
Citation: Dhakal, B.; Al-Kaisy, A. A

New Approach for Identifying Safety

Improvement Sites on Rural

Highways: A Validation Study. Appl.

Sci. 2024, 14, 1413. https://doi.org/

10.3390/app14041413

Academic Editor: Suchao Xie

Received: 18 December 2023

Revised: 26 January 2024

Accepted: 5 February 2024

Published: 8 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A New Approach for Identifying Safety Improvement Sites on
Rural Highways: A Validation Study
Bishal Dhakal and Ahmed Al-Kaisy *

Department of Civil Engineering, Montana State University, Bozeman, MT 59717, USA;
bishaldhakal@montana.edu
* Correspondence: alkaisy@montana.edu

Abstract: The research presented in this paper examines a new proposed approach for identifying
safety improvement sites on rural highways. Unlike conventional approaches, the proposed approach
does not require crash history, but rather utilizes classified variables for traffic volume, geometric
features, and roadside characteristics that do not require access to exact data or extensive technical
expertise. The research validates the performance of the proposed approach using field data from a
large sample of rural two-lane highway segments in the state of Oregon including traffic, roadway,
and crash data. A mathematical model for the prediction of the EB expected number of crashes
using multivariate regression analysis is developed and used as the network screening criterion.
The model’s independent variables include roadway geometry, roadside characteristics, and traffic
exposure, while the dependent variable is the EB expected number of crashes. Using observed
crash history as a reference, the performance of the proposed approach was compared to two of the
well-established methods in practice, namely, the Empirical Bayes (EB) and the potential for safety
improvement (PSI) methods. The study results suggest that by using crash density for highway
segments, the performance of the proposed method was lower than that of the EB and PSI methods.
This is despite the high R-square value of the predictive model used in the proposed method.
However, when using crash frequencies for highway segments, the performance of the proposed
method was found comparable to the well-established EB and PSI methods.

Keywords: rural roads safety; network screening; highway safety improvement programs; ranking;
regression analysis

1. Introduction

Rural roads constitute an integral part of the roadway network providing vital access
to rural towns and communities (including farms and ranches). According to the fatality
facts 2021, around 40% of traffic fatalities took place in rural areas, although only 20% of
people in the U.S. live there, and 32% of all vehicle miles traveled (VMT) occurred in rural
areas [1]. These statistics demonstrate the need for improving rural road safety and the
requirement to effectively include it in the ongoing state safety improvement programs.

Network screening is the first step of highway safety improvement programs (HSIPs)
which involve the identification of sites with potential for safety improvement on the road-
way network. The resulting list of identified sites are given priority for detailed engineering
studies to identify crash patterns, contributing factors, and potential countermeasures [2,3].
Errors in ranking the sites may produce a large number of false negatives (i.e., sites needing
safety improvement mistakenly considered as safe) and a large number of false positives
(i.e., truly safe sites identified as needing safety improvement). These errors result in an
inefficient use of the resources dedicated to safety improvements and eventually reduce
the overall effectiveness of the safety management programs. Therefore, the correct identi-
fication of safety improvement sites is essential for the successful implementation of any
highway safety program.
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Most traditional network screening methods rely on the crash frequency, crash rate,
crash severity, or any combination of these measures [4,5]. Most of the existing ranking
techniques for identifying safety improvement sites are reactive in nature [6], as they rely
on crash data only [7]. Thus, these techniques require crashes to occur before identifying
the potential sites for safety improvement. On the other hand, several proactive approaches
have been proposed and used that require detailed data on roadway geometry and roadside
characteristics, besides crash and traffic data [8]. A major challenge for network screening
on rural roads is the lack of access to the required crash, roadway, and traffic data at the
network level especially for roadways that are owned and operated by local agencies.

This research seeks to evaluate the performance of a new, yet simplistic approach for
network screening that was tailored for use on rural roadways [9]. The proposed method
requires minimal data for implementation, which could be valuable for agencies having
limited access to detailed databases or extensive technical expertise.

2. Background

Numerous network screening techniques have been used in practice or proposed in
the literature with each having its own strengths and limitations. Compared with the large
number of studies focused on the development of various hotspot identifications methods,
considerably less research has been dedicated to evaluating the performance of various
methods [10]. In this section, the major studies that evaluated the performance of different
network screening techniques are summarized and presented. The Empirical Bayes estimate
obtained from the EB method is the weighted sum of the expected value and the actual
value, where the weights are determined based on the number of actual measurements for
a certain variable. The potential for safety improvements (PSI) is estimated as the difference
between the EB expected number of crashes and the predicted number of crashes found
from the respective using safety performance function (SPF). A segment is said to have
potential for improvement if the observed number of crashes is greater than the predicted
number of crashes for that segment.

Kwon et al. [11] examined the performance of three network screening methods
for identifying potential sites for safety improvements on highways. The three network
screening methods are Sliding Moving Window (SMW), Peak Searching (PS), and Con-
tinuous Risk Profile (CRP). The crash data from segmented sites were used to calculate
the excess expected average crash frequency using Empirical Bayes adjustment based on
two distinct sets of Safety Performance Functions (SPFs). These estimations from each
approach were subsequently used to prioritize sites for safety investigations, comparing
them against confirmed high crash location. The results revealed that the CRP method
demonstrated the least occurrence of false positives, effectively identifying sites warranting
safety investigations.

A study by Ambrose et al. [12] investigated the difference between network screening
results based on multivariate and simple crash prediction models. This study first compared
the list of segments using Spearman’s rank correlation coefficient between the two models.
Secondly, this study assessed the equality of statistical distributions of potential for safety
improvement (PSI) value, which was obtained as a difference between predicted crash
frequency and EB estimate. The third comparison was the percentage of segments identified
in both lists. The findings suggested that the results from both methods were comparable.

A study conducted in Brazil [13] compared different safety performance measures and
their practical limitations using a sample of signalized intersections located in Fortaleza
City, Brazil. The safety performance measures evaluated in this study average crash fre-
quency (ACF), crash rate (CR), Equivalent Property Damage Only (EPDO), Level of Service
of Safety (LOSS), Excess Predicted Average Crash Frequency using Safety Performance
Functions (SPFs), Expected Average Crash Frequency with EB Adjustments (EB), and
Excess Expected Average Crash Frequency with EB Adjustment (EEB). The difference in
rank between each safety performance measure assessed and the Excess Expected Average
Crash Frequency with EB Adjustment (EEB) was used to evaluate the performance of the
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subjected method. The findings suggested that the most comprehensive measure was EEB,
and that fundamental measures like crash frequency and crash rate displayed reasonably
similar rankings.

The effectiveness of several network screening techniques was examined in an Italian
study [14] using a set of criteria. These included reliability in detecting hazardous sites
over a period, efficiency in finding sites with poor safety performance, and consistency
in ranking. The potential for improvements (PFI) was examined along with the crash
frequency, equivalent property damage only (EPDO), crash rate, proportion method, and
EB estimates for total and severe crashes. This analysis used crash data from an Italian
highway and found that the EB method outperformed all other approaches investigated in
this study.

A study conducted by the Federal Highway Administration (FHWA) [15] evaluated
four methods of network screening aimed at identifying areas with the highest potential for
safety enhancements. The methods evaluated in this study are crash frequency, crash rate,
EB expected crashes, and EB excess expected crashes, considering both fatal and non-fatal
injury severity levels. The study involves the safety management process from network
screening to economic analysis using the intersection data from New Hampshire. This
study analyzed the overall economic benefit and benefit–cost ratio for each of the four
techniques. The study findings revealed that the EB excess expected measure produce the
list of sites with most significant economic benefit and the highest return on investment
was generated using the EB expected measure.

Elvik [16] conducted review of current methodologies for identifying safety improve-
ment sites on roadways. The study findings concluded that the Empirical Bayes (EB)
method is the most reliable method for network screening. Furthermore, through simu-
lation experiments [10] and the application of innovative robust evaluation criteria [17],
Cheng and Washington demonstrated that the EB method stands out as the most consistent
and reliable technique for identifying sites with potential for safety improvements.

Although the EB method was found to better identify sites requiring safety improve-
ment, it may be subject to several limitations under certain conditions, especially for local
agencies. The EB method requires detailed data for roadway geometry and roadside char-
acteristics besides technical expertise that is often inaccessible by local agencies (counties,
towns, tribal governments, etc.).

3. Proposed Network Screening Approach: An Overview

This study validates a new network screening approach that was recently proposed for
use on rural two-lane highways [9]. The main merit of the proposed approach is that it can
easily be implemented by local agencies lacking access to detailed databases and technical
expertise. Specifically, the more sophisticated network screening methods (e.g., Empirical
Bayes method) use exact values for various roadway characteristics (sometimes referred to
as risk factors). While the use of exact values may improve the accuracy of the screening
process, it requires access to extensive databases or on-site detailed measurements which
are typically beyond the resources available for small local agencies. Hence, implementing
such sophisticated methods might not be feasible for most local agencies. To minimize
data requirements, the proposed approach employs classified variables that can easily be
compiled by local agencies without the need to access detailed and extensive databases.
Using the classified variables, the proposed method consists of regression models that
are developed using the EB expected number of crashes to predict the level of risk (or
safety) of roadway segments that are part of the roadway network. Two models were
proposed, one with and one without traffic data. The response (dependent) variable in both
models was the EB expected number of crashes, which is a function of the HSM predicted
number of crashes and the observed number of crashes. The explanatory (independent)
variables included roadway and roadside characteristics besides traffic exposure (AADT).
Table 1 shows the explanatory variables for the proposed models. The development of
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the mathematical model for this study using the proposed approach is discussed later in
Section Model Development.

Table 1. Explanatory variables of proposed model [9].

Risk Factors Approximate Ranges of
Variables Categories Terms

Segment Length (SL) Exact Length

Lane Width (LW)
LW < 11 1 Narrower

LW ≥ 11 2 Wider

Shoulder Width (SW)
SW < 1.8 1 Narrower

SW ≥ 1.8 2 Wider

Degree of Horizontal
Curvature (DC)

DC = 0 0 Straight

DC < 10 1 Mild

10 ≤ DC < 27 2 Moderate

DC ≥ 27 3 Sharp

Grade (G)
G < 4 0 Mild

G ≥ 4 1 Steep

Driveway Density (DD)
(driveways per mile) Exact Number

Side Slope (SS)
Steep 1 Steep

Moderate 2 Moderate

Flat 3 Flat

Fixed Objects (FO)
Many 1 Many

Some 2 Some

Few 3 Few

Volume (V) Exact Volume

4. Study Area and Data Description

The two-lane rural road network in the state of Oregon was investigated as a case
study in order to validate the proposed method. A total roadway segment sample of
around 1495 miles from the eastern and western region was used in this investigation to
ensure adequate geographic coverage. The study sample included roadways from different
parts of the state as shown in Figure 1. In general, roadways in the eastern part of the state
run in flatter terrain with less restrictive alignment, while those in the western part of the
state run in mountainous terrain with more restrictive alignment (winding routes, sharp
radii, etc.).

All state-owned rural two-lane roads were identified using online geographic informa-
tion system (GIS) data [18]. The roadway segments were then selected from the collection
to obtain sample data ensuring sufficient geographical coverage. Data were collected
for roadway segments using 0.05-mile increments to ensure that data would capture all
changes in the physical characteristics of the roadway, thus eliminating the possibility of
missing significant differences between consecutive observation points. The posted speed
limit in all the segments considered for this study is 55 mph. Intersections and 0.05-mile
segments along upstream and downstream approaches were excluded from the dataset.
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Figure 1. Study area showing sampled highway segments.

The Oregon Department of Transportation (DOT) online databases and video logs were
used to identify and compile traffic, roadway geometry, roadside, and crash data [19,20].
The roadway geometric data includes lane width, shoulder type and width, horizontal
curve presence degree of curvature, length of the horizontal curve, spiral curve presence
and length, vertical curve presence and type, grade, and length of vertical curve. Roadside
characteristics consists of driveway density, side slope ratings, and fixed object ratings.
These two factors are taken from the Oregon DOT online database and video logs, respec-
tively, both at 0.05-mile increment.

Crash data for ten years (2011–2020) were collected for the study sample using the
Oregon DOT online database [20]. Data on more than 20 individual crash characteristics-
including crash location, road character, impact location, traffic control, crash type, crash
severity, vehicle type, and weather condition were collected and combined with the geo-
metric and roadside database forming an integrated dataset for analysis.

Traffic data from 2011 to 2020 were also collected separately and compiled to the study
integrated dataset described earlier.

The study sample was shared with the Oregon DOT personnel to confirm that seg-
ments selected in the study sample did not undergo any major upgrade or improvement
(including changes in speed limit) over the study period.

Segmentation

As mentioned earlier, the data was collected using 0.05-mile increments. Afterwards,
the total sample was compiled into homogeneous segments concerning the following
variables: annual average daily traffic (AADT), speed limit, lane and shoulder type and
width, and roadside characteristics. Any change in these variables marked the end of a
segment and the beginning of another segment.

Upon completing the segmentation, a total of 377 segments consisting of 1495 miles
were compiled. Crash frequency data for two different periods (2011–2015, and 2016–2020)
were compiled for roadway segments.

5. Methodology

The proposed approach was implemented using the study data and evaluated using
observed crash history collected for the study sample. Specifically, the crash data collected
over ten years were divided into two datasets: a training dataset spanning five years
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(2011–2015) to develop the regression model, and a testing dataset covering the subsequent
five-year period (2016–2020). The approach that was used in evaluating the proposed
network screening method is to compare site rankings using the proposed method with
the respective rankings using crash history data. Both crash frequency and crash density
(number of crashes per mile) were used in ranking sites. Further, rankings from the
Empirical Bayes (EB) method and the potential for safety improvement (PSI) method were
included in the analyses to see how the performance of the proposed method compares to
that of the two well-established techniques. Using the EB and PSI in this study is based
on the fact that these techniques has become the gold standard in performing quantitative
safety analyses, with merits and effectiveness well established in the literature [21–27].

Model Development

Multivariate linear regression analysis was used in developing the model for road
network screening. The open-source statistical software R 4.3.1 was used for running the
analysis. The model with different explanatory variables is shown in Equation (1).

Ln Exp = −8.27049 + 0.72962 ∗ 1
FO + 0.02717 ∗ DD + 0.98309

∗ Ln (V) + 0.10126 ∗ DC + 0.94290
∗Ln (SL)

(1)

where exp = EB expected number of crashes per year; SL = segment length in miles;
V = traffic volume (AADT); FO = fixed object; DD = driveway density; and DC = degree of curvature.

This model has a coefficient of determination (adjusted R-squared value) of 0.932. This
indicates that the model can explain about 93 percent of the variability of the EB expected
number of crashes, which is relatively high given the classified format used for most of the
variables in this model. All variable coefficients are found significant at the 95% confidence
level. The regression output using R 4.3.1 statistical software is shown in Figure 2.

Figure 2. R output of regression model.

6. Study Analysis and Results

This section presents the discussion of the metrics used for the evaluation of the
performance of the proposed method. The performance of the EB method and the PSI
method is also calculated and compared with the proposed method.

6.1. Spearman Correlation Coefficient

Initially, the Spearman’s rank correlation coefficient was calculated between the pro-
posed method’s ranking and the ranking using observed crash data. The Spearman rank
correlation coefficient is a nonparametric technique that is usually applied to evaluate the
degree of linear association between two independent variables [28]. Here, this coefficient
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is used to measure the degree of association between two lists of hazardous sites ordered
based on two ranking criteria. The simple expression for ‘ρ’, based on the difference
between the two ranked variables, is as shown in Equation (2):

ρ = 1 −
6 ∑ d2

i
n (n2 − 1)

(2)

where ρ = Spearman’s rank correlation coefficient; di = R(Xi)−R(Yi) is the difference between the
two ranks of the subject segment by two compared methods; and n = number of observations.

The Spearman rank correlation value varies from −1 to +1. A higher Spearman
correlation coefficient indicates a stronger agreement between the ranking by the compared
method and the crash history, and 0 means no agreement.

Figure 3 shows a scatterplot with site rankings using the proposed method, EB method,
and PSI method versus crash history. An examination of Figure 3a, which shows the
proposed method versus the crash history rank, reveals that the data points are spread
around the diagonal line. The discrepancy between the ranks increases with the increase
in rank. The tightness of the data points around the line and the correlation coefficient of
0.686 indicates a moderate correlation between the ranks using the two methods. A perfect
correlation is a diagonal line passing through the origin.

Figure 3. Rank comparison using different network screening methods versus crash history;
(a) proposed method versus crash history rank; (b) EB method versus crash history rank; and
(c) PSI method versus crash history rank.
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The EB method ranking was also compared with the ranking using the observed
number of crashes and the results are shown in Figure 3b. In this figure, the proximity of
data points to the line passing through the origin (diagonal line) indicates that it is more
compact compared to that of the proposed method. This observation is confirmed by a
higher correlation coefficient (r = 0.816) between the two rankings.

Additionally, Figure 3c shows the comparison of ranking using PSI method versus
the ranking using the observed number of crashes. The data points clustered around the
diagonal line and the correlation coefficient of 0.879 indicate the very strong association
between the ranks.

Table 2 presents the Spearman’s rank correlation coefficient values for three different
methods (proposed method, Empirical Bayes method, and PSI method) based on crash
density and crash frequency in different upper tail segments and for the total sample size of
377 segments. In analyzing the crash density for the upper tail segments (20, 40, 60, 80, 100),
the proposed method shows moderate to strong positive correlations with crash history,
with values ranging from 0.587 to 0.744. The Empirical Bayes method and PSI method
consistently exhibit higher correlations, ranging from 0.786 to 0.828 and 0.954 to 0.959,
respectively. For the total sample size of 377 segments, the proposed method exhibits
a moderate positive correlation (0.683), while the Empirical Bayes method (0.816) and
PSI method (0.879) display stronger positive correlations. This shows that, in analyzing
crash densities, the Empirical Bayes and PSI methods outperform the proposed method at
identifying safety improvement sites.

Table 2. Comparative analysis of rank correlation for proposed method versus the EB method versus
the PSI method.

Group/Method
Spearman’s Rank Correlation Coefficient

Proposed Method EB Method PSI Method

Crash Density-Based Analysis

Upper Tail (20) 0.744 0.815 0.958

Upper Tail (40) 0.587 0.786 0.954

Upper Tail (60) 0.638 0.813 0.959

Upper Tail (80) 0.655 0.828 0.959

Upper Tail (100) 0.605 0.825 0.958

Total Sample (377) 0.683 0.816 0.879

Crash Frequency-Based Analysis

Upper Tail (20) 0.502 0.406 0.738

Upper Tail (40) 0.562 0.768 0.878

Upper Tail (60) 0.65 0.84 0.893

Upper Tail (80) 0.703 0.823 0.87

Upper Tail (100) 0.702 0.829 0.867

Total Sample (377) 0.815 0.928 0.942

In the case of crash frequency, for the upper tail segments (20, 40, 60, 80, 100), the
proposed method shows weak to moderate positive correlations, ranging from 0.502 to
0.703. The Empirical Bayes method exhibits overall stronger positive correlations, varying
in a broad range from 0.406 to 0.840, while the PSI method consistently demonstrates the
highest correlations, ranging from 0.738 to 0.893. In the total sample, the proposed method
shows a relatively strong positive correlation (0.815), whereas the Empirical Bayes method
(0.928) and PSI method (0.942) display even stronger positive correlations with crash
history. This indicates a higher association between all three methods and the crash history
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when the total sample is analyzed. The difference in performance between the proposed
method and the other existing methods can be explained by properly understanding the
formulation of the EB and the PSI methods. Specifically, observed crash history is a major
contributor to the EB and the PSI methods, which explains the higher correlation between
crash history and these methods. On the other hand, observed crash history is not an input
to the proposed method.

6.2. True Positive Identification

Secondly, the identification of true positive segments is calculated. A true positive
occurs when the proposed method correctly identifies a segment as a potential for safety
improvement. This evaluation listed the number and percentage of common segments
between two lists: the one compiled using ranks from the proposed method and the other
using ranks from observed crash data. The higher the number and percentage of the
common sites, the better the performance of the subject method because this indicates a
stronger agreement between the prediction of the proposed method and crash history.

Table 3 shows a comparison of the identification of true positive segments by three
different methods—the proposed method, the Empirical Bayes (EB) method, and the PSI
method—while using observed crash data as a reference in the context of crash density and
crash frequency analysis for various upper tail segments.

Table 3. True positive segment identification comparison for proposed method versus the EB method
versus the PSI method.

Groups % of Segments

Number of Common Segments % of Common Segments

Proposed
Method EB Method PSI

Method
Proposed
Method EB Method PSI

Method

Crash Density Analysis

Upper Tail (20) 5.31% 6 13 18 30 65 90

Upper Tail (40) 10.61% 22 31 37 55 77.5 92.5

Upper Tail (60) 15.92% 30 45 51 50 75 85

Upper Tail (80) 21.22% 46 60 64 57.5 75 80

Upper Tail (100) 26.53% 68 78 87 68 78 87

Crash Frequency Analysis

Upper Tail (20) 5.31% 12 17 17 60 85 85

Upper Tail (40) 10.61% 30 34 34 75 85 85

Upper Tail (60) 15.92% 41 49 50 68.33 81.67 83.33

Upper Tail (80) 21.22% 61 68 70 76.25 85 87.5

Upper Tail (100) 26.53% 78 86 88 78 86 88

When evaluating the identification of common segments using crash density, for
upper tail segments (20), the proposed method was least consistent with crash history
(30%), followed by the EB method (65%) and the PSI method (90%), respectively. With
the increase in upper tail segments, the discrepancy between the proposed method and
the EB and PSI methods decreases. However, the performance of the proposed method is
overall less favorable compared to that of the other two methods. For example, in upper tail
segments (100), the proposed method identified 68 sites versus 78 sites for the EB method
and 87 sites for the PSI method.

When using crash frequency in the analysis, show better performance for the proposed
method and lower discrepancy between the three methods. For instance, the proposed
method identified 78% of true positive segments compared to 86% by the EB method and
88% by the PSI method when considering 100 upper tail segments. Further, for every other
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upper tail considered, the results from the proposed method shows lower discrepancy with
those using the other two methods.

6.3. Precision and Percent Deviation

The precision and percent deviation from crash history are calculated for various upper
tail segment groups (20, 40, 60, 80, and 100) for the proposed method and the performance
is compared with that of the EB and the PSI methods. A higher percentage of precision and
lower value of percent deviation indicates better performance.

Precision =
TP

TP + FP
∗ 100% (3)

Percent Deviation = (1 − TP/M) ∗ 100% (4)

where TP, true positive, is the number of sites correctly identified as safety improvement sites
by the evaluating method; FP, false positive, is the number of sites falsely identified as safety
improvement sites by the evaluating method (not listed in crash history); and M is the number
of upper tail segments that are considered.

Figure 4 shows precision across various upper tail groups (20, 40, 60, 80, and 100).
Precision is also calculated for the EB method, and the PSI method to see how the performance
of the proposed method compares to that of the other two methods. The precision percentage
based on crash density analysis is shown in Figure 4a. The figure shows that the precision
value is less for the proposed method when compared with the EB and the PSI methods. The
value for the proposed method varies from 30% to 68%, versus 62% to 76% for the EB method
and 85% to 90% for the PSI methods. On the other hand, the precision percentage based on
crash frequency shown in Figure 4b indicates that the precision value varies from 60% to 78%
for the proposed method versus 81.6% to 86% for the EB method and 83.3% to 88% for the PSI
method. This confirms that both the EB and PSI methods were more consistent with the crash
history compared with the proposed method. Further, the proposed method exhibited better
performance and higher consistency with crash history when analyzed using crash frequency
over crash density.

Figure 4. Precision comparison using proposed method, EB method, and PSI method versus crash
history: (a) crash density-based analysis; (b) crash frequency-based analysis.
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Figure 5 shows the percent deviation from the crash history for the proposed method,
the EB method, and the PSI method. A quick examination of Figure 5 clearly shows higher
deviation for the proposed method compared to the EB and the PSI methods both for
crash density and crash frequency analyses. The other trend clearly exhibited in this figure
is that the percent deviation for the proposed method decreases with the increase in the
number of upper tail segments. Specifically, the percent deviation of 70% for density-based
analysis and 40% for frequency-based analysis were observed for the 20 upper tail segments.
However, the corresponding percent deviation for the 100 upper tails is 32% and 22% for
density-based and frequency-based analyses, respectively. The EB and the PSI methods,
while generally showing less deviation and better performance, exhibited less variation in
percent deviation with the increase in upper tail segments.

Figure 5. Percent deviation comparison using proposed method, EB method, and PSI method versus
crash history: (a) crash density-based analysis; (b) crash frequency-based analysis.

6.4. Treatable Crashes

The last analysis in the evaluation of the proposed method involved the use of the
number of treatable crashes (calculated for five years: 2016–2020) as the performance mea-
sure. Treatable crashes are defined as those crashes that may be treated by engineering
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countermeasures such as lane widening. The remaining crashes constitute what might be
expected due to traffic exposure and may not be treatable by engineering countermeasures.
A reasonable estimate for the number of treatable crashes at a location is the number of
crashes in excess of what would normally be expected at locations with similar character-
istics and traffic exposure [29]. To assess the degree of similarity between the segments
identified by a method and those identified by the crash history, a segment overlap metric
was used. The higher the percentage of segment overlap and the closer the estimate of
treatable crashes with crash history, the better the performance of the compared method.

Table 4 shows the summary of the estimate of treatable crashes for the proposed
method the EB method, and crash history. The table also provides the ratio and overlap
for treatable crashes in the top 100 segments defined earlier using both crash density and
crash frequency.

Table 4. Treatable crashes for the top 100 segments identified.

Methods Total Length (mi) Total Crashes (2016–2020)
Treatable Crashes (2016–2020)

Estimate Overlap

Crash Density-Based Analysis

Proposed Method 260.55 565 469 66%

EB 265 614 522 81%

Crash History 241.1 805 726 -

Crash Frequency-Based Analysis

Proposed Method 807.45 2220 1147 79%

EB 787.05 2144 1152 85%

Crash History 805.75 2439 1299 -

The table shows that, based on crash density, the proposed method identified a fewer
number of treatable crashes for the top 100 segments compared to crash history (469 versus
726, respectively). The segment overlap was 66%. Using crash frequency, the segment
overlap increased to 79% indicating a significant improvement in performance. Regarding
the EB method, the number of treatable crashes and overlap indicate a higher level of
consistency with crash history. However, the discrepancy in performance between the
proposed and the EB methods is less evident when crash frequency is used in the analysis.
Specifically, there were only 11.6% fewer treatable crashes on the segments identified with
the proposed method than those identified with the crash history, compared to 11.3% fewer
treatable crashes using the EB method. Further, 79% of all segments identified by the
proposed method were also on the top 100 segments list of the observed crash.

In addition to evaluating the top 100 segments identified by the methods, similar
calculations were performed for other possible levels of selection up to upper tails having
positive treatable crashes. Plots of the treatable crashes identified at various levels are
shown in Figure 6. For the range of top segments studied, the chart shows relatively close
lines for the proposed and the EB methods, with the EB method consistently identifying
a slightly higher number of treatable crashes. The figure also suggests that the larger the
total segments selected, the closer the proposed method is in terms of selection efficiency
compared to that of EB method. These patterns are similar for the crash density and crash
frequency analyses.
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Figure 6. Treatable crash count by different methods and total number of segments selected:
(a) crash density-based analysis; (b) crash frequency-based analysis.

7. Summary and Conclusions

Network screening is a critical initial step of the highway safety improvement pro-
grams which aims to identify sites with potential for safety improvement. Ineffective
network screening can lead to a significant number of false positives and/or false negatives
resulting in an inefficient allocation of agency resources and consequently impacting the
overall efficacy of safety management programs. Hence, the accurate identification of
sites that are in need of safety improvements is crucial for the success of any highway
safety program.

The research presented in this paper examined a new proposed approach for identi-
fying safety improvement sites on rural highways. The proposed approach involves the
use of EB prediction models using traffic and roadway variables only. Specifically, the
multiple linear regression was used to develop a mathematical model to predict the EB
expected number of crashes. The proposed model utilizes classified variables for roadway
and roadside characteristics that do not require detailed databases or extensive technical
expertise. The evaluation was performed using a dataset comprising 1495 miles of ru-
ral two-lane highway segments in the state of Oregon. The data used in the evaluation
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included roadway geometry, roadside features, traffic conditions, and ten years of crash
records. A training dataset spanning five years (2011–2015) was employed to develop the
model, while the subsequent five-year period (2016–2020) served as the basis for evaluating
the model’s performance in network screening.

The study findings suggest that using crash density for highway segments, the per-
formance of the proposed method was fair and not as effective as the well-established EB
and PSI methods. This is despite the high R-square value of the predictive model used by
the proposed approach. However, when using crash frequencies for highway segments,
the performance of the proposed method was found to be comparable to the EB and PSI
methods. Moreover, the results suggest that, in identifying segments most likely to have
treatable crashes, the proposed method outperformed the EB method for higher upper
tail segments considered in the analysis. Despite the overall lower performance of the
proposed method, it provides a valuable tool to local agencies where the application of the
more sophisticated methods is deemed impractical for lack of resources.

To promote the use of the proposed method in practice, further evaluation using
highway networks from other regions and states may reinforce the evidence about the
effectiveness of the proposed method in identifying safety improvement sites. Further,
evaluating the proposed approach at rural highway intersections would make the use of
the proposed method more attractive to local agencies by applying the same approach to
various highway network components (i.e., segments and intersections).
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