction

The importance of generating high-fidelity digital humans is more relevant now than
ever before. Not only are we seeing significant investments in new visual effects-intensive
creative content from streaming services, but platforms like Meta are also reported to have
invested at least USD 36 billion in developing content and tools to populate the next-
generation social media platforms based on Virtual Reality. The availability of high-quality
facial scans and recent advances in deep learning methods applied to mesh processing
have led to the development of data-driven parametric models. These approaches are at
the forefront of content creation technologies, allowing artists and users to rapidly generate
high-fidelity character assets for these applications. However, parameters exposed by deep
learning approaches may not always be meaningful. Furthermore, the perceptual and
geometric quality of assets generated by neural models often does not meet standards
appropriate for industrial applications.
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The above issues can be addressed with suitable representations, which can describe
deformations at different frequencies and independently edit deformations at these different
frequency levels. This topic has not been investigated in existing work, as discussed below.

Polygon meshes [1], including quad and triangle meshes, are the most popular surface
representation and are widely applied in the generation of creative content. They represent
3D surfaces with geometric vertices as absolute coordinates, making it challenging to edit
overall shape deformations while preserving local surface details. In contrast, differential
coordinates [2], often called the Laplacian operator or Laplacian coordinates, explicitly
describe local surface and enable global shape editing while preserving local deforma-
tions [3]. Since differential coordinates are only translation-invariant and not scale- and
rotation-invariant, some improvements have been made to extend differential coordinates
with these additional properties, as reviewed in Section 2.1. Other mesh operators [4] have
also been introduced to extend the Laplacian operator. The Laplace–Beltrami operator, a
generalisation of the Laplace operator, is used in this paper to represent mesh deformations.

Although mesh operators enable global shape editing while preserving local deforma-
tions, they still cannot represent deformations at different frequencies or independently
edit deformations at different frequency levels. Spectral mesh processing [5] derives eigen-
values, eigenvectors, or eigenspace projections from the mesh operators and uses them to
carry out desired tasks. It provides a powerful means to achieve different approximations
of a 3D mesh with different frequencies. In this paper, spectral mesh processing is used to
decompose mesh deformations into low- and high-frequency deformations.

Three-dimensional meshes are non-Euclidean data, unlike Euclidean data such as
voxels, which have an underlying grid structure and can be treated by extending already-
existing 2D deep learning paradigms. The lack of grid structure poses a challenge when
attempting to apply classical deep learning techniques to non-Euclidean data. To address
this problem, geometric deep learning [6] has been developed explicitly for non-Euclidean
data. Consequently, geometric deep learning is used in the proposed method to learn the
latent parameters of low- and high-frequency deformations.

Parametric models, such as 3D morphable models [7], are commonly used to synthesise
new meshes by altering the coefficients in a parametric space. They are widely applied
due to their ability to model intrinsic properties of 3D faces. As reviewed in Section 2.4,
parametric models have been used in graph neural networks to represent facial shapes. A
parametric model is also used in this paper for 3D facial mesh synthesis.

As the most popular 3D structure for representing 3D models, triangle meshes are
graphs. Graph neural networks are suitable for the geometric learning of triangle meshes [8].
Therefore, triangle meshes are considered in our proposed methods, and graph neural
networks are used for deep learning.

By integrating the above-discussed Laplace–Beltrami operator for deformation repre-
sentation, spectral mesh processing for decomposition of mesh deformations, geometric
deep learning, and parametric models with graph neural networks, a new 3D facial mesh
synthesis model is developed in this paper. The model exposes user parameters to control
disentangled low- and high-frequency deformations, generate plausible facial shapes, and
allow the user to control deformations independently at low- and high-frequency levels.

Generating plausible facial shapes and allowing controllable deformation can conflict,
as plausible faces exist within a joint distribution of low- and high-frequency information.
For example, wrinkled skin at higher frequencies correlates with volume loss of fat pads
at lower frequencies. This problem is exacerbated when using smaller or biased datasets,
which can lead to undesirable correlations. A Conditioning Factor is introduced to over-
come the conflict between plausibility and user control. It is a scalar that modulates the
influence of mutual conditioning of low- and high-frequency deformations.

Lower-frequency deformations encode most of the mesh volume, while higher-frequency
deformations describe fine surface details. This observation is used to improve the quality
of generated meshes. Low frequencies are represented with standardised Euclidean co-
ordinates, which capture first-order mesh properties. The highest frequency deformation



Electronics 2024, 13, 720 3 of 26

is represented with normalised deformation representation (DR) to improve perceptual
quality. In this way, our proposed method improves the overall quality of generated meshes
from geometric and perceptual perspectives, as shown in Section 7.

Our main contributions are:

• The introduction of spectral decomposition of meshes in 3D shape representation
learning.

• A novel parametric deep face model which enables independent control of high- and
low-frequency deformations.

• Enhanced geometric and perceptual quality of generated meshes, achieved through
the use of different representations of deformations at high and low frequencies.

The remaining parts of this paper are organised as follows. Related work is reviewed
in Section 2. Section 3 offers an overview of the proposed approach. Deep spectral meshes
are described in Section 4. The impacts of the Conditioning Factor are discussed in Section 5.
The implementation of the proposed approach is detailed in Section 6. Section 7 investigates
applications and comparisons. Finally, Section 8 provides a summary and identifies future
work directions.

2. Related Work

The work described in this paper is related to differential coordinate-based 3D shape
representations, spectral mesh processing, geometric deep learning in the spectral domain,
and parametric models with graph networks. This section offers a brief review of the
existing work in these fields.

2.1. Differential Coordinate-Based 3D Shape Representation

A translation-invariant differential representation for surface reconstruction is re-
viewed in [5], which uses Laplacian coordinates, also called differential coordinates, to
represent surfaces. Laplacian coordinates allow for mesh editing and shape approxima-
tion. The paper also reviews the work of extending the translation-invariant differential
representation to rotation-invariant differential representations.

Gao et al. propose a new differential representation called rotation-invariant mesh
difference (RIMD) [9]. Unlike the translation-invariant differential representation, it encodes
deformations and is invariant to rigid rotations and translations. RIMD is defined on both
vertices and edges. Therefore, it is incompatible with our method, which requires a vertex-
based representation. Gao et al. also propose an as-consistent-as-possible (ACAP) [10]
deformation representation as an improvement of computational issues of RIMD and its
ability to handle large rotations. This deformation representation has also been used in [11]
to develop a mesh-based variational autoencoder architecture for dealing with meshes with
irregular connectivity and non-linear deformations.

The deformation representation proposed in [10] requires the orientations of rotation
axes and rotation angles of adjacent vertices to be as consistent as possible. However, in the
context of facial deformations, local rotations never exceed 2π rad. Wu et al. address this
and use less complex deformation representation (DR) based on the deformation gradient.
DR has been successful in reconstructing caricatures of faces through the combination and
extrapolation of deformation features [12].

Quantised DR is chosen to represent high-frequency deformations in our proposed
approach. Similarly to other differential representations, quantised DR preserves local
surface properties. Moreover, it is compatible with our method, which requires the features
to be defined on vertices.

2.2. Spectral Mesh Processing

Various methods of spectral mesh processing have been developed to address the
problems of shape analysis, mesh simplification, surface segmentation, and shape cor-
respondence. Sorkine [5] and Zhang et al. [4] comprehensively review existing work
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until 2005 and 2010, respectively. Recent work in the field is reviewed in the following
paragraphs.

Melzi et al. obtain smooth, local, controllable, orthogonal, and efficient basis called
Localized Manifold Harmonics (LMH) through the spectral decomposition of new types
of intrinsic operators. The authors integrate local details provided by the basis and the
global information from the Laplacian eigenfunctions to deal with local spectral shape
analysis [13]. Xu et al. fit the original 3D model with a finite subdivision surface and restrict
the eigenproblem with a subdivision linear subspace to obtain intrinsic shape information
of 3D models through fast calculation of large-scale Laplace–Beltrami eigenproblem on
the models [14]. Lescoat et al. propose a new mesh simplification algorithm, which uses a
spectrum-preserving mesh decimation scheme to simplify input meshes and makes the
Laplacian of simplified meshes spectrally close to the Laplacian of input meshes [15].

Wang et al. use a Laplacian operator and select and combine some of its sub-
eigenvectors to compute a single segmentation field to conduct mesh segmentation [16].
Tong et al. build a Laplacian matrix, propose a spectral mesh segmentation method, which
converts mesh segmentation into an ℓ0 gradient minimisation problem, and devise a fast
algorithm to solve the minimisation problem [17]. Bao et al. devise a feature-aware simplifi-
cation algorithm to create a coarse mesh. Then, they use the spectral segmentation method
proposed in [17] to perform partition on the coarse mesh to obtain a coarse segmentation.
Next, they reverse the simplification process to map the coarse mesh to the input mesh and
smooth jaggy boundaries to develop a spectral segmentation method for large meshes [18].

Jain and Zhang first transform two 3D meshes into spectral domain and find and
match the embeddings of the two 3D meshes in the spectral domain to obtain vertex-
to-vertex correspondence between the two 3D meshes [19]. Dubrovina and Kimmel use
the eigenfunctions of the Laplace–Beltrami operator to calculate surface descriptors and
match surface descriptors to develop a correspondence detection method [20]. Melzi et
al. introduce iterative spectral upsampling to obtain high-quality correspondences with a
small number of coefficients in the spectral domain [21].

Spectral methods share a common framework. They define a matrix representing a
discretisation of a continuous operator over a mesh. In our case, it is the Laplace–Beltrami
operator defined in Equation (4). Then, the matrix is decomposed to obtain eigenvectors
and eigenvalues. These are used to solve problems in a specific domain. This paper
introduces the concept of spectral mesh processing to 3D shape representation learning.
Through the spectral decomposition of meshes, our method benefits from the ability to use
different representations for low- and high-frequency data.

2.3. Geometric Deep Learning in Spectral Domain

Deep neural networks have proven to be powerful tools in extracting latent repre-
sentations of data in the Euclidean domain, especially 2D images. In recent years, these
deep learning approaches extended to irregular graphs [6,8,22] and allowed for learning
non-linear, lower-dimensional embeddings of meshes, including human faces. There are
many publications on geometric deep learning. The current research on geometric deep
learning in the spectral domain is briefly reviewed in the following paragraph.

Dong et al. propose a convolutional neural network framework called Laplacian2Mesh
by mapping 3D meshes to a multi-dimensional Laplacian–Beltrami space to deal with ir-
regular triangle meshes for shape classification and segmentation [23]. Lemeunier et al.
integrate spectral mesh processing and deep learning models consisting of a convolutional
autoencoder and a transformer to develop a spectral transformer called SpecTrHuMS to
generate human mesh sequences [24]. Qiao et al. present a deep learning approach that
uses Laplacian spectral clustering to build a fine-to-coarse mesh hierarchy and integrate
Laplacian spectral analysis and mesh feature aggregation blocks to encode mesh connectiv-
ity for shape segmentation and classification [25]. Based on the idea of approximating low
and mid frequencies on coarse grids, Nasikun and Hildebrandt investigate a new solver
called the Hierarchical Subspace Iteration Method that can solve sparse Laplace–Beltrami
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eigenproblems on meshes faster than existing methods based on Lanczos iterations, pre-
conditioned conjugate gradients, and subspace iterations [26].

2.4. Parametric Models with Graph Networks

Work [27] is the first geometric learning approach to representing facial shapes. It
utilises a variational autoencoder architecture with spectral graph convolutional operations
[28]. Models [29–33] improve this architecture with custom convolutional and aggregation
operators. Cheng et al. introduce MeshGAN, the adversarial approach to learning the
facial manifold of 3D meshes [34]. Zhou et al. [35] jointly learn deformation offset and
colour residing on vertices of a face mesh [35]. Yuan et al. convolve preprocessed ACAP
deformation features [36]. Jiang et al. learn disentangled manifolds of facial identities
and expressions in the normalised deformation representation (DR) [37]. Based on the
deformation representation proposed in [10], a new variational autoencoder architecture
is proposed in [38] to learn a latent representation of 3D human hands for high-accuracy
monocular RGB-D/RGB 3D hand reconstruction.

The decomposition proposed in this paper is deformation decomposition, which de-
composes a deformation into low- and high-frequency parts. It differs from the attribute
decomposition proposed in [37], where a 3D face shape is decomposed into identity and
expression parts. However, both this paper and [37] adopt the same deformation represen-
tation proposed in [10]. The deep spectral mesh graph neural network in our proposed
method also differs from the variational autoencoder architecture in [38]. While [38] en-
codes and decodes ACAP deformation features using fully connected layers, our proposed
approach separately encodes the decomposed deformation using graph convolutional
layers and subsequently decodes the decomposed deformation from concatenated latent
codes.

As discussed above, none of the parametric models allow for independent editing
of deformations at different frequencies. Additionally, these models represent a whole
spectrum of deformations with only one representation. Therefore, unlike our proposed
approach, they cannot benefit from defining deformations at several frequency bands with
different, dedicated representations.

3. Method Overview

Our proposed method is outlined in Figure 1. It consists of three steps: spectral mesh
processing, neural networks, and final assembly.

In the first step, preprocessed meshes P are partitioned into two frequency bands
through spectral decomposition. The resulting low- and high-frequency deformations
Plow and Phigh are transformed to standardised Euclidean coordinate features Flow and
normalised deformation representation (DR) features Fhigh. The spectral decomposition
and representations of features are discussed in Section 3.1 below.

In the second step, a neural network consisting of graph encoders and graph decoders
is used to reconstruct input features. Graph encoders Ehigh and Elow encode the features to
latent means µhigh and µlow and deviations σhigh and σlow. Means and deviations are con-
catenated, and latent codes Z are sampled from the distribution ([µhigh | µlow],[σhigh | σlow]).
Graph decoders Dhigh and Dlow reconstruct input features from Z and output reconstructed
features F′

high and F′
low . The neural network is introduced in Section 3.2.

In the third step, output features F′
high and F′

low are converted back from their repre-
sentations to Euclidean coordinates P′

high and P′
low, which are later combined to obtain the

final vertex positions, P′, as described in Section 3.3.
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Figure 1. Overview of our Deep Spectral Meshes graph neural network.

3.1. Spectral Partitioning and Representation

The generalised spectral decomposition [4] of a Laplacian matrix, L, has a form of

L = UΛUTM, (1)

where M is the mass matrix representing Voronoi areas around vertices. The use of mass
matrix M counters the impact of irregular tessellation and, in consequence, improves the
geometric quality of meshes generated by our method.

Spectral partitioning is the process of identifying n subsets of eigenvectors U and
projecting vertex positions P of a mesh onto these subsets of vectors to isolate different
frequency bands {P0, ..., Pn}, P = ∑n

i=0 Pi. The choice of size and number of frequency
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bands is arbitrary and depends on a specific application. Projection of P onto a subset of
eigenvectors Ui is defined as

Pi = UiUT
i MP. (2)

As a consequence of spectral partitioning, frequency bands {P0, ..., Pn} can be trans-
formed into different, dedicated representations, which are more suitable for a given
spectral band. A representation transform can be denoted as function gi(Pi), which trans-
forms the ith frequency band into representation Fi. An associated inverse transform can
be denoted as g−1

i (Fi). These functions must output a per-vertex representation because Fi
are inputs to graph neural networks which process input signal defined on vertices.

3.2. Neural Network

Variational graph autoencoders [32] are used to encode features of each frequency
band into their respective latent distributions N (µi, σi), where µi is a mean vector and
σi is a standard deviation vector. If desired, each encoder can output a different number
of parameters. The optimal size of the parametric space depends on the training dataset
and requirements of a specific application. Therefore, it can be determined as part of the
hyperparameter optimisation process.

The neural network consists of n graph encoders Ei with n corresponding decoders
Di. The choice of convolutional, transpose convolutional, pooling, de-pooling or other
layers of encoders and decoders is arbitrary. While each encoder outputs a different latent
distribution of its frequency band, the encoders take the same set of parameters as input.
Specifically, mean vectors are concatenated to µ = [µ0, ..., µn] and deviation vectors are
concatenated to σ = [σ0, ..., σn]. Afterwards, latent parameters Z are stochastically sampled
from N (µ, σ). The decoders are optimised to output reconstructed features F′

i, with the
objective of minimising the discrepancy between Fi and F′

i.

3.3. Final Assembly

Before combining reconstructed vectors F′
i, it is necessary to convert them back to

Euclidean coordinates so that the reconstructed frequency band P′
i = g−1

i (F′
i). It can be

observed that each decoder Di is optimised to generate outputs which, after transformation
with g−1

i (·), are a linear combination of eigenvectors Ui. This implies that P′
i can be

projected onto these vectors without information loss, as the filtered-out frequencies are
noise which lies outside the domain for this frequency band. Based on this observation,
the final reconstructed vertex positions are obtained through the aggregation of frequency
bands P′

i in the following way:

P′ =
n

∑
i=0

UiUT
i MP′

i . (3)

4. Deep Spectral Meshes

This section explains the details of our parametric deep face model, which uses the
spectral decomposition of meshes. An overview of the model is provided in Figure 1.

4.1. Vertex Feature Representation

Given a dataset of triangle meshes with shared connectivity, i.e., with the same triangle-
vertex index incidence table to associate each triangle with its three bounding vertices, the
triangle meshes are translated to make their centre coincide with the origin. Then, their
mean is computed, which is an averaged shape of all triangle meshes denoted as P̄. Next,
each triangle mesh is translated and rotated to align with the mean. Following this, the
triangle meshes are uniformly scaled to fit within a cube with sides measuring two units
each.
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4.1.1. Spectral Decomposition

Laplacian matrix L in Equation (1) consists of elements Lij, which are determined by
the following cotangent Laplacian operator used in [2]:

Lij =


j ∈ Ni cot αij + cot βij

j ̸∈ Ni 0
i = j −∑k ̸=j Lik

, (4)

where Ni are vertices ..., j − 1, j, j + 1, ... in the one-ring neighbourhood of vertex i and αij
and βij are the angles opposite to edge ij, as shown in Figure 2.

Figure 2. One-ring neighbourhood vertices and the angles used to calculate cotangent weights.

For a large triangle mesh, Laplacian matrix L in Equation (1) has many eigenvectors.
Calculating all the eigenvectors of such Laplacian matrix is slow. To tackle this problem,
only the first k eigenvectors are calculated. Meshes are partitioned into two frequency
bands: low and high frequencies. The former band is defined by the first k eigenvectors
U(k), which correspond to the k smallest eigenvalues of Laplacian matrix L. Section 4.1.2
covers the high-frequency band.

We let P̂ be a deformation from a mean so that P̂ = P − P̄. As eigenvectors U(k)
correspond to the lowest eigenvalues, they form a discrete space of slowly changing values.
Therefore, by projecting P̂ onto space U(k), the resulting vertex positions Plow are P̂, which
is a mean deformed by only low-frequency deformations. Phigh represents the remaining
high-frequency deformations of a mean P̄. Meshes Plow and Phigh are computed as follows:

X = U(k)U
T
(k)M,

Plow = XP̂ + P̄,

Phigh = (I − X)P̂ + P̄.

(5)

4.1.2. High-Frequency Band

High-frequency band Phigh is encoded in a normalised deformation representation
(DR) [10,12]. This representation encodes per-vertex deformation gradient Ti between the
position of vertex pi on mean P̄ and the position of deformed vertex p′

i on Phigh. Following
[39,40], deformation gradient Ti is calculated by solving the following weighted least-
squares system, which minimises energy E(Ti) such that

E(Ti) = ∑
j∈Ni

cij

∥∥∥∥(p′
i − p′

j)− Ti(pi − pj)

∥∥∥∥2

, (6)

where cij are cotangent weights calculated on a mean of the training meshes.
As linear interpolation of matrices Ti is meaningless, they are decomposed into a

rotational part and a scale/shear part using polar decomposition so that Ti = RiSi. The
rotation matrix Ri, mapped to log Ri, can be linearly interpolated and then converted back
to Ri = exp(log Ri). Finally, identity matrix I is subtracted from Si.
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Although both per-vertex matrices Ri and Si contain nine elements each, only six
non-trivial scale elements and three non-trivial rotation elements are combined to construct
deformation features fi, where |fi| = 9. The results of our experiments, shown in Section 7,
demonstrate that the normalisation of DR results in a lower reconstruction error of test
data. Consequently, each channel is normalised to range [−1, 1].

4.1.3. Low-Frequency Band

Meshes Plow remain in the Euclidean coordinate representation. Based on our experi-
ments in Section 7, inputs Flow are standardised by subtraction of the mean and division by
standard deviation.

4.2. Graph Network Architecture

Our network consists of two fully convolutional variational graph autoencoders, as
depicted in Figure 1. Encoders Ehigh and Elow take as input high-frequency features Fhigh
and low-frequency features Flow, respectively (see Section 4.1). The encoders compress
each input feature to compact distributions with means µhigh and µlow ∈ R8×4, and de-
viation vectors σhigh and σlow ∈ R8×4. Subsequently, output means and deviations are
concatenated so that µ = [µhigh | µlow] and σ = [σhigh | σlow].

Latent code Z ∈ R8×8 is obtained in a stochastic process. First, standard deviation σ is
multiplied with scalar ϵ drawn from a normal distribution. Then, the result is added to
mean vector µ so that σ × ϵ + µ = Z = [Zhigh | Zlow].

Both decoders, Ehigh and Elow, take Z as input. This way, Ehigh decodes high-frequency
deformation features F′

high from code Zhigh conditioned on code Zlow. Analogically, Elow

decodes low-frequency deformation features F′
low from code Zlow conditioned on code

Zhigh. Controlling the influence of this conditioning is discussed in Section 5.

4.3. Network Structure

Both variational graph autoencoders have the same structure. They use convolu-
tion/transposed convolution operations and upsampling/downsampling residual layers
introduced in [32]. However, other types of graph convolutional and pooling operators
can be used instead if they accept input features defined solely on vertices. Therefore, the
encoders and decoders operating on signal defined on edges would not be suitable, as our
method uses low- and high-frequency features defined on vertices.

The encoders put their inputs through five graph convolutional layers. The local con-
volution kernels are sampled from the global kernel weight basis to perform convolutional
operations on irregular graphs. Therefore, the network learns the shared global kernel
weight basis and per-vertex sampling functions [32]. We use stride = 2, kernel radius = 2,
weight basis = 35, and channel dimensions = [|f|, 32, 62, 128, 128, 4]. All layers, except the
last one, are followed by the ELU activation function. The outputs from the ELU are added
to outputs from a downsampling residual layer. The decoders mirror the encoders with
five blocks of graph transposed convolutional layers followed by the ELUs and upsampling
residual layers.

4.4. Training Process

The two variational graph autoencoders are trained simultaneously. At each iteration,
the weights and biases of each encoder–decoder pair are updated through backpropaga-
tion using two separate Adam optimisers. Learnable parameters of Ehigh and Dhigh are
optimised in terms of loss Lhigh, while parameters of Elow and Dlow are updated in terms of
loss Llow. Losses are calculated as follows:

Lhigh = ||denorm(Fhigh)− denorm(Dhigh(Z))||1
+ϕKL(N (0, 1)||p(Zhigh|Fhigh)),

(7)
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Llow = ||destd(Flow)− Dlow(Z)||1
+ϕKL(N (0, 1)||p(Zlow|Flow)).

(8)

In other words, both losses are a sum of two terms. The first one is the L1 norm of a
difference between the ground truth feature and its reconstruction. The second one is
weighted Kullback–Leibler (KL) divergence, which measures a difference between normal
distribution N (0, 1) and latent vector distribution, where ϕ is a scalar weight.

Since Dhigh outputs the normalised DR features (see Section 4.1.2), the output, F′
high,

as well as the ground truth, Fhigh, are denormalised before calculating the L1 norm of a
difference between them. Denormalisation is denoted with the denorm(·) function. In
the case of Dlow, the decoder outputs a destandardised feature in Euclidean coordinates.
Therefore, only ground truth feature Flow is destandardised before computing the L1 norm
term. Here, destandardisation is denoted with the destd(·) function.

4.5. Inference

This section describes the postprocessing steps required to obtain reconstructed vertex
positions P′. To be a valid input to the network, every mesh with vertex positions P must be
represented with features Fhigh and Flow, following the process described in Section 4.1. At
inference, the network generates normalised DR features F′

high and Euclidean coordinates
F′

low = P′
low. To calculate P′

high, F′
high is denormalised and converted back from the nor-

malised DR representation to Euclidean coordinate representation, as in [12]. Subsequently,
P′

high and P′
low are combined in the following way:

P′ = (I − X)P′
high + XP′

low, (9)

where X is the matrix from Equation (5).

5. Conditioning Influence

Conditioning, described in Section 4.2, allows for the network to generate plausible
facial meshes from a joint distribution of high- and low-frequency information. However,
it can be desirable to tame the influence of conditioning to increase artistic control and
prevent overfitting.

In an extreme case, the impact of conditioning could be removed if all the conditioning
parameters were set to a constant value, for example, zero. On the other hand, if only
a pseudo-randomly drawn fraction of these parameters was set to zero at each training
iteration, the impact of conditioning would lower. It is proposed to achieve this effect by
applying a dropout [41] to the conditioning parameters.

Specifically, at each iteration, conditioning parameters Zlow of decoder Dhigh are ran-
domly zeroed with probability (1 − γ) using the samples from the Bernoulli distribution.
The same applies to conditioning parameters Zhigh of decoder Dlow. Therefore, scalar γ can
be called a Conditioning Factor, where γ = 0 prevents conditioning and γ = 1 means full
conditioning.

6. Implementation Details

Our parametric models are trained with the following datasets of facial meshes: Fac-
simile ™ [42] (202 meshes, 14,921 vertices each), FaceScape [43] (807 meshes, 26,317 vertices
each) and FaceWarehouse [44] (150 meshes, 11,510 vertices each). As all three datasets
contain subjects performing a set of facial expressions, only the shapes with a neutral
expression are used. All meshes within each dataset have triangular faces with consistent
connectivity. In our experiments, each dataset is split into training, validation and test
subsets in proportions 85:5:10.

ARPACK [45] is used to solve the generalised eigenvalue problem in Equation (1).
Only the first k eigenvectors are computed. The networks are trained with k = 500, the
Conditioning Factor γ = 1.0 (full conditioning) and γ = 0.4 (partial conditioning).
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The networks are implemented in Pytorch 1.8 [46]. In all experiments, the networks
are trained for 500 epochs, with a learning rate of 10−4 and a learning rate decay of 1% after
each epoch. KL divergence weight ϕ from Equations (7) and (8) is 10−6. Adam optimiser’s
hyper-parameters are set to β1 = 0.9 and β2 = 0.999. The networks trained with the
Facsimile™ and FaceWarehouse datasets are optimised with a batch size of 16, while those
trained with FaceScape have a batch size of 8 due to GPU memory constraints.

Matrix X from Equations (5) and (9) needs to be pre-computed only once. Otherwise,
its frequent computation can significantly lower the performance of data preprocessing.
Table 1 compares the CPU time and memory required to compute U and X on different
datasets. Additionally, the table shows the CPU time of the final assembly Equation (9).
This operation is performed each time a new mesh is inferred and takes 0.20 to 0.98 s per
mesh, depending on the dataset used. For faster eigendecomposition of Laplacian L from
Equation (4), approximation techniques can be used. Nevertheless, they are not used in our
implementation.

Table 1. Per-mesh CPU time and CPU memory required to compute terms from Equations (5) and (9).
Three datasets of different vertex count are compared: FaceWarehouse [44] (150 meshes, 11,510 verts),
Facsimile ™ [42] (202 meshes, 14,921 verts) and FaceScape [43] (26,317 verts).

FaceWarehouse
(11,510 verts)

Facsimile™
(14,921 verts)

FaceScape
(26,317 verts)

Computation of U CPU time [s] 26.92 33.72 58.22
Computation of X CPU time [s] 2.11 7.70 9.88
Computation of Equation (9) CPU time [s] 0.20 0.36 0.98

Computation of U CPU memory [MB] 45.0 58.3 102.8
Computation of X CPU memory [GB] 1.04 1.74 5.41

All the experiments are trained and inferred on a single NVIDIA GeForce GTX 1080 Ti
with 16 GB memory. Data processing is performed on an Intel(R) Xeon(R) CPU E5-1630
v4 running at 8 × 3.70 GHz using 32 GB RAM. Training times range between 2 h for the
FaceWarehouse dataset and 19 h for the FaceScape dataset.

7. Applications and Comparisons

The approach proposed in this paper has a large number of applications. Besides
those identified in Section 8, this section investigates the applications of the proposed
approach in mesh reconstruction, mesh interpolation and multi-frequency mesh editing. It
also compares the proposed approach with previously published methods.

7.1. Mesh Reconstruction

Mesh reconstruction can be used in representation learning, mesh compression, mesh
smoothing and fairing. In this subsection, our proposed method is applied to reconstruct
3D meshes for mesh compression. For illustration, all the reconstruction experiments on
the Facsimile™ dataset use a compression rate of 0.14%. These reconstruction experiments
compare our method and common representations used in other methods: Euclidean
coordinates, standardised Euclidean coordinates and the normalised deformation represen-
tation (DR).

Implementation of our method follows the description from Sections 4 and 6, with the
Conditioning Factor γ = 1.0 and frequencies split at k = 500. All other representations do
not decompose the mesh into deformations with multiple frequencies. Therefore, they are
evaluated on the fully convolutional variational graph autoencoder with a single encoder
and decoder. The encoder is the same as Ehigh or Elow, and the decoder is the same as
Dhigh or Dlow, without the dropout layer. All the experiments encode to latent space Z
of 64 parameters.
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7.1.1. Quantitative Evaluation

Two metrics, the point-wise L1 norm and the Dihedral Angle Mesh Error (DAME) [47],
are used to quantitatively assess the quality of meshes generated by our method. The
commonly used L1 norm ||P − P′||1 between reconstructed Euclidean coordinates P′ and
the ground truth P is chosen due to its sensitivity to overall shape changes. In other words,
the L1 norm is capable of capturing low-frequency error. Nonetheless, it poorly correlates
with high-frequency discrepancies perceived by the human visual system [48]. Therefore,
the results are also evaluated on a perceptual metric, as described below.

Given that the final meshes generated by our method are viewed by the human
observer, the perceptual quality of the results is essential. Quantitative evaluation of
perceptual mesh quality is often overlooked in previous work on parametric models with
graph networks. In this work, DAME [47] is used to capture high-frequency discrepancies
between the reconstructed and the ground truth meshes, and measure the perceptual
quality of the generated results. DAME is selected due to its highest correlation with human
judgement, measured on the compression task, compared to other common perceptual
metrics. Moreover, DAME is dedicated to datasets with shared connectivity [48].

DAME consists of three elements: the difference between oriented dihedral angles,
the masking effect and the visibility weighting. The last one is application-specific, as it
changes with the viewing angles and the rendering resolution. Therefore, following the
recommendation in [47], the visibility term is replaced with triangle areas. Border edges
are ignored in the calculation of DAME, as oriented dihedral angles cannot be calculated
on these edges.

The reconstruction results generated with our approach are compared with those
output by other methods: Mesh Autoencoder [32], SpiralNet++ [49], Neural 3DMM [29]
and FeaStNet [33]. Table 2 presents the quantitative outcomes of this comparison. Our
proposed method consistently outperforms all counterparts in terms of the perceptual
DAME metric across both the Facsimile™ and FaceWarehouse training and test datasets.
Regarding point-wise accuracy measured with the L1 norm, our method outperforms other
compared methods on the FaceWarehouse training dataset. However, on the Facsimile™
training and test sets and the FaceWarehouse test dataset, our method performs less
favourably than SpiralNet++ [49] and Neural 3DMM [29]. Nonetheless, a comprehensive
assessment encompasses both perceptual and point-wise accuracy perspectives, and the
perceptual results generated by [29,49] have significantly higher perceptual DAME error.
These quantitative results are further supported by a qualitative user study in Section 7.1.2.

Table 2. Numerical comparison of the reconstruction results of the Facsimile™ and FaceWarehouse
datasets using our method (k = 500, γ = 1, Z = 64) and four other methods: Mesh Autoencoder [32],
SpiralNet++ [49], Neural 3DMM [29] and FeaStNet [33].

Training Test

L1 Norm
×10−3 ↓

DAME
×10−2 ↓

L1 Norm
×10−3 ↓

DAME
×10−2 ↓

Facsimile™

Ours 1.61 2.76 6.42 3.17
Mesh Autoencoder. 2.60 6.04 8.32 5.81
SpiralNet++ 1.35 5.35 6.38 4.87
Neural 3DMM 1.71 3.84 5.95 3.81
FeaStNet 2.02 5.30 9.07 5.35

FaceWarehouse

Ours 0.91 1.10 6.27 1.29
Mesh Autoencoder. 2.54 5.27 5.33 5.50
SpiralNet++ 1.21 6.06 4.69 5.63
Neural 3DMM 1.58 4.84 4.02 4.46
FeaStNet 1.92 6.81 8.17 6.30
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In Table 3, the L1 norm and DAME metrics are used to evaluate reconstructed meshes
with our proposed approach and the 3D shape representations from other methods. It is
demonstrated that, across the majority of datasets, our method outperforms other methods
in reconstructing examples from the training set. Reconstruction of examples seen by the
network during training has applications in 3D mesh compression.

Table 3. Quantitative comparison of the reconstruction results with our method (k = 500, γ = 1) and
with common representations used in other methods: Euclidean coordinates [32,34,50], standardised
Euclidean coordinates [27,29–31,49] and the normalised deformation representation (DR) [12,37]. To
ensure a fair comparison between our method and other input representations, they are evaluated on
the fully convolutional variational graph autoencoder with a single encoder and a single decoder.
The encoder is the same as Ehigh or Elow, and the decoder is the same as Dhigh or Dlow, without
the dropout layer. All the comparisons encode to latent space Z of 64 parameters. Our method
outperforms the reconstruction of examples from the training set on most datasets. On the test set,
our method favourably compromises between the point-wise L1 precision and the perceptual DAME
metric. Other methods considerably sacrifice one of these in favour of another.

Training Test

L1 Norm
×10−3 ↓

DAME
×10−2 ↓

L1 Norm
×10−3 ↓

DAME
×10−2 ↓

Facsimile™

Ours 1.61 2.76 6.42 3.17
DR 4.77 3.05 9.29 3.00
Euclidean Std. 2.36 4.90 5.78 3.89
Euclidean 2.60 6.04 8.32 5.81

FaceWarehouse

Ours 0.91 1.10 6.27 1.29
DR 2.20 1.14 7.42 1.22
Euclidean Std. 1.11 3.23 5.33 2.53
Euclidean 2.54 5.27 5.34 5.50

FaceScape

Ours 1.27 2.25 1.65 2.41
DR 6.06 1.64 5.92 1.61
Euclidean Std. 0.96 1.81 1.30 1.82
Euclidean 1.32 2.20 1.71 2.26

The reconstructions of meshes from the test set reveal a pattern. The standard-
ised Euclidean representation achieves the lowest L1 norm error, and the normalised
DR has the lowest DAME error. Nonetheless, in the case of the Facsimile™ [42] and
FaceWarehouse [44] datasets, Euclidean and standardised Euclidean coordinates perform
the worst on the DAME metric. Analogously, DR has the highest L1 norm. It can be
concluded that, with these representations, either point-wise precision or perceptual quality
must be sacrificed significantly.

Our method balances these metrics favourably, as demonstrated in Figure 3. The
results on the Facsimile™ dataset reveal that, compared to normalised DR, our method
achieves a 30.9% lower L1 norm error, with only a 5.7% increase in DAME error. Contrasted
with standardised Euclidean coordinates, our approach yields an 18.5% lower DAME error
at the cost of an 11.5% higher L1 norm error. Now, turning to the FaceWarehouse [44]
dataset, our method has a 15.5% lower L1 norm error than normalised DR, with just a 5.7%
higher DAME error. In comparison to standardised Euclidean coordinates, our method
results in a 49% lower DAME error at the cost of just a 17.6% higher L1 norm error.

However, for the FaceScape [43] dataset, our method does not improve upon the
reconstruction results from other representations on both training and validation sets.
Scatter plots in Figure 3 reveal the reason. The proposed approach can improve the quality
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of reconstructed meshes by utilising dedicated mesh representations for each spectral band.
Nevertheless, on the FaceScape dataset, the DR representation yields little improvement
of the perceptual quality compared to standardised Euclidean representation. Therefore,
our proposed method cannot benefit from using different representations in this particular
case. Experiments on the FaceScape dataset demonstrate that our method can elevate
the overall quality of reconstructed meshes only when there is a substantial difference
between the point-wise and the perceptual accuracy yielded by at least two different mesh
representations.

Table 4 compares the deformation representation (DR) with and without the normalisa-
tion preprocessing step described in Section 4.1.2. Moreover, the table contrasts Euclidean
coordinates with and without the standardisation preprocessing step, as described in
Section 4.1.3. Standardisation of low-frequency input features represented in Euclidean
coordinates improves training and validation results across all datasets in the comparison.
Normalising high-frequency input features represented with DR improves the L1 norm
on validation sets and yields a similar or a lower DAME error. The impact of normalising
DR is not conclusive on the training dataset, as normalisation of DR improves the L1 norm
and DAME metrics on the FaceWarehouse dataset, while DR without normalisation yields
better results on the Facsimile™ dataset.
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Figure 3. Cont.
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Figure 3. Comparison of the reconstruction results with our method (k = 500, γ = 1, Z = 64) and
with common representations used in other methods: Euclidean coordinates [32,34,50], standardised
Euclidean coordinates [27,29–31,49] and normalised deformation representation (DR) [12,37]. Across
Facsimile and FaceWarehouse datasets, our method outperforms in reconstructing examples from
the training set and favourably balances perceptual and geometric quality on the Pareto-front of
optimal solutions. Our method underperforms on the FaceScape [43] dataset because the benefit
of using normalised DR representation for high-frequency information is minuscule compared to
standardised Euclidean representation.

Table 4. Ablation study on the reconstruction task demonstrating the impact of normalisation of the
deformation representation (DR) and the standardisation of Euclidean coordinate input features.

Training Validation

L1 Norm
×10−3 ↓

DAME
×10−2 ↓

L1 Norm
×10−3 ↓

DAME
×10−2 ↓

Facsimile™

DR without normalisation 4.01 2.77 12.05 3.07
DR with normalisation 4.77 3.05 9.29 3.00
Euclidean without standardisation 2.60 6.07 8.32 5.81
Euclidean with standardisation 2.36 4.90 5.78 3.89

FaceWarehouse

DR without normalisation 2.57 1.71 10.03 1.19
DR with normalisation 2.21 1.14 7.42 1.22
Euclidean without standardisation 2.54 5.27 5.33 5.50
Euclidean with standardisation 1.12 3.23 5.33 2.53

7.1.2. Qualitative Evaluation

Figures 4 and 5 provide a visual assessment of the mesh quality in the reconstruction
experiments, comparing our method with other commonly used representations. The
meshes generated using Euclidean and standardised Euclidean representations display
visible surface artefacts and struggle to capture high-frequency details. The severity of
surface discrepancies corresponds with the colour visualisation of the DAME error. Results
obtained with the normalised deformation representation (DR) are perceptually more
similar to the ground truth meshes. Nonetheless, there is noticeable volume loss in the neck,
chin and cheeks. In contrast, our method produces results that are perceptually similar to
ground truth meshes without experiencing noticeable volume changes.
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Figure 4. Qualitative comparison of the reconstruction results of training data with our
method (k = 500, γ = 1) and with common representations used in other methods: Euclidean
coordinates [32,34,50], standardised Euclidean coordinates [27,29–31,49] and the normalised defor-
mation representation (DR) [12,37]. The meshes generated by our method achieve superior results
compared to other feature representations. Zooming into the digital version is recommended to see the
surface artefacts on the results generated with Euclidean and standardised Euclidean representations.
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Figure 5. Qualitative comparison of the reconstruction results of test data with our method (k = 500,
γ = 1) and with common representations used in other methods: Euclidean coordinates [32,34,50],
standardised Euclidean coordinates [27,29–31,49] and the normalised deformation representation
(DR) [12,37]. The meshes generated by our method have similar surface quality to the outputs with
DR while achieving much lower volume loss in the neck, chin, and cheek areas.

Figure 6 compares the rendered meshes from the Facsimile™ and FaceWarehouse
datasets reconstructed with our proposed method and other popular methods: Mesh
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Autoencoder [32], SpiralNet++ [49], Neural 3DMM [29] and FeaStNet [33]. A user study
was conducted to qualitatively assess the perceptual quality of meshes generated by our
method (k = 500, γ = 1, Z = 64) compared with meshes synthesised using alternative
methods and common feature representations. The evaluation focused on reconstructions
of training and test subsets of the Facsimile™ and FaceWarehouse datasets. The study
was conducted online on a representative sample of 94 participants (42 female, 51 male, 1
non-binary), with the following age distribution: 25 participants aged 18–25, 52 aged 26–35,
11 aged 36–45 and 6 aged 46–55. Participants viewed three images of rendered 3D models
and were instructed to compare the ground truth reference model (always in the middle)
against models A (left) and B (right). Subsequently, participants selected the model they
perceived as more similar to the reference model (either option “A” or “B”). In cases where
a clear distinction was challenging, participants had the option to choose “Difficult to say”.
Each participant completed a total of 48 comparisons. In each comparison, one 3D model
was generated by our method, while the other was produced by an alternative method
or using a different commonly used representation. Participants were instructed to use a
desktop monitor or a tablet and complete the study in a full-screen view.
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FeaStNet
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Ours SpiralNet++ Neural 3DMMMesh AutoencoderGround Truth
Training

FeaStNet

Ours SpiralNet++ Neural 3DMMMesh AutoencoderGround Truth
Test
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Figure 6. Visual comparison of the reconstruction results of the Facsimile™ and FaceWarehouse
datasets using our method (k = 500, γ = 1, Z = 64) and four other methods: Mesh Autoencoder [32],
SpiralNet++ [49], Neural 3DMM [29] and FeaStNet [33]. It is recommended to zoom into the digital
version to compare the reconstructed meshes.
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Figure 7 displays the aggregated responses from the user study, which compared the
visual similarity of the meshes generated by our proposed method with those produced
by other methods [29,32,33,49]. In all cases, a strong majority of participants perceived the
meshes generated by our method as more similar to the reference than those generated by
other compared methods. Participants expressed a high certainty of their responses, with
only a median of 4.3% choosing the “Difficult to say” option.

Training
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im
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™

Training

Fa
ce
W
ar
eh
ou
se

Test

Test

Figure 7. The outcomes of the user study, which compared the visual similarity to the ground truth of
the meshes generated by our method and other methods: Mesh Autoencoder [32], SpiralNet++ [49],
Neural 3DMM [29] and FeaStNet [33]. The bars show the percentage of participants who selected
the mesh generated by the given method as more similar to the ground truth mesh. The participants
were asked to select "Difficult to say" only when they had to guess between the generated models.

Figure 8 presents the results from the user study comparing our method with com-
mon representations used in other methods: Euclidean coordinates [32,34,50], standard-
ised Euclidean coordinates [27,29–31,49] and the normalised deformation representation
(DR) [12,37]. Participants’ responses align with our quantitative analysis of perceptual
DAME error from Table 3. On average, 87.9% and 65.7% of participants perceived our
methods’ results as more similar than those from methods using Euclidean coordinates
and standardised Euclidean coordinates, respectively. Regarding the comparison with
normalised DR representation, the participants were divided. The training sets recon-
structed with our method received 10.7 and 8.5 more percentage points of participants’
preference. In comparison, the meshes produced with the normalised DR representation
were chosen as more similar on the test sets by 4.3 and 13.3 more percentage points of
participants. Consequently, the perceptual similarity of meshes generated by our method
and the normalised DR representation is comparable, while our method yields significantly
lower point-wise accuracy error, as demonstrated in quantitative analysis.
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Figure 8. The results from the user study comparing our method with common representa-
tions used in other methods: Euclidean coordinates [32,34,50], standardised Euclidean coordinates
(Eucl. Std.) [27,29–31,49] and the normalised deformation representation (DR Norm.) [12,37]. The
bars show the percentage of participants who selected the mesh generated by the given method as
more similar to the ground truth mesh. The participants were asked to select “Difficult to say” only
when they had to guess between the generated models.

7.2. Mesh Interpolation

Mesh interpolation is widely applied in facial animation to produce new facial meshes
from two known facial meshes. In contrast to existing interpolation methods that interpolate
two facial meshes, our proposed approach interpolates low- and high-frequency parts of
two facial meshes.

In Figure 9, the subject in the green outline is encoded into parameters [Z1l |Z1h] and the
subject in the purple outline is encoded into parameters [Z2l |Z2h]. High-frequency weight
α and low-frequency weight β are used to interpolate between these latent parameters so
that the interpolated latent parameters are

Zα,β = [(1 − β)Z1l + βZ2l |(1 − α)Z1h + αZ2h]. (10)

The meshes resulting from Equation (10) are shown in Figure 9A,B. In the figure, the
meshes arranged in a grid are decoded from latent parameters Zα,β. When using the linear
interpolation in the vertex space between the mesh in the green outline and the mesh in the
purple outline, the interpolation equation is

Pδ = P1 + δ(P2 − P1), (11)

where P1 and P2 are the vertex coordinates of the meshes in the green outline and the
purple outline, respectively, and 0 ≤ δ ≤ 1.

The meshes obtained from Equation (11) are shown in Figure 9C. Interpolating low-
and high-frequency latent parameters with two different conditioning values, 0.4 and 1.0,
generates 28 new meshes. In contrast, interpolating the meshes in the green and purple
outlines creates only two new meshes.

Our discussion indicates that multi-frequency interpolation noticeably raises the
capacity to create novel facial meshes from two known facial meshes. In addition, Figure 9
demonstrates the disentanglement of low and high frequencies in the parametric space and
illustrates the impact of the Conditioning Factor γ.
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Figure 9. Interpolation of low-frequency and high-frequency latent parameters, k = 500. Two facial
meshes (in green and purple outlines) from the Facsimile™ [42] dataset are encoded. In (A), the
model is trained with the Conditioning Factor γ = 1.0. In (B), the Conditioning Factor γ = 0.4. The
meshes arranged in a grid are decoded from interpolated latent parameters. In (C), the meshes in
green and purple outlines are interpolated in the vertex space.

When γ = 1.0, the high-frequency parameters of an elderly subject influence mid-
frequencies to impose the generation of plausible faces. However, due to bias towards
younger subjects in the dataset, this conditioning significantly restricts the domain of
generated faces. For an artist, such editing behaviour may be undesirable. In contrast,
interpolation of low- and high-frequency parameters with γ = 0.4 is more predictable,
as high- and low-frequency deformations are almost fully disentangled. Nevertheless,
plausible faces exist within a joint distribution of low- and high-frequency deformations.
Consequently, the network may generate implausible examples, like the older man with
young, smooth skin depicted in Figure 9B at (α = 1, β = 0). Therefore, the choice of
γ depends on application-specific requirements, whether prioritising more precise and
flexible artistic control or the ability to generate only plausible faces.

7.3. Multi-Frequency Editing

Figure 10 presents the application of our method in editing low- and high-frequency de-
formations independently. Additionally, the editing capabilities of our model are compared
with the method in [32], which does not disentangle low- and high-frequency parameters.
In our approach, low-frequency parameters affect the overall head shape while preserving
high-frequency details. The Conditioning Factor γ impacts the nature of editing. With
γ = 1.0 (full conditioning), high frequencies condition low-frequency deformations to a
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more narrow domain of only plausible faces. In contrast, when γ = 0.4 (partial condition-
ing), edited heads are more diverse, despite some falling outside of the domain of real faces.
When editing high-frequency parameters, the overall head shape remains unchanged, with
only fine details being affected. Notably, with γ = 0.4, the editing of high frequencies
becomes more precise and predictable since high- and low-frequency parameters barely
influence each other.

Ours, γ = 0.4

Ours, γ = 1.0

Mesh Autoencoder

Ours, γ = 0.4

Ours, γ = 1.0

Initial Mesh
P1

Mesh Autoencoder

Initial Mesh
P2

Low frequency editing High frequency editing

(A) Comparison between low-frequency editing
of the method and the latent code editing of Mesh
Autoencoder.

(B) Comparison between high-frequency editing
of the method and the latent code editing of Mesh
Autoencoder.

Figure 10. Comparison of latent code editing between the proposed method and Mesh
Autoencoder [32]. In (A), the editing of low-frequency latent codes of encoded mesh P1. In (B),
the editing of high-frequency latent codes of encoded mesh P2. Top and middle row: the examples
decoded using our model with k = 500 and Conditioning Factor γ = 0.4 and γ = 1.0. Bottom row:
the results of editing a subset of latent parameters using the method in [32]. The parameters of our
method successfully disentangle high and low frequencies. While subjective, it can be observed
that lower γ provides more control and produces more diverse results. Meanwhile, altering the
parameters of Mesh Autoencoder [32] affects the entire frequency spectrum.
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8. Summary and Future Work

In this paper, a new approach called Deep Spectral Meshes was proposed to address
two crucial challenges: the absence of dedicated representations for describing defor-
mations at different frequencies and the inability to independently edit deformations at
different frequency levels. These problems may lead to semantically meaningless parame-
ters used in deep learning and result in the unsatisfactory geometric and perceptual quality
of assets failing to meet standards in industrial applications.

To develop our new approach, spectral meshes were introduced, overcoming these
challenges. They were employed to decompose mesh deformations into low- and high-
frequency parts. Subsequently, these parts were converted into features represented with
standardised Euclidean coordinates and the normalised deformation representation, re-
spectively. Graph neural networks were proposed to reconstruct features, which were later
converted back to Euclidean coordinates to obtain the reconstructed 3D models. A Condi-
tioning Factor was introduced to control the level of mutual conditioning of deformations
at different frequencies.

Extensive experiments were conducted to validate and compare our proposed ap-
proach with previously published methods, both quantitatively and qualitatively. Results
demonstrate the capability of our approach to independently edit low- and high-frequency
deformations of facial meshes. Moreover, the experiments illustrate the impact of the
Conditioning Factor on balancing mutually exclusive objectives of independent control
of deformations at different frequencies and generating plausible synthetic examples.
Comparisons with existing methods demonstrate the superiority of our approach over
Euclidean coordinates, standardised Euclidean coordinates, the normalised deformation
representation (DR) and other methods, as assessed by both L1 and perceptual metric
evaluations.

The significance of our proposed approach is underscored through its applications
presented in this paper. As described in Section 7, our method has been applied in mesh
compression, enhancing the quality of the reconstructed meshes. Additionally, it has been
employed in mesh interpolation, expanding the capability to generate a larger variety of
new shapes compared to direct interpolation between two facial meshes. This was achieved
by independently interpolating both low-frequency and high-frequency parameters. More-
over, our proposed method has found application in multi-frequency editing, satisfying
different editing requirements. It allows the alteration of the overall shape while preserving
details by adjusting only high-frequency parameters. It also accommodates modifying fine
details while maintaining the overall shape by editing only low-frequency parameters.

Applications of Deep Spectral Meshes are potentially far-reaching, but we identified
several promising applications and areas of research which warrant further investigation:

• This work restricts its application to low- and high-frequency bands. The partition
of mesh data into more than two frequency bands and an investigation into the
relationship between the learning model and the frequency bands remain unexplored.
The limitation to two frequency bands in our approach is linked to the properties of
the chosen mesh representations. Standardised Euclidean coordinates represent low-
frequency information to ensure high point-wise accuracy of the generated meshes.
The normalised deformation representation (DR) encodes high-frequency information
for superior perceptual quality of the results. Future work on partitioning mesh data
into more than two frequency bands could further explore the benefits of alternative
feature representations at different frequency levels.

• Further research could describe the relationship between the choice of parameter k
and the quality of generated meshes. Designing an algorithm to determine the optimal
split between frequency bands is a potential avenue for future research. To achieve
this, an objective function relating the quality of generated meshes to parameter k
could be formulated. The selection of a suitable optimisation method would be crucial
to efficiently obtain the optimal split.



Electronics 2024, 13, 720 24 of 26

• Our proposed method can be extended to address the problem of multi-frequency-
based deformation transfer, which has not been investigated in existing research
studies. The basic idea of multi-frequency-based deformation transfer involves de-
composing source and target meshes into mean, low- and high-frequency parts. The
differences between the source model and these parts at two different poses are deter-
mined and transferred to the corresponding bands of the target mesh. Subsequently,
the graph neural network proposed in this paper can be employed to reconstruct a
new shape for the target mesh with the pose of the source mesh.

• While our approach has been applied to deformable facial meshes, future work could
extend the proposed method to articulated shapes like hands and bodies. Existing
research has proposed various methods to relate articulated shapes to their underlying
skeleton. With this extension, articulated shapes can be decomposed into mean,
low- and high-frequency parts. Then, the relationships between these parts and
the movements of the skeleton of the articulated shapes can be investigated. These
relationships can be used to synthesise mean, low- and high-frequency parts of new
poses. The graph neural network proposed in this paper can then extract features,
reconstruct them, and synthesise new shapes from the reconstructed features.

• It may be possible to apply the approach proposed in this paper to 3D tumour image
analysis. First, 3D shapes containing tumours can be reconstructed from medical
images. Then, the approach could be employed to disentangle normal deformations
and abnormal deformations caused by tumours and extract tumour features.
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