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Abstract: Some good nonlinear codes, such as Kerdock and Preparata codes, can be represented 1

as binary images under the Gray map of cyclic codes over the Z4 ring (ring of integers modulo 4). 2

Generalized Kerdock codes represent an extension of classical Kerdock codes to the Z2𝑆 ring. In 3

this paper we develop two novel soft-input decoders, designed to exploit the unique structure of 4

these codes. We introduce novel soft-input ML decoding algorithm and a soft-input soft-output MAP 5

decoding algorithm of generalized Kerdock codes, with a complexity of O(𝑁𝑆 log2 𝑁), where 𝑁 is 6

the length of the Z2𝑆 code, that is, the number of Z2𝑆 symbols in a codeword. Simulations show that 7

our novel decoders outperform the classical lifting decoder in terms of error rate by some 5dB. 8

Keywords: Codes over rings, Kerdock codes, MAP decoding, Monte Carlo simulation. 9

1. Introduction 10

Context and motivation. It is well known that linear codes over integer ring modulo 11

2𝑆 (the Z2𝑆 ring) are the natural linear codes for 2𝑆-ary phase modulation (2𝑆-PSK) [1]. 12

Furthermore, it was shown in [2] that some families of nonlinear binary codes with good 13

properties, such as the Kerdock [3], Preparata [4], Goethals [5,6], and Delsarte-Goethalas 14

[7] codes, can be represented as the binary image under the Gray map of linear codes 15

over Z4 (the ring of integers modulo 4). These results have led to an increased interest 16

in designing linear codes over finite rings. Several extensions of these codes to the Z𝑝𝑆 17

(where 𝑝 is a prime and 𝑆 is a positive integer) were also developed [1,8–17]. Solé [8] has 18

suggested in 1988 that 𝑝-adic cyclic codes should be investigated [9]. Generalization of 19

binary duadic codes to the setting of Abelian codes over the ring Z2𝑆 was presented in [10]. 20

Double circulant self-dual codes over Z2𝑆 were investigated in [11]. Generalized Kerdock 21

and Delsarte-Goethals codes over the ring Z2𝑆 (an extension of Z4 linear Kerdock and 22

Delsarte-Goethals codes to Z2𝑆 ) were introduced in [12]. Convolutional codes over rings 23

were discussed in [1,13,14], and LDPC codes over rings were investigated in [15–17]. 24

Codes over rings were used in classical coding systems because of their rate properties 25

[18–20], while in today’s systems, they are considered for applications with great secrecy 26

and reliability [21,22] requirements. On the other hand, modern codes over rings are being 27

used to improve bandwidth efficiency [15] and to better combat phase noise [16,17] in 28

modern wireless systems. Quaternary Kerdock codes were also used to design MIMO code- 29

books (i.e. a finite set of precoders shared by the transmitter and the receiver) for limited 30

feedback precoded MIMO systems [23,24]. The proposed Kerdock codebook was shown 31

to have systematic construction, reduced storage, and reduced online search computation 32

[23,24]. Codes over rings can also be used to construct quantum error-correcting codes for 33

both quantum communication and quantum computation [25,26]. 34

The decoding of codes over rings was an important area of research for years, and 35

many hard and soft decision decoding algorithms were proposed. A detailed overview of 36
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Preparata) can be very simply constructed from linear codes over the Z4 ring (ring of integers modulo
4), by applying the Gray map to the quaternary symbols. Generalized Kerdock codes represent an
extension of classical Kerdock codes to the Z2S ring. In this paper, we develop two novel soft-input
decoders, designed to exploit the unique structure of these codes. We introduce a novel soft-input ML
decoding algorithm and a soft-input soft-output MAP decoding algorithm of generalized Kerdock
codes, with a complexity of O(NS log2 N), where N is the length of the Z2S code, that is, the number
of Z2S symbols in a codeword. Simulations show that our novel decoders outperform the classical
lifting decoder in terms of error rate by some 5 dB.
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1. Introduction

Context and motivation. It is well known that linear codes over the integer ring mod-
ulo 2S (the Z2S ring) are the natural linear codes for 2S-ary phase modulation (2S-PSK) [1].
Additionally, Hammons et al. demonstrated in [2] that certain notable binary nonlinear
codes, recognized for their desirable characteristics, can be derived from quaternary codes
(codes over Z4) through the application of the Gray map. These results have led to an in-
creased interest in designing linear codes over finite rings. Several extensions of these codes
to ZpS (where p is a prime and S is a positive integer) were also developed [1,3–12]. Solé [3]
suggested in 1988 that p-adic cyclic codes should be investigated [4]. The generalization of
binary duadic codes to the setting of Abelian codes over the ring Z2S was presented in [5].
Double circulant self-dual codes over Z2S were investigated in [6]. Generalized Kerdock
and Delsarte–Goethals codes over the ring Z2S (an extension of Z4 linear Kerdock and
Delsarte–Goethals codes to Z2S ) were introduced in [7]. Convolutional codes over rings
were discussed in [1,8,9], and LDPC codes over rings were investigated in [10–12].

Codes over rings were used in classical coding systems because of their rate prop-
erties [13–15], while in today’s systems, they are considered for applications with great
secrecy and reliability [16,17] requirements. On the other hand, modern codes over rings are
being used to improve bandwidth efficiency [10] and to better combat phase noise [11,12]
in modern wireless systems. Quaternary Kerdock codes were also used to design MIMO
codebooks (i.e., a finite set of precoders shared by the transmitter and the receiver) for
limited-feedback precoded MIMO systems [18,19]. The proposed Kerdock codebook was
shown to have systematic construction, reduced storage, and reduced online search com-
putation [18,19]. It is also possible to develop quantum error correction and quantum
communication codes from codes over rings, as discussed in [20,21].

Research in the field of ring-based code decoding has been a significant topic for
many years, during which numerous algorithms for both hard and soft decision decoding,
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designed to exploit the unique and rich structure of codes over rings, have been introduced.
A detailed overview of different decoding algorithms for codes over rings is given in
Section 2. Classical codes over rings are interesting as component codes in product and
turbo coding schemes [16,22,23], but one of the main obstacles to their adoption in modern
coding systems is the lack of efficient SISO decoding algorithms. As far as we are aware,
generalized Kerdock codes do not yet have any soft decoders specifically designed to
exploit their unique structure, so the main objective of this study is to address this gap
by presenting maximum likelihood (ML) and maximum a posteriori (MAP) decoding
algorithms for them. Furthermore, the MAP decoding algorithm is an SISO algorithm,
so it allows the use of these codes in modern coding systems. These algorithms will also
allow us to develop and evaluate reduced-complexity suboptimal decoding algorithms for
generalized Kerdock codes and other related code families in the future.

Contribution. In our previous paper [24], we developed an SISO MAP decoding
algorithm of linear Z4 Kerdock codes with the complexity of O(N2 log2 N), where N is the
code length of a quaternary code (i.e., the number of quaternary symbols in a codeword).
Here, we extend this result to the family of generalized Kerdock codes. In this paper, novel
ML and MAP decoding algorithms with a complexity of O(Ns log2 N) (where N is the
code length of a Z2S code) are developed and presented. To the best of our knowledge,
these are the first such decoding algorithms for generalized Kerdock codes.

Paper organization. The rest of this manuscript is organized into five individual
sections. The literature overview is given in Section 2. Section 3 provides the necessary
preliminaries. Section 4 introduces the novel decoding algorithms. Simulation results are
presented in Section 5. Section 6 concludes the paper.

Notation. In this paper, we employ the same notation as in [24]. We use bold letters to
denote module elements, and by extension vectors, as every vector space is by definition a
free module. We use the standard function notation for polynomials. We denote the i-th
component of a module element x or a polynomial x(Z) (where Z is a placeholder variable)
as xi. Let x and y be two elements of equal length N. Then, the Hadamard (pointwise)
product is defined as x⊙ y = (x0y0, x1y1, . . . , xN−1yN−1), and the inner product is defined
as ⟨x, y⟩ = ∑n xnyn. We use uppercase letters to represent matrices, with xn indicating
the n-th row of a matrix X. For convenience, let 1 = (1, . . . , 1) represent an element of all
ones. We denote the probability of x as P[x] and the conditional probability of x given y
as P[x|y]. We use the standard blackboard bold letters to represent sets of numbers and
their associated rings/fields, i.e., C represents the set of complex numbers, R represents
the set of real numbers, and Z represents the set of integers. The set of integers modulo
n is denoted as Zn = Z/nZ. Given a set K, K2 = K×K represents the Cartesian square
(i.e., the Cartesian product of K with itself), and KN represents the N-ary Cartesian power
of K. We use cursive letters to represent codes and other sets. Additional notation will be
introduced as and when it is utilized throughout the paper.

2. Literature Overview

A variety of strategies have been used in designing decoders for codes over rings,
as mentioned in [25]. These include the algebraic (syndrome) decoding approach [26],
the lifting decoder technique, introduced in [27] and extended in [28], the coset decomposi-
tion approach [29], and the permutation decoding [25,30,31]. Several algebraic decoders of
codes over rings were presented in [2,32–35]. A lifting decoding scheme was introduced
in [27,28]. This algorithm works by sequentially applying the hard decision decoding
algorithm of a corresponding Zp code to the appropriate p-ary projection of the input and
canceling a part of the noise at each step. In this manner, the Zp decoding algorithm is
lifted to work with the corresponding ZpS code. This is a general hard decision decoding
algorithm that can be applied to the generalized Kerdock codes. A simple bitwise APP
decoding algorithm of Z4 linear codes, based on the lifting decoding scheme, was pro-
posed in [24]. It was shown in [24] that in the case of the classical Kerdock and Preparata
codes, this decoder has a complexity of O(N log2 N). The Chase decoding of Z4 codes
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based on the lifting decoder technique was proposed in [36,37]. The coset decomposition
approach consists of partitioning the code into the subcode and its coset and works for both
linear and nonlinear codes. A SISO MAP decoding algorithm of linear Z4 Kerdock and
Preparata codes, based on the coset decomposition technique, was introduced in [24]. A
similar approach was used to develop an ML decoding algorithm, of the same complexity,
for quaternary Kerdock codes in [2,38]. Following the coset decomposition strategy, Davis
and Jedwab, in [13], introduced two distinct algorithms for the decoding of RM-like codes
over rings of characteristic 2. The maximum a posteriori (MAP) decoding of linear codes is
usually performed via the Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm—a trellis-based
MAP decoder, introduced in [39]. The structure and complexity of the trellis diagram of
the classical Kerdock and Preparata codes were investigated in [40] and [41], respectively.
The complexity of the trellis-based approach is higher than that of the MAP decoder in [24].
For LDPC codes over rings, a modified message passing is generally used [10,42].

3. System Model

Integer Modulo Rings. Let operators + and · represent addition and multiplication
in Z2S . Every z ∈ Z2S has a unique dyadic expansion (representation)

z =
S−1

∑
n=0

zn2n, zn ∈ Z2.

Using the notation introduced in [27], let z(s−1), s ∈ {1, . . . , S − 1}, represent the
projection of z ∈ Z2S onto the ring Z2s , defined as

z(s−1) = z mod 2s =
s−1

∑
n=0

zn2n ∈ Z2s , (1)

where the first equality follows from the fact that the remainder when dividing by 2s is
defined by the first s terms of the dyadic expansion, i.e.,

z =
s−1

∑
n=0

zn2n +
S−1

∑
n=s

zn2n =
s−1

∑
n=0

zn2n + 2s
S−1

∑
n=s

zn2n−s.

It is clear that z(0) = z0 and z(S−1) = z for all z ∈ Z2S .
It is easy to see that for every positive integer s ≤ S, every element z ∈ Z2s is also an

element of Z2S . Notice that multiplying some number z ∈ Z2S by 2S−s, s ∈ {0, 1, . . . , S− 1},
is equivalent to first projecting the number z onto the Z2s and then multiplying it with 2S−s,
where the multiplication is conducted in Z2S , i.e., 2S−s · z = 2S−s · z(s−1).

2S−s · z = 2S−s ·
S−1

∑
n=0

zn2n =
S−1

∑
n=S−s

zn−S+s2n = 2S−s
s−1

∑
n=0

zn2n

= 2S−s · (z mod 2s) = 2S−s · z(s−1).

(2)

Additionally, given a, b ∈ Z2S and some s ∈ {0, 1, . . . , S− 1},

2S−s · (a + b) = 2S−s · a + 2S−s · b =

2S−s · a(s−1) + 2S−s · b(s−1) =

2S−s(a(s−1) ⊕ b(s−1)),

where ⊕ represents addition in Z2s .
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Similarly, we have

2S−s · (a · b) = 2S−s · (a · b mod 2s) =

2S−s · (((a mod 2s) · (b mod 2s)) mod 2s) =

2S−s · (a(s−1) ⊗ b(s−1)),

where ⊗ represents multiplication in Z2s .
Using these relationships, we can formally define a natural ring epimorphism [27] as

Z2S −→ Z2S /2sZ2S −→ Z2s

z 7→ z + 2sZ2S 7→ z(s−1)

for 1 ≤ s ≤ S ∈ N. Additionally, for s ≤ S ∈ N, there exists a group embedding

Z2s −→ Z2S

z 7→ 2S−s · z

with the image 2S−sZ2S . The unique preimage of an element z ∈ Z2S is denoted by
z/2S−s [27].

Galois Rings. Let GR(2S, d) represent a Galois ring of characteristic 2S and order 2dS.
It can be defined as a quotient ring

GR(2S, d) ∼= Z2S [Z]/⟨hS(Z)⟩,

where Z2S [Z] represents a polynomial ring over Z2S and hS(Z) is a monic polynomial
of degree d that is irreducible over Z2S (i.e., it does not factor as a product of nontrivial
polynomials). This means that the elements of GR(2S, d) can be represented as polynomials
over Z2S , of degree at most d, and addition and multiplication are performed modulo the
polynomial hS(Z). The polynomial hS(Z) may be found using Graeffe’s method [2], which
is used for finding a polynomial over Z2S whose roots are the S-th power of the roots of a
corresponding polynomial over Z2.

Let h(Z) ∈ Z2[Z] be a primitive irreducible polynomial of degree d. There exists a
unique monic polynomial hS(Z) ∈ Z2S [Z] of degree d such that h(Z) ≡ hS(Z) mod 2,
and hS(Z) divides ZN−1 − 1 mod 2S, where N = 2d [2]. Following Graeffe’s method,
we first divide the h(Z) into polynomials e(Z) and o(Z), such that h(Z) = e(Z)− o(Z),
and e(Z) contains only even powers, while o(Z) contains only odd powers. Polynomial
h2(Z) is given by

h2(Z2) = ±(e2(Z)− o2(Z)).

We can repeat this process multiple times in order to obtain hS(Z) for some S > 1.

Example 1. Consider the polynomial h(Z) = Z5 + Z2 + 1. We divide h(Z) into

e(Z) = Z2 + 1,

and
o(Z) = Z5.

As h2(Z2) = ±(e2(Z)− o2(Z)), we have

h2(Z2) =

{
1
3 (3Z10 + Z4 + 2Z2 + 1)
Z10 + 3Z4 + 2Z2 + 3

,
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where 1
3 is used to ensure that we have a monic polynomial. In both cases, we have h2(Z) =

Z5 + 3Z2 + 2Z + 3. We can repeat this procedure to obtain

h3(Z) = Z5 + 4Z3 + 7Z2 + 2Z + 7.

Notice that hS(Z) mod 2s = hs(Z), for any positive integer s ≤ S ∈ N. This follows
directly from the construction method, as hS(Z) is obtained from hs(Z), which is obtained
from h(Z), i.e., hS(Z) mod 2 = hs(Z) mod 2 = h(Z).

We can extend the previous integer modulo ring relationships to Galois rings. Given a
ring element α ∈ GR(2S, d), let

α mod 2s = α(s−1) ∈ GR(2s, d),

where GR(2s, d) is the Galois ring generated by the monic irreducible polynomial hs(Z).
This is a trivial extension that follows from the fact that the modulus operation is applied
elementwise. Similarly, we have

2S−s · α = 2S−s · (α mod 2s) = 2S−s · α(s−1).

Moreover, for every fixed d, there is a ring homomorphism (i.e., a function that
preserves the ring operations)

µS−1 : GR(2S, d)→ GR(2S−1, d),

for each S, having kernel 2S−1GR(2S, d) [43]. We call this homomorphism a natural projec-
tion of ring GR(2S, d) onto the ring GR(2S−1, d), and we define it as

µS−1(α) = α(S−2) ∈ GR(2S−1, d), α ∈ GR(2S, d).

Notice that the ring

GR(2S−1, d) = {µS(α) | α ∈ GR(2S, d)}

is equivalent to the polynomial ring Z2S−1 [Z] modulo monic irreducible polynomial
hS−1(Z) = hS(Z) mod 2S−1. This definition can easily be extended to the projection of the
ring GR(2S, d) onto the ring GR(2S−s, d), denoted µS−s, for some s ∈ {1, . . . , S− 1}.

Let + and · denote addition and multiplication in GR(2S, d), and let ⊕ and ⊗ denote
addition and multiplication in GR(2s, d) for some s ∈ {1, . . . , S}. Then, the following
relationships naturally follow from the definition of projection:

2S−s(α + β) = 2S−s(α(s−1) ⊕ β(s−1)),

2S−s(α · β) = 2S−s(α(s−1) ⊗ β(s−1)).

The natural projection µ ≡ µ1 maps the ring GR(2S, d) to the Galois field GR(2, d) =
GF(2d), generated by the primitive polynomial h(Z).

Every Galois ring has a primitive element, ξ, such that ξN−1 = 1. Given the Teichmüller
set T = {0, 1, ξ, ξ2, . . . , ξN−2}, every element α ∈ GR(2S, d) has a unique “multiplicative”
representation [7]

α =
S−1

∑
s=0

2sτs, τs ∈ T . (3)

The Frobenius map fS : GR(2S, d) → GR(2S, d) is the ring automorphism defined
as [2,7]

fS :
S−1

∑
s=0

2sτs →
S−1

∑
s=0

2sτ2
s , τs ∈ T .
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The relative trace from GR(2S, d) to Z2S is defined as [2,7]

TS(α) =
d−1

∑
i=0

α f i
S , α ∈ GR(2S, d).

Notice that T ≡ T1 represents the usual trace from GF(2d) to Z2, defined as

T(α0) = α0 + α2
0 + α22

0 + · · ·+ α2d−1

0 .

Some useful properties of the relative trace are the following [44]:

• TS(α + β) = TS(α) + TS(β), for all α, β ∈ GR(2S, d);
• TS(zα) = zTS(α) for all z ∈ Z2s , α ∈ GR(2S, d);

• TS(α
f
S) = (TS(α))

f
S = TS(α), for all α ∈ GR(2S, d).

The projection of α ∈ GR(2S, d) also has a unique “multiplicative” representation,
given by

α(s−1) = µs(α) = µs

(
S−1

∑
n=0

2nτn

)
=

s−1

∑
n=0

2nµs(τn) τn ∈ T ,

where µs(ξ) = ξ(s−1) is the root of the monic irreducible polynomial hs(Z) and 2S−sξ =
2S−sξ(s−1). Given the canonical projection homomorphism µ, defined as the mod-2 reduc-
tion, the following commutative relationships can easily be verified [2,44]:

µ ◦ fS = f ◦ µ, (4)

µ ◦ TS = T ◦ µ. (5)

Generalized Kerdock Codes. The generalized Kerdock code over Z2S , of dimension
K = d + 1 and length N = 2d, introduced in [7], is defined as a set K of all valid codewords.
A sequence c = (c−∞, . . . , cN−2) is a codeword in K if and only if, for some λ ∈ GR(2S, d)
and ϵ ∈ Z2S ,

cn = TS(λξn) + ϵ, n ∈ {−∞, . . . , N − 2}, (6)

with a standard convention of ξ−∞ = 0.
The information pair (λ, ϵ) represents the information sequence of length d + 1 (con-

sisting of d coefficients of the polynomial λ plus symbol ϵ).

Theorem 1. The binary image of the generalized Kerdock code is the first-order Reed–Muller code
of length 2d, the RM(1, d) code.

Proof. The quaternary projection of the code K is given by

K(1) = µ2(K) = {µ2(c) | c ∈ K},

where µ2 is applied componentwise. Every code symbol cn, n ∈ {−∞, . . . , N − 2}, is
given by

c(1)n = µ2(cn) = µ2(TS(λξn) + ϵ). (7)

Using the properties of the projection map and the relationship between the natural
projection and the relative trace, Equation (7) can be rewritten as

c(1)n = T2(µ2(λ)⊗ µ2(ξ)
n) + µ2(ϵ) = T2(λ

(1) ⊗ (ξ(1))n) + ϵ(1),

where ξ(1) is the root of h2(Z) ∈ Z4[Z], λ(1) is an element of the Galois ring GR(4, d),
generated by the monic irreducible polynomial h2(Z), and ϵ(1) ∈ Z4. The operator ⊗
represents multiplication in GR(4, d). This is the definition of the quaternary Kerdock code,
as presented in [2].
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The projection of the generalized Kerdock code onto GR(4, d) is the corresponding
classical quaternary Kerdock code. It is well known that the binary image of the Kerdock
code (the µ(K(1)) projection) is the RM(1, d) code [2,24]. This is also true for the generalized
Kerdock code, i.e., µ(K(1)) = µ(µ2(K)) = µ(K) = RM(1, d).

Permuting the coordinates of a code produces an equivalent code [26]. Consider a
permutation π : ∆ → ∆, where ∆ = {−∞, 0, 1, . . . , N − 2}. For any codeword b ∈ K, we
can define a codeword c = π(b) = (bπ−∞ , bpi0 , . . . , bπN−2) that belongs to the equivalent
generalized Kerdock code defined by π. Let b ∈ K be generated by an information pair
(λ, ϵ). Then, c = π(b) is defined as

cn = TS(λξπn) + ϵ, n ∈ ∆.

If the RM(1, d) code is constructed by taking the rows of the binary Sylvester-type
Hadamard matrix (a binary matrix obtained from a regular Sylvester-type Hadamard
matrix, by replacing the 1’s with binary 0’s and−1’s with binary 1’s) and their complements
as codewords, it is possible to use the fast Hadamard transform for decoding [24,26]. In the
remainder of the paper, we will assume that the permutation π is chosen so that the
associated binary code of the Kerdock code is the RM(1, d) code, constructed in this
way. This makes applying the fast Hadamard transform possible, significantly reducing
the decoding complexity. Permutation π can be found beforehand using the Hungarian
algorithm [45] and does not affect the decoding complexity of the proposed algorithms.

Channel model and decoding. Let x = ϕ(c), c ∈ K, be a random 2S-PSK-modulated
codeword of a generalized Kerdock codeK, transmitted over the AWGN channel. The mod-
ulation mapping is defined as

ϕ(α) = exp
{

I
2πα

2S

}
, I =

√
−1, α ∈ Z2S , (8)

and it naturally extends to vectors. Furthermore,

ϕ(α + β) = ϕ(α)ϕ(β). (9)

Let y be the output of the complex AWGN channel, defined by the conditional
probability

P[y | x] = ∏
n∈∆

P[yn | xn] = ∏
n∈∆

1
πσ2 exp

{
−|yn − xn|2

σ2

}
,

where | · | represents the modulus of a complex number.
If all codewords are equally likely and the channel is memoryless, the ML decoder is

optimal in terms of minimizing the word-error probability. Given the channel output y,
the ML decoder proceeds to find the codeword c ∈ C that maximizes the P[y | x], where
x = ϕ(c), i.e.,

ĉ = arg max
x=ϕ(c)

c∈K

P[y | x] = arg max
x=ϕ(c)

c∈K

∏
n∈∆

P[yn | xn].

It is well known that the ML decoder can be implemented as the minimum distance
decoder,

ĉ = arg max
x=ϕ(c)

c∈K

∏
n∈∆

exp
{
−|yn − xn|2

σ2

}
= arg min

x=ϕ(c)
c∈K

∑
n∈∆
|yn − xn|2 = arg min

x=ϕ(c)
c∈K

∥y− x∥2, (10)

where ∥ · ∥ represents the norm of a complex vector.
Consider the term |yn − xn|2 in Equation (10),

|yn − xn|2 = (yn − xn)(yn − xn)
∗ = |yn|2 + |xn|2 − 2ℜ(ynx∗n), (11)
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where (·)∗ represents the complex conjugate and ℜ represents the function that extracts the
real part of a complex number. By substituting (11) in Equation (10), we obtain

ĉ = arg min
x=ϕ(c)

c∈K

∑
n∈∆
|yn − xn|2 = arg min

x=ϕ(c)
c∈K

∥y∥2 + ∥x∥2 − 2 ∑
n∈∆
ℜ(ynx∗n).

The terms ∥y∥2 and ∥x∥2 can be ignored (∥y∥2 is fixed, while ∥x∥2 is the same for all
codewords because of the PSK modulation), so the ML decoder can be implemented as the
correlation decoder, where we compute the correlation between the complex conjugate of
all possible modulated codewords and the channel output and we select the codeword ĉ
that corresponds to the highest correlation, i.e.,

ĉ = arg min
c∈K

− ∑
n∈∆
ℜ(ynϕ(−cn)) = arg max

c∈K
ℜ
(

∑
n∈∆

ynϕ(−cn)

)
,

where x∗n = ϕ(−cn), and the last equality follows from the fact that the sum of the real part
of complex numbers is equivalent to the real part of the sum of complex numbers.

Example 2. Consider the transmission of a single quaternary symbol c = 2 over the AWGN
channel. As c ∈ Z4, we select the QPSK modulation scheme, shown in Figure 1, for transmission.

For simplicity, the complex numbers are represented as points in the Euclidean plane, where
the first coordinate corresponds to the real part of a complex number, and the second coordinate
corresponds to the imaginary part of a complex number.

ℜ

ℑ

0 7→ (1, 0)

1 7→ (0, 1)

2 7→ (−1, 0)

3 7→ (0,−1)

y

Figure 1. The constellation diagram of the used QPSK modulation

The modulated symbol x = ϕ(c) = (−1, 0) is sent over the AWGN channel, where Gaussian
noise is added to every coordinate independently, and the channel output y is received. At the receiver,
we compute the squared Euclidean distance between the channel output and every constellation
point and select the closest one, i.e., we compute

ĉ = arg min
c∈Z4

∥y− ϕ(c)∥2 = arg max
c∈Z4

⟨y, ϕ(c)⟩.

Notice that when using the complex notation, this decision rule is given by the real part of the
product of the complex channel output and the conjugate of a complex constellation symbol.
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The MAP decoder operates on a bitwise basis and is optimal in terms of minimizing
the bit-error probability. Given the corresponding channel output y, the MAP decoder
proceeds to find [24,46]

P[cj = α|y] = ∑
b∈Cα

j

P[b|y] ∝ ∑
b∈Cα

j

N−1

∏
n=0

P[yn|bn],

where Cα
j ⊂ K represents the set of all codewords that have symbol α ∈ Z2S in position j,

for all j = 0, . . . , N − 1. The MAP decision is by definition

ĉn = arg max
α∈Z2S

P[cn = α|y].

The MAP decoder is well suited for use in a concatenated coding scheme, where we
exchange soft messages between different coding blocks.

4. Decoding Algorithms

Let C = K \ {1} be the linear subcode of the generalized Kerdock code that does not
contain the all-one codeword. The size of the code C is M = |C| = NS.

Let cm = (cm,−∞, cm,0, . . . , cm,N−2) ∈ C be the codeword corresponding to the informa-
tion sequence given by the components of the polynomial λ ∈ GR(2S, d). Then,

cm,n = TS(λξπn) = TS(λ
(S−2)ξπn) + 2S−1 · T(ξrS−1+πn

0 ) = c(S−2)
m,n + 2S−1 · c(0)m,n, (12)

where rS−1, n ∈ ∆. Notice that the vector c(0)m is a codeword of the RM(1, d)-associated
code of K, i.e., any codeword of RM(1, d), scaled by 2S−1, is also a codeword of K. As all
codewords of the Z2S linear generalized Kerdock code form an additive Abelian group, then

c(S−2)
l + 2S−1 · c(0)n ∈ K, (13)

for all l ∈ {0, . . . , NS−1} and n ∈ {0, . . . , N − 1}.
For convenience, we define three auxiliary matrices, A0 ∈ Z2S×N

2S , A1 ∈ ZNS−1×N
2S , and

A2 ∈ ZN×N
2S , together with their row sets (sets of row elements),

A0 = {α1 | α ∈ Z2S}, |A0| = 2S,

A1 = {c(S−2) | c ∈ C}, |A1| = NS−1,

and
A2 = {2S−1 · c(0) | c ∈ C}

Note that
K = {a0 + a1 + a2 | a0 ∈ A0, a1 ∈ A1, a2 ∈ A2},

and
C = {a1 + a2 | a1 ∈ A1, a2 ∈ A2}.

The rows of the matrix A2 are generated as codewords of the RM(1, d) code, scaled by
2S−1.

4.1. ML Decoding Algorithm

The ML decoder begins by calculating the correlation coefficient of the received
channel output, y = (y−∞, y0, . . . , yN−2), with the complex conjugate of each possible
modulated codeword. After that, the decoder selects the codeword with the largest
correlation coefficient.
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For every possible information pair (λ, ϵ), let the correlation coefficient between the
corresponding codeword (c) and the channel output be defined as

ρ(λ, ϵ) = ∑
n∈∆

ynϕ(−cn). (14)

There are NS possible information pairs, and the computation of the correlation
coefficient, using Equation (14), has complexity O(N). The total complexity, when using
the brute-force approach, is O(NS+1).

After substituting Equation (6) in Equation (14), we obtain

ρ(λ, ϵ) = ∑
n∈∆

ynϕ(−TS(λξπn)− ϵ) = ϕ(−ϵ) ∑
n∈∆

ynϕ(−TS(λξπn)),

where the last equality follows from (9). Using the definition in (12), we obtain

ρ(λ, ϵ) = ϕ(−ϵ) ∑
n∈∆

ynϕ(−cn) = ϕ(−ϵ) ∑
n∈∆

ynϕ(−c(S−2)
n )ϕ(−2S−1 · c(0)n ),

Let xn = ϕ(−c(S−2)
n ) and

an = ϕ
(
−2S−1 · c(0)n

)
= exp

{
−I

2µ

2S 2S−1 · c(0)n

}
= (−1)c(0)n .

Finally, the correlation coefficient is given by

ρ(λ, ϵ) = ϕ(−ϵ) ∑
n∈∆

ynxnan = ϕ(−ϵ) ∑
n∈∆

ynxn(−1)c(0)n .

The correlation coefficient can be viewed as ϕ(−ϵ) times the fast Hadamard transform
(FHT) [2,24] of the vector y⊙ x, x = (x−∞, x0, . . . , xN−2). The complexity of applying the
FHT to a vector of length N isO(N log2 N) (note that we compute N correlation coefficients
in parallel using the FHT), and we need to compute the FHT for every possible vector
y⊙ x.

After this, we search for the correlation coefficient with the largest real part [2], and we
output the corresponding codeword. This concludes the algorithm.

Implementation of the ML decoder. Here, we provide a brief rundown of the primary
steps in the ML algorithm. Let X1 = ϕ(−A1) be a complex matrix of size NS−1 × N,
with rows xl , l ∈ {0, . . . , NS−1}. Furthermore, let HN = ϕ(−A2) be the N × N Sylvester-
type Hadamard matrix [26].

Given the channel output y, the ML decoder first generates the correlation matrix
R ∈ RM·NS−1×N , with rows

ri = ℜ(ϕ(−ϵ) · y⊙ xl · Hm) = ℜ(ϕ(−ϵ) · FHT(y⊙ xl)),

where ℜ is applied componentwise and the row index i is calculated as i = ϵNS−1 + l,
ϵ ∈ Z2S , l ∈ {0, . . . , NS−1}. Matrix R can be generated with complexity O(NS log2 N),
as there are NS−1 vectors for which we have to compute N correlation coefficients using
the FHT. Let r∗j,k be the largest correlation coefficient, which can be found with complexity

O(NS). Then, the ML decoder outputs the codeword

ĉ = a0
j div NS−1 + a1

j mod NS−1 + a2
k ,

where a0
j div NS−1 ∈ A0, a1

j mod NS−1 ∈ A1, and a3
k ∈ A2. It is clear that the complexity of this

decoder is O(NS log2 N).
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4.2. MAP Decoding Algorithm

The MAP decoding algorithm follows the group algebra description of the MAP
decoder introduced in [46] and used in [24] to develop the MAP decoder of the quaternary
Kerdock and Preparata codes.

Similarly as in [24], let S = R[Z]/⟨Z2S − 1⟩ be a set of all polynomials over R, modulo
Z2S − 1, where Z is a dummy variable. Given a polynomial f (Z) = ∑α∈Z2S

fαZα ∈ S and a

monomial Z−β ∈ S, β ∈ Z2S , using a simple change of variable, we have

f (Z) · Z−β = ∑
α∈Z2S

fαZα−β = ∑
α∈Z2S

fα+βZα ∈ S.

We start the decoding process by calculating the vector of log-likelihoods w ∈ SN ,
with

wn(Z) = ∑
α∈Z2S

ln P[yn|α]Zα, (15)

where yn is the n-th component of the channel output y.
For every codeword cm ∈ C, m ∈ {0, . . . , M− 1}, we compute

tm(Z) = ∑
n∈∆

wn(Z) · Z−cm,n

Notice that

tm(Z) = ∑
n∈∆

Z−cm,n ∑
α∈Z2S

ln P[yn|α]Zα = ∑
α∈Z2S

∑
n∈∆

ln P[yn|α]Zα−cm,n

= ∑
α∈Z2S

∑
n∈∆

ln P[yn|α + cm,n]Zα = ∑
α∈Z2S

Zα ln ∏
n∈∆

P[yn|α + cm,n]

= ∑
α∈Z2S

Zα ln P[y|cm + α1],

where (cm + α1) ∈ K. Alternatively, using the definition in (12), we have

tm(Z) = ∑
n∈∆

∑
α∈Z2S

ln P[yn|α]Zα−(c(S−2)
m,n +2S−1c(0)m,n)

= ∑
n∈∆

∑
α∈Z2S

ln P[yn|α]Zα−c(S−2)
m,n Z−2S−1c(0)m,n

= ∑
n∈∆

 ∑
α∈Z2S

ln P[yn|α + c(S−2)
m,n ]

Z−2S−1c(0)m,n .

(16)

As c(0)m is a codeword of the RM(1, d) code, the expression in (16) can be interpreted
as applying a modified FHT to every vector bm = w⊙ xm, where

xm = (Z−cm,−∞ , Z−cm,0 , Z−cm,1 , . . . , Z−cm,N−2).

This allows us to compute N different values of tm in parallel, i.e., instead of com-
puting NS values, where every computation requires O(N) operations in S, we apply the
modified FHT (with complexityO(N log2 N)) to NS−1 vectors, so the total complexity is re-
duced from O(NS+1) to O(NS log2 N). By the modified FHT, we assume a fast Hadamard
transform applied in S, which is defined in Algorithm 1. In this pseudocode, h is used
as a control variable for the loop, representing the current step size in the modified FHT
algorithm. Variable h starts at 1 and doubles each time, determining the pairs of elements
to be combined at each stage of the transform. This ensures that first the adjacent elements
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are paired (the distance between them is h = 1), and as it progressively increases, so does
the distance between the pairs of elements that are combined.

Algorithm 1 Modified fast Hadamard transform (in-place implementation)
Input: x,
Output: x,

1: for h = 1; h < N; h← 2 · h do
2: for i = 0; i < N; i← i + 2 · h do
3: for j = i to i + h do
4: a← xj, b← xj+h, {Save current values}
5: xj ← a + b, {Calculate new xj value}

6: xj+h ← a + b · Z2S−1
, {Calculate new xj+h value}

7: end for
8: end for
9: end for

Next, for every tm, we recompute the sums of logarithms of probabilities into products
of probabilities, as follows:

vm(Z) = ∑
α∈Z2S

exp{tm,α}Zα = ∑
α∈Z2S

P[y|cm + α1]Zα.

Finally, we compute

sn(Z) =
M−1

∑
m=0

Zcm,n ∑
α∈Z2S

vm(Z)Zα = ∑
α∈Z2S

M−1

∑
m=0

P[y|cm + 1α]Zα+cm,n

= ∑
α∈Z2S

M−1

∑
m=0

(
∏
n∈∆

P[yn|α + cm,n]

)
Zα+cm,n = ∑

α∈Z2S

∑
c∈Cα

n

P[y|c]Zα,

where the last equality follows from the fact that

P[y−∞|α + cm,−∞] · · · P[yn|α + cm,n] · · · P[yN−2|α + cm,N−2]Zα+cm,n =

P[y−∞|α + cm,−∞] · · · P[yn|α] · · · P[yN−2|α + cm,N−2]Zα.

The complexity of computing one of the N components of s is O(NS), so the total
complexity of computing s is O(NS+1). We can reduce the complexity of this step in a
similar way as before. Notice that

sn(Z) = ∑
α∈Z2S

M/N−1

∑
m=0

N−1

∑
l=0

P[y|cm + 1α]Zc(S−2)
m,n Z2S−1c(0)l,n ,

which follows from (13). Notice that the computation of s(Z) can now be interpreted as
applying the modified FHT NS−1 times and then performing a componentwise addition
of the results. The complexity of this approach is now O(NS log2 N). This completes
the algorithm.

Implementation of the MAP decoder. We now present a summary of the essential
steps in the MAP algorithm. For convenience, we define a mapping ζ : Z2S → S, such that
ζ(a) = Za. This function can be extended to elements and matrices, by applying ζ(·) to
every component independently [24]. Let D1 = ζ(A1) and D1 = ζ(A1).

We begin the decoding procedure by computing the log-likelihood vector w ∈ SN ,
using Equation (15). This can be accomplished with complexity O(N).
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Next, we compute matrix T ∈ SNS−1×N with rows

tl = FHT(w⊙ dl), l ∈ {0, . . . , NS−1},

where dl represents the l-th row of matrix D. Matrix T can be computed in O(NS log2 N)
steps, as we need to apply the modified FHT to NS−1 vectors.

Next, we compute the likelihood matrix V ∈ SNS−1×N , with components

vl,n = ∑
α∈Z2S

Zα exp{tl,n,α}.

This can be accomplished in O(NS) steps.
Let B be an NS−1 × N matrix, with rows

bl = FHT(v)⊙ dl ,

where l ∈ {0, . . . , NS−1}. This can be accomplished with complexity O(NS log2 N).
Finally, we form vector s ∈ SN by summing all rows of B,

sn =
NS−1

∑
l=0

bl,n, n ∈ {0, . . . N − 1}.

This can be performed in O(NS) steps. With this, we finish the algorithm description.
It is important to note that all the operations here are conducted over the polynomial ring
S. As the polynomials in S can be realized as real vectors of the fixed length of 2S (where
2S is less than N in most practical use cases), the additional complexity can be treated as a
constant term, so the total complexity of this algorithm is O(NS log2 N) [24].

5. Simulation Results

In this section, we present the simulation results of our novel decoding algorithms
and compare them to the existing techniques in terms of their error-correcting perfor-
mance. As these decoders are polynomial algorithms, we limit ourselves to short-length
(where code length is given as the number of Z2S symbols) codes over Z4, Z8, and Z16.
Let Kd

S represent a generalized Kerdock code of length 2d, over the ring Z2S , defined
in terms of the irreducible monic polynomial (hS(z)) used to design an extension ring,
as presented in Section 3. We also include some classical Kerdock codes, as they also fall
into the family of the generalized Kerdock code. These codes are the K3

2 code defined by
h2(Z) = 3+ Z + 2Z2 + Z3, theK5

2 code defined by h2(Z) = 3+ 2Z + 3Z2 + Z5, theK7
2 code

defined by h2(Z) = 3 + Z + 2Z4 + Z7, the K3
3 code defined by h3(Z) = 7 + 5Z + 6Z2 + Z3,

the K5
3 code defined by h3(Z) = 7 + 2Z + 7Z2 + 4Z3 + Z5, and the K3

4 code defined by
h4(Z) = 15 + 5Z + 6Z2 + 1.

All simulations were conducted for the additive white Gaussian noise (AWGN) chan-
nel. Additionally, every code was coupled with a corresponding 2S-PSK modulation,
as there exists a natural straightforward mapping of code symbols onto the PSK symbols
(Equation (8)). We assessed the performance of our decoding algorithms by estimating the
frame error rate (FER) and symbol error rate (SER) as a function of energy per bit to noise
power spectral density ratio (Eb/N0) and comparing it to the classical lifting decoder [27].
The classical lifting decoder can be applied to generalized Kerdock codes without modifi-
cation, but it has a higher error probability, as it is a suboptimal hard-input hard-output
(HIHO) decoder. This decoder was implemented as an S-stage decoder, where each stage
uses the minimum Hamming distance decoder of the associated binary RM(1, d) code.
As the minimum Hamming distance decoder of the RM(1, d) code can be implemented
with a complexity of O(N log2 N), the total complexity of the classical lifting decoder is
O(SN log2 N). This complexity is significantly lower than that of the novel algorithms
developed in this paper, but so is its error-correcting performance. FER and SER were
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estimated using the Monte Carlo simulation method with a relative precession δ = 0.05,
for a range of Eb/N0 points, with a step of 0.5 dB.

We assume that the ML decoder will make a mistake if the correct codeword is
further away from the channel output than some other codeword (e.g., the output of some
not-necessarily-optimal decoding algorithm) in terms of the Euclidean distance [24]. We
can simulate the lower bound on the ML decoding by counting the number of times the
Euclidean distance between the channel output and the correct codeword is greater than
the distance between the channel output and the decoded codeword. This bound becomes
tight as Eb/N0 increases. We compare the FER performance of our novel ML and MAP
decoders with the ML bound (Figure 2) and see that they perfectly coincide. This indicates
that our novel algorithms are optimal in terms of FER, as was expected.

0 2 4 6 8 10

10−3

10−2

10−1

100

Eb/N0

FE
R

K3
2 - ML
K3

2 - bound
K3

3 - MAP
K3

3 - boubd
K3

4 - ML
K3

4 - bound

Figure 2. FER comparison of the ML decoding algorithm with an ML lower bound for different
generalized Kerdock codes.

Figure 3 presents the FER of various generalized Kerdock codes using the novel ML
decoder, and Figure 4 shows the SER of different generalized Kerdock codes using the novel
MAP decoder. We notice that the error-correcting performance improves with code length,
while it decreases with base ring size. This is expected behavior, as the error-correcting
performance of the code should increase with N, while the increase in the constellation size
means that the modulation symbols are closer together and are more susceptible to noise,
and this leads to an increase in the probability of error.

Figure 5 shows the SER of different generalized Kerdock codes using the novel MAP
decoder and the classical lifting decoder. We see in Figure 5 that the MAP decoder exhibits
a gain of some 5 dB when compared to the classical lifting decoder. This is expected, as the
novel MAP decoder is an optimal SISO decoding algorithm, while the lifting decoder is a
suboptimal HIHO decoding algorithm.
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Figure 3. FER comparison of the ML decoding for different generalized Kerdock codes.
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Figure 4. SER comparison of the MAP decoding for different generalized Kerdock codes.
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Figure 5. SER comparison of the MAP and the lifting decoder algorithms for different generalized
Kerdock codes.
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6. Conclusions

In this manuscript, we presented two novel optimal algorithms for the decoding of
generalized Kerdock codes. Their complexity is O(NS log2 N), and although they are
polynomial complexity algorithms, they can be used as a starting point for developing
and a benchmark for evaluating the performance of suboptimal decoders. Furthermore,
as the MAP decoder is an SISO algorithm, it allows the use of small-length generalized
Kerdock codes in modern coding systems as component codes. The novel decoding
algorithms were compared with the classical lifting decoding algorithm in terms of error-
correcting performance, and it was shown that they achieved a gain of about 5 dB. In our
future work, we will focus on reducing the complexity below that of the MAP decoder
without significantly compromising its error-correcting efficiency. The lifting technique is
a powerful technique that can be combined with the MAP decoder and used to develop
novel suboptimal SISO decoders. We will also use generalized Kerdock codes (and other
related codes) as components in modern coding schemes, such as the turbo-product scheme,
braided construction, coded modulation schemes, and many others.
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