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Abstract: Imbalanced class data are commonly observed in pattern analysis, machine learning, and
various real-world applications. Conventional approaches often resort to resampling techniques in order
to address the imbalance, which inevitably alter the original data distribution. This paper proposes a
novel classification method that leverages optimal transport for handling imbalanced data. Specifically,
we establish a transport plan between training and testing data without modifying the original data
distribution, drawing upon the principles of optimal transport theory. Additionally, we introduce
a non-convex interclass regularization term to establish connections between testing samples and
training samples with the same class labels. This regularization term forms the basis of a regularized
discrete optimal transport model, which is employed to address imbalanced classification scenarios.
Subsequently, in line with the concept of maximum minimization, a maximum minimization algorithm
is introduced for regularized discrete optimal transport. Subsequent experiments on 17 Keel datasets
with varying levels of imbalance demonstrate the superior performance of the proposed approach
compared to 11 other widely used techniques for class-imbalanced classification. Additionally, the
application of the proposed approach to water quality evaluation confirms its effectiveness.

Keywords: imbalanced data; classification; optimal transport; majorization–minimization; regularization
term

MSC: 68T09

1. Introduction

Currently, there are numerous datasets that contain imbalanced numbers of samples
across different classes [1], referred to as class-imbalanced datasets. The task of classifying
these types of datasets is known as class-imbalanced classification. For example, in the
context of water quality assessment [2], the data related to water quality tend to remain
relatively stable over a short period of time. This results in one category, known as the
majority class, having significantly more samples than the other categories, referred to
as the minority class. Typically, the samples in the minority class represent instances of
polluted water or water that does not meet the required standards. Misclassifying a sample
from the minority class as belonging to the majority class can have serious consequences or
lead to significant damage in terms of water pollution control. Recently, class-imbalanced
classification has garnered considerable attention in various applications, such as feature
selection [3–5], fault diagnosis [6,7], continuous supervising tasks [1], face recognition [8],
cancer detection [9], and anomalous event detection [10].

In recent studies, imbalanced classification problems have been a focus of research,
with a particular emphasis on two main areas: dataset manipulation and enhancements to
classification methodologies. In terms of data manipulation, class representation is often
adjusted using undersampling or oversampling techniques [11]. Undersampling methods
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aim to improve classification accuracy for minority class samples by reducing the number
of majority class samples. For example, Oquab et al. [12] applied random undersampling
to 10% of the ImageNet dataset in order to train a convolutional neural network (CNN)
for object detection. While random undersampling can expedite training time, it may lead
to loss of valuable information from majority class samples, ultimately limiting classifier
performance. As a result, researchers have explored heuristic undersampling methods.
Lin et al. [13] proposed a novel undersampling approach utilizing clustering techniques
to replace original data with cluster centers. While this method preserves important
information from the majority class, it may disrupt the dataset distribution. In response,
Ng et al. [14] introduced an undersampling technique based on diversified sensitivity,
which selects a balanced sample set using a stochastic sensitivity measure to maintain the
distribution of the training dataset as accurately as possible.

In contrast to undersampling methods, oversampling methods are simpler and aim
to balance sample numbers by rotating or randomly duplicating minority class samples.
However, there is a higher risk of overfitting. Recently, Chawla et al. [15] introduced a
new oversampling method to address this issue. Zhu et al. [16] proposed an oversampling
method that introduces selection weights to increase the number of samples. Abdi et al. [17]
developed a new oversampling method inspired by the Mahalanobis distance to reduce
overlap between different class regions. Douzas et al. [18] presented a method that combines
a synthetic minority oversampling technique (SMOTE) and k-means clustering to avoid the
impact of noise and effectively address class imbalance.

Although oversampling methods can effectively balance data, they often rely on local
information to increase sample size, neglecting the overall distribution of the dataset. Conse-
quently, many of these methods do not ensure consistency with the original data. To address
this issue, Das et al. [19] introduced a new method based on Gibbs sampling and the joint
probability distribution of data that effectively generates new samples for the minority class.
Some studies [20,21] suggest that imbalanced classification problems can be mitigated by
incorporating additional features extracted from the data. Recent advancements in generation
methods offer new approaches to tackle imbalanced classification. For example, Liu et al. [22]
proposed an oversampling method based on fuzzy theory and information decomposition.
Razavi et al. [23] utilized the expectation maximization method to estimate and update miss-
ing values, successfully generating datasets for diagnosing bearing defects. By leveraging
generative adversarial networks, Douzas et al. [24] developed an approach to predict the
distribution of true data and generate minority class samples. Huang et al. [8] demonstrated
the efficacy of representation learning in classifying imbalanced data through numerous
experiments.

While the aforementioned existing approaches, such as [22,24], aim to balance the
training data, they inadvertently alter the distribution of the original data. Specifically,
undersampling methods may result in the loss of valuable information, whereas oversam-
pling methods can lead to increased training time due to the greater number of training
samples [25,26].

In terms of enhancements to classification methodologies, researchers have introduced
several enhanced algorithms, such as AdaBoost [27] and its variations (i.e., AdaC2.M1 [28],
PIBoost [29], and SAMME [30]), as well as the enhanced HDDT algorithms [31] (namely
HDDTecoc, HDDTova, and MCHDDT), imECOC, and its improved versions [32] (imE-
COC+OVA and imECOC+sparse). Sun et al. [28] utilized a genetic algorithm to identify
the optimal cost setup for each class, and subsequently developed a cost-sensitive boosting
algorithm to enhance the classification performance of imbalanced data involving multiple
classes. Hoens et al. [31] investigated the issue of multi-class imbalance within decision
trees and devised a novel multi-class splitting criterion. Antonio and Baumela [29] em-
ployed a vectorial codification to represent class labels and a multi-class exponential loss
function to assess classifier responses, and then introduced a multi-class adaptation of
AdaBoost with binary weak-learners. Liu et al. [32] proposed the imECOC method, which
operates on dichotomies to address both between-class and within-class imbalances. De-
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spite the notable improvements achieved by these approaches, they still exhibit a tendency
to favor the majority class and overlook the minority class.

Optimal transport (OT) models are effective in modeling probability distributions
using geometric methods, allowing for the analysis of original data without changing their
distribution. They have become a popular tool for data analysis [33–35]. In particular,
Courty et al. [33] introduced a novel OT model with a regularization term to address
domain adaptation issues. In this paper, we aim to propose a new approach using OT for
imbalanced classification problems.

This study is centered on introducing a novel general approach to imbalanced classifi-
cation, without focusing on equalizing sample sizes. The main contributions of this work
can be observed in the following aspects.

(1) To maintain the integrity of the original data distribution, a suitable non-convex
regularization term is formulated, followed by the development of a non-convex
regularized optimal transport model for addressing class-imbalanced classification.

(2) Subsequently, in line with the concept of maximizing–minimizing, a maximum mini-
mization optimal transport algorithm is introduced (Section 3.2).

(3) Experiments carried out on 17 Keel datasets with varying levels of class imbalance
demonstrate that our method surpasses 11 other commonly used techniques for class-
imbalanced classification by a significant margin. Moreover, the application of our
proposed approach in water quality evaluation showcases its superior performance
(Section 4).

The advantages of the proposed approach are as follows.

(1) In contrast to data manipulation techniques involving data resampling, our approach
does not alter the original data distribution. Instead, we establish the probability
distributions of the training set and testing set using the Dirac measure. Subsequently,
we formulate class-imbalanced classification as an optimal transport model with a
non-convex regularization term. As a result, our proposed method maintains the
integrity of the initial data distribution and mitigates certain limitations of data
resampling techniques, including information loss in undersampling methods and
overfitting in oversampling methods.

(2) Unlike ensemble learning methods, the proposed approach does not require the
selection of the number of classifiers, thus reducing time costs.

This paper is structured as follows. Section 2 provides an overview of optimal trans-
port. Section 3 outlines the development of a regularization term for class-imbalanced
classification, leading to the proposal of a regularized optimal transport model. An al-
gorithm utilizing maximum minimization is then presented. In Section 4, the evaluation
measures for class-imbalanced data classification are discussed, demonstrating the effec-
tiveness of the proposed method on various class-imbalanced datasets from Keel datasets
and its application in water quality evaluation. Finally, Section 5 presents the conclusions.

2. Preliminary on Optimal Transport

Let ξ and η be two probability measures in Rn, Ω0 and Ω1 be the respective domains,
and c : Ω0 × Ω1 → R be the cost function. The original formulation of Monge’s OT
problem is to find an optimal map Φ : Ω0 → Ω1 that pushes a distribution ξ onto another
distribution η and minimizes the cost:

min
η

∫
Ω0

c(x, Φ(x))dξ

s.t. Φ#ξ = η,
(1)

where # is the push forward operator. The maps Φ satisfying the constraints in (1) are
called transport maps.
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The Kantorovich formulation being a convex relaxation of the Monge problem is as
follows:

min
γ

∫
Ω0×Ω1

c(x, y)dγ(x, y)

s.t. γ ∈ Π := {γ ∈ P(Ω0 ×Ω1)|(πx)#γ = ξ, (πy)#γ = η},
(2)

where Π is a set consisting of all joint probability distributions coupling ξ with η. The plans
γ satisfying the constraints in (2) are called transport plans.

Since problem (2) is convex, the solution γ∗ always exists. If the solution Φ∗ of
problem (1) exists, then the relationship between Φ∗ and γ∗ is γ∗ = (Id, Φ∗)#ξ, where Id
represents identity mapping.

Let X = {xi}N
i=1 ⊆ Rd be the training set, Y = {yj}M

j=1 ⊆ Rd be the testing set, and the
measures ξ and η be discrete. We consider the discrete optimal transport, i.e.,

ξ =
1
N

N

∑
i=1

δxi , η =
1
M

M

∑
j=1

δyj , (3)

where δz is a Dirac measure at z ∈ Rn. Note that the optimal transport map of the Monge
problem corresponding to the above discrete measures does not exist in general.

In order to prevent misuse of symbols, we additionally define Π as the collection of
probability distributions between two discrete distributions, namely,

Π = {γ ∈ (R+)N×M|γ1M =
1
N

, γT1N =
1
M
}.

The discrete Kantorovich formulation of optimal transport can be described as

min
γ
⟨C, γ⟩F

s.t. γ ∈ Π,
(4)

where matrix C ∈ RN×M, Cij = c(xi, yj), ⟨·, ·⟩F is the Frobenius inner product of matrices.
Generally, when

c(xi, yj) = ∥xi − yj∥2
2, (5)

the discrete optimal transport (DOT) model is as follows:

min
γ

∑
i,j

γij∥xi − yj∥2

s.t. γ ∈ Π
(6)

3. Class-Imbalanced Classification Based on Regularized Discrete Optimal Transport
3.1. Regularized Optimal Transport Model

Given the significance of training sample labels in supervised learning classification
tasks, a regularization term has been devised to maintain the integrity of label information
within the training data.

Ω(γ) = ∑
j

∑
c
∥γ(Ic, j)∥q

p,

where ∥ · ∥q
p is the lp norm with power of q, Ic is the set of line indexes representing the

element of class c, and γ(Ic, j) is the vector consisting of coefficients of the jth column of
γ with respect to class c. In this paper, we choose p = 1, q = 1

2 ; that is, we should handle
with the following regularized optimal transport (ROT):
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min
γ

∑
i,j

γij∥xi − yj∥2 + ∑
j

∑
c
∥γ(Ic, j)∥

1
2
1

s.t. γ ∈ Π

(7)

In the ROT model (7), the interclass regularization term ensures that samples from Y
are transported to samples with the same class labels in X. This enables the classification of
all samples in Y based on the labels of the transported samples.

3.2. Algorithm for ROT

Since the non-convex nature of problem (7) poses a challenge, the traditional method
known as majorization–minimization (MM) [35] can be utilized to tackle this issue.

Noticing that the function (·)q is concave, it is difficult to maximize the regularization
term Ω(γ) directly. However, we can maximize Ω(γ) with a linear approximation; that is,
for a fixed γ̂, we have

Ω(γ̂) ≤ ⟨γ̂, Q⟩F + const, (8)

where,
Q(Ic, j) = q(∥γ̂(Ic, j)∥+ ϵ)q−1, ∀ c, j, (9)

is the component of matrix Q, and small ϵ helps to avoid numerical instabilities.
As we know, the MM algorithm can converge with a small iteration number. Thus,

the following Algorithm 1 is designed to solve problem (7).

Algorithm 1: Majorization–minimization for regularized optimal transport (MM-
ROT).

Input: X,Y
Output: γ

1 Initialize Q as Q0 = 0, C as C0 in Equation (5), tolerate error tol;
2 while ∥γk − γk−1∥ > tol do
3 Ck ← Ck−1 + Qk−1;
4 γk ← solve problem (6) with Ck by the interior point algorithm;
5 Qk ← Update Q with Equation (9) for the fixed γk.
6 end

4. Experiments
4.1. Evaluation Measures

To evaluate the performance of classifiers for imbalance data reasonably, researchers
put forward a series of new measures, such as true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). In the classification, the positive class is often treated
as the minority class, and recall (Rec), specificity (Spec), precision (Pre), geometric mean
(GM), and F1-measure (F1M) are often used as the evaluation measures, which are defined
as follows:

GM =
√

Rec× Spec, F1M =
2Pre× Rec
Pre + Rec

,

where Rec = TP
TP+FN , Spec = TN

TN+FP , Pre = TP
TP+FP .

4.2. Experiments with Keel Datasets

Small and imbalanced datasets are a common occurrence in many data mining prob-
lems [36,37]. Therefore, the experiments were conducted on small and imbalanced datasets
obtained from two types of Keel datasets, which can be accessed for download from
https://sci2s.ugr.es/keel/imbalanced.php (accessed on 18 August 2020). The imbalance
ratio (IR) is defined as the ratio of the number of samples in the majority class to that in the

https://sci2s.ugr.es/keel/imbalanced.php
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minority class. The two types of Keel datasets have different IRs, with values both greater
and smaller than 9. Due to the small sample size of the minority class, all datasets were
subjected to a 5-fold cross-validation during the testing phase.

The objective of this study is to introduce a novel classification approach at the method-
ology level, instead of concentrating on dataset balancing. As such, the MMROT method
is compared with 11 other approaches that have been enhanced in terms of classifica-
tion methodology (https://github.com/chongshengzhang/Multi_Imbalance, accessed
on 21 March 2019), including the traditional support vector machine (SVM) [38], Ad-
aBoost [27], and three improved AdaBoost algorithms (i.e., AdaC2.M1 [28], PIBoost [29],
and SAMME [30]), three improved HDDT algorithms [31] (i.e., HDDTecoc, HDDTova, and
MCHDDT), imECOC, and two improved imECOC algorithms [32] (i.e., imECOC + OVA
and imECOC + sparse). Next, the experiments are designed as follows.

(1) Experiments on the datasets with IRs smaller than 9.

The details of these datasets, including the dataset names, imbalance ratios, and other
related descriptions, are listed in Table 1. Noting that 0 appears in the confusion matrices of
some datasets, it leads to the undetermined value NaN in the calculation of the classification
accuracy. So, we replace NaN with 0 when showing the results. Tables 2 and 3 show the
classification results with datasets ecoli-0 vs 1 and glass-0-1-2-3 vs 4-5-6, respectively. Figure
1 show the values of different evaluation measures (Pre, Rec, F1M, and GM) with different
methods, which illustrates that the proposed method outperforms other methods across all
datasets with an IR < 9.

Table 1. Description of training data whose IRs are smaller than 9.

Datasets IRs No. of Instances No. of Features

ecoli-0 vs 1 1.86 220 7
ecoli1 3.36 336 7
ecoli2 5.46 336 7

glass-0-1-2-3 vs 4-5-6 3.19 214 9
glass0 2.06 214 9
glass1 1.82 214 9
glass6 6.38 214 9
iris0 0.00 150 4

Table 2. Classification results on dataset ecoli-0 vs 1.

Methods Pre Rec F1M GM

MMROT 0.9862 1.0000 0.9930 0.9930
SVM 0.9417 1.0000 0.9699 0.9704

AdaBoost 0.9651 0.9513 0.9578 0.9580
AdaC2.M1 0.9865 0.9510 0.9678 0.9682
SAMME 0.9648 0.9443 0.9542 0.9544

HDDTecoc 0.9864 0.9931 0.9897 0.9897
HDDTova 0.9864 0.9724 0.9788 0.9791
imECOC 0.9800 0.9857 0.9824 0.9826

imECOC + OVA 0.9800 0.9857 0.9824 0.9826
imECOC + sparse 0.9800 0.9857 0.9824 0.9826

MCHDDT 0.9864 0.9724 0.9788 0.9791
PIBoost 0.0000 0.6000 0.0000 0.0000

https://github.com/chongshengzhang/Multi_Imbalance
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Table 3. Classification results on dataset glass-0-1-2-3 vs 4-5-6.

Methods Pre Rec F1M GM

MMROT 1.0000 0.9818 0.9905 0.9907
SVM 0.9500 0.6673 0.7787 0.7934

AdaBoost 0.8869 0.8236 0.8500 0.8526
AdaC2.M1 0.8933 0.8200 0.8536 0.8551
SAMME 0.8405 0.8618 0.8456 0.8484

HDDTecoc 0.8841 0.7618 0.8102 0.8165
HDDTova 0.8841 0.7618 0.8102 0.8165
imECOC 0.8086 0.8400 0.8146 0.8194

imECOC + OVA 0.8086 0.8400 0.8146 0.8194
imECOC + sparse 0.8086 0.8400 0.8146 0.8194

MCHDDT 0.8841 0.7618 0.8102 0.8165
PIBoost 0.2383 1.0000 0.3848 0.4881

Figure 1. (a) Values of Pre on different datasets with IR < 9. (b) Values of Rec on different datasets
with IR < 9. (c) Values of F1M on different datasets with IR < 9. (d) Values of GM on different datasets
with IR < 9.

Statistical Analysis: To statistically confirm the effectiveness of the proposed approach
in comparison to other methods, we conduct robust statistical analyses in accordance with
previous research [39]. Firstly, we utilize the Shapiro–Wilk normality test to assess the
distribution of the data. If the data meet the assumptions of normality, we proceed with a
parametric t-test; otherwise, a nonparametric Wilcoxon rank sum test is employed. Both
tests are conducted to test the null hypothesis that there is no significant difference in the
classification results obtained from different methods. We establish a significance level
of p < 0.05 to determine the rejection of the null hypothesis. The results of all pairwise
comparison p-values are presented in Table 4. Remarkably, for the F1M and GM indicators,
all p-values are below 0.05, leading us to reject the null hypothesis and conclude that
our proposed approach significantly outperforms alternative methods. Notice that the
classification results are the same for all imECOC approaches, so only one column is shown
in Table 4.

Table 4. p-values for comparison of MMROT against the other model-based approaches on datasets
with IR < 9.

Measures SVM AdaBoost AdaC2.M1 SAMME HDDTecoc HDDTova imECOC MCHDDT PIBoost

F1M 0.0371 0.0150 0.0162 0.0117 0.0139 0.0128 0.0124 0.0128 0.0005
GM 0.0421 0.0156 0.0168 0.0122 0.0147 0.0137 0.0130 0.0137 0.0005
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(2) Experiments on the datasets with IRs bigger than 9.

The details of these datasets are listed in Table 5. The experiment results tested on
dataset yeast-2 vs 4 with the same 12 approaches are shown in Table 6, and we can find
that MMROT achieves the best performance among these methods.

Table 5. Description of training data whose IRs are bigger than 9.

Datasets IRs No. of Instances No. of Features

ecoli-0-1-3-7 vs 2-6 39.15 281 7
glass-0-1-6 vs 2 10.29 192 9
glass-0-1-6 vs 5 19.44 184 9

page-blocks-1-3 vs 4 15.85 472 10
yeast-0-5-6-7-9 vs 4 9.35 528 8

yeast-1 vs 7 13.87 459 7
yeast-1-2-8-9 vs 7 30.56 947 8
yeast-1-4-5-8 vs 7 22.10 693 8

yeast-2 vs 4 9.08 514 8

Table 6. Classification results on dataset yeast-2 vs 4.

Methods Pre Rec F1M GM

MMROT 1.0000 0.9818 0.9905 0.9907
SVM 1.0000 0.3982 0.5290 0.5985

AdaBoost 0.8000 0.6855 0.7208 0.7315
AdaC2.M1 0.7625 0.7055 0.7266 0.7303
SAMME 0.8172 0.7055 0.7370 0.7489

HDDTecoc 0.7349 0.6455 0.6726 0.6813
HDDTova 0.7632 0.6455 0.6866 0.6954
imECOC 0.6822 0.7636 0.7169 0.7199

imECOC + OVA 0.6822 0.7636 0.7169 0.7199
imECOC + sparse 0.6822 0.7636 0.7169 0.7199

MCHDDT 0.7632 0.6455 0.6866 0.6954
PIBoost 0.0000 0.6000 0.0000 0.0000

The visualization of classification results on different methods for different datasets is
provided in Figure 2 so as to make a further analysis of the performance. From Figure 2, we
can deduce that, for all the datasets, the results obtained with MMROT outperform those
other 11 approaches. Figure 2 also shows that the ability of MMROT is better at addressing
the classifications on datasets whose IRs are bigger than 9.

Figure 2. (a) Values of Pre on different datasets with IR > 9. (b) Values of Rec on different datasets
with IR > 9. (c) Values of F1M on different datasets with IR > 9. (d) Values of GM on different datasets
with IR > 9.
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Statistical Analysis: Table 7 shows the p-values of pairwise comparisons for datasets
with IR > 9. It is worth mentioning that, for the F1M and GM indicators, all p-values are less
than 0.05, indicating that our proposed method significantly outperforms other approaches.

Table 7. p-values for comparison of MMROT against the other model-based approaches on datasets
with IR > 9.

Measures SVM AdaBoost AdaC2.M1 SAMME HDDTecoc HDDTova imECOC MCHDDT PIBoost

F1M 0.0003 0.0006 0.0012 0.0004 0.0014 0.0014 0.0013 0.0014 0.0002
GM 0.0003 0.0012 0.0005 0.0005 0.0013 0.0014 0.0004 0.0014 0.0002

4.3. Assessment of the Water Quality of Fuyang River in Handan

In the following, we will evaluate the effectiveness of MMROT in comparison to 11 other
approaches for assessing the water quality of Fuyang River in Handan.

The experiment results tested on Fuyang River with the 12 methods are presented in
Table 8. It can be found that MMROT achieves the best on measures Rec and GM compared
with the other 11 methods. In Figure 3, the visualization of the performance of different
methods on measures Pre, Rec, and GM using 10-fold cross-validation in the testing process
is displayed, respectively.

Figure 3. (a) Values of Pre on Fuyang River dataset. (b) Values of Rec on Fuyang River dataset.
(c) Values of GM on Fuyang River dataset.

Table 8. Classification results on Fuyang River.

Methods Pre Rec GM

MMROT 0.8100 0.7800 0.7683
SVM 0.9540 0.1150 0.1250

AdaBoost 0.6722 0.5300 0.4901
AdaC2.M1 0.6595 0.4875 0.4583
SAMME 0.6711 0.5275 0.4861

HDDTecoc 0.6459 0.6100 0.5480
HDDTova 0.6492 0.5700 0.5165
imECOC 0.6099 0.6025 0.5297

imECOC + OVA 0.6199 0.5825 0.5156
imECOC + sparse 0.5899 0.6425 0.5580

MCHDDT 0.6492 0.5700 0.5165
PIBoost 0.6162 0.5400 0.2828

As the water quality data are extremely imbalanced, especially as there is only one
sample belonging to Grade I, it leads to the result that this sample cannot appear in both
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the training set and the testing set. Therefore, it is very easy to misclassify this sample, such
that the denominator of F1M is 0, resulting in the values of F1M in the ten methods are
noneffective, so we do not provide it here.

From the visualization of Figure 3, we can find that, in comparison with the other
11 methods, the performance of MMROT on measures Rec and GM performs the best, and
Pre performs better than the other methods except for the SVM. These results show that
MMROT is strongly effective in the application of water quality evaluation.

5. Conclusions

To address class-imbalanced classification, we have developed an optimal transport
model with a non-convex regularization term. This model is implemented with an algo-
rithm based on MM, yielding favorable results across datasets with varying imbalance
ratios and in the assessment of water quality in Fuyang River, Handan. We have taken into
account the impact of imbalanced data when calculating the maximum linear approxima-
tion for the non-convex regularization term, enhancing the robustness of the constructed
MMROT. Our results demonstrate that MMROT is capable of meeting practical require-
ments for class-imbalanced classification, as evidenced by experiments on small datasets
and water quality assessment. As the accumulation of large-scale datasets continues, par-
ticularly in industrial production settings, the performance of MMROT on such datasets
and potential enhancements will be explored in future research.
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