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Abstract. In this study we measured Raman and autofluorescence spectral features of 
blood and urine from patients with various cancers. A total number of 26 blood samples 
from patients with lung cancer and 12 blood samples from patients with other cancers, 
and also 10 urine samples from patients with lung cancer and 9 urine samples from 
patients with other tumors were tested. The processing of experimental data and 
definition of informative bands for body fluid spectral analysis were performed on the 
bases of PLS-DA method. Wherein, there is no significant correlation between the most 
informative criteria for blood and urine. This fact shows that simultaneous study of 
blood and urine samples can increase the analysis informativeness. In general, the 
developed approach of body fluids analysis may become the basis of an inexpensive, 
quick and reliable method of lung cancer screening. © 2017 Journal of Biomedical 
Photonics & Engineering. 
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1 Introduction 
According to the data from World Health Organization, 
a cancer rate steadily increases. Moreover, most 
common cancer is a lung cancer [1]. To decrease the 
mortality rates associated with cancers one has to 
develop a simple and reliable method for early cancer 
detection. Currently, X-ray, tomographic, endoscopic 
and cyto-histological techniques are widely used for 
diagnosing lung cancer. However, application of some 
diagnostic methods is ineffective in the early stages of 
tumor growth [2]. Therefore, effective diagnostics 
requires the development of new methods for early 
cancer detection. 

The incidence of registered cancer cases leads to a 
progressive deterioration of patient’s health associated 
with the weakening of immunity, progressing of 
cachexia and changes in the internal organs 
functionality [3]. Since these changes provoke 
alterations in body fluids homeostasis, it is possible to 
use the component composition analysis of urine, blood, 
saliva and other body fluids for cancer detection. 
Presently, the biochemical analysis [4-6] and the 
analysis of tumor markers [7, 8] are widely used for the 
body fluids cancer diagnosis. However, biochemical 
analysis has poor informative ratio as a result of the 
poor specificity of the examining body fluids 
components in a certain cancer localization detection. 
Analysis of tumor markers is much more informative 
than biochemical analysis, but the applicability of the 
most tumor markers in screening studies is also limited 
by low specificity, and generally tumor markers are 
used for the disease course monitoring. 

Today in addition to the laboratory methods a 
variety of physical methods of analysis [9] may be 
successfully utilized for examining the body fluids 
component composition. Physical methods have such 
advantages as simplicity of sample preparation, wide 
dynamic range and great versatility in comparison with 
chemical methods of analysis. Therefore, body fluids 
analysis with optical methods can become a successful 
alternative to existing laboratory methods. Raman 
Spectroscopy (RS) and autofluorescence (AF) analysis 

[10] allow for detecting homeostasis changes in the 
body fluids at the molecular level. These techniques are 
successfully used in different branches of clinical 
medicine and in the experimental studies of the body 
fluids composition for cancer detection in various 
locations. 

For example, application of RS resulted in 92.3%, 
79.5% and 86.4% sensitivity and 85.7%, 91.0% and 
80.0% specificity respectively in monitoring blood 
composition in patients with oral cancer [11], stomach 
cancer [12] and colorectal cancer [13]. RS of urine 
allowed for the detection of the prostate cancer [14] 
with 100%sensitivity and 89%specificity. Moreover, it 
is possible to increase the diagnostic accuracy of tumor 
detection by combining simultaneously several body 
fluids analyses. Thus, the utilization of combined AF 
analysis of blood plasma, cellular components acetone 
extract, sputum and urine helped to achieve 90% 
accuracy of lung cancer detection [15]. 

A low level of cancer detection with only one 
diagnostic method and in the analysis of only one type 
of body fluid requires to carry out more complex 
analysis and use a combination of RS and AF for the 
simultaneous study of body fluids (such as urine and 
blood). It is important to note that in the majority of 
studies reviewed above spectral features of body fluids 
have been examined in order to classify of a healthy 
group and a precancerous (or cancerous) group of only 
one localization. The aim of this paper is to study the 
application of body fluids RS and AF analysis for 
cancer location determination. 

2 Materials and Methods 

2.1 Experimental setup 
The study of body fluids spectral features was 
performed with the experimental setup shown in Fig. 1. 
The excitation of collected spectra was performed by 
the Luxx Master LML-785.0RB-04 laser module 
(central wavelength 785 nm). The RPB785fiber-optic 
Raman probe allows for focusing the exiting radiation, 

http://doi.org/10.1117/1.3486553
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collecting and filtering the scattered radiation. The 
collected signal was decomposed into a spectrum using 
a high-resolution Shamrock SR-500i-D1-R spectrograph 
with integrated cooled up to -65°C ANDOR DU416A-
LDC-DD digital camera. 

	
Fig. 1 Experimental setup: 1 – cuvette with body fluid 
sample; 2 – Raman probe RPB785; 3 – laser module; 
4 – power supply; 5 – Spectrograph; 6 – Cooled digital 
camera; 7 – PC; 8, 9, 10 – electric cables; 11 – 
excitation fiber; 12 – collection fiber. 

The test body fluids were placed in the PMMA 
cuvette with an aluminum coating. The cuvette 
geometry (depth 6.5 mm, radius of deepening curvature 
19 mm) was optimized to match the working distance of 
probe focusing lens. The Raman probe was normally 
positioned on the axis of the deepening. 

2.2 Body fluid samples and experimental 
preparation 

The blood and urine samples were collected from 
patients with cancers of different localizations. The 
collected samples were placed in sterile test-tubes and 
were stored at +2 – +4°C before the analysis. The 
analysis of collected body fluids was performed within 
60 h after sample collection. Patients of Samara 
Regional Clinical Oncology Dispensary with malignant 
tumors or benign tumors were enrolled in this study. 
Patients with systemic diseases and patients taking any 
medical antitumor drugs were excluded from the study. 

We performed our study for two cohorts of patients. 
The first cohort included 26 blood samples from 
patients with lung cancer, 12 blood samples from 
patients with other tumors (2 benign tumors, 6 stomach 
cancers, 3 mediastinum cancer, 1 kidney cancer), 10 
urine samples from patients with lung cancer, and 9 
urine samples from patients with other tumors (2 benign 
tumors, 1 stomach cancer, 5 mediastinum cancer, 1 
kidney cancer). For the second cohort of 10 samples 
from patients with lung cancer and 3 samples from 
patients with other tumors (1 benign tumor, 1 stomach 
cancer, 1 kidney cancer) the simultaneous recording of 
spectral properties of urine and blood was carried out. 
The performed studies were approved by the ethical 
committee of Samara State Medical University. 

2.3 Spectra processing 
All spectra were recorded in the spectral range 780-950 
nm, the exposure time being 20 seconds. A sequential 
recording of three spectra for each tested sample was 
performed. The final spectrum was received from 
averaging the three recorded spectra. The total time of 
the final spectrum recording was 3 minutes. The 
recorded spectra were processed by the method 
proposed by Zeng et al [16] for AF and Raman signals 
separation. 

The raw spectrum of the urine sample is presented in 
Fig. 2. The spectrum contains a wide decreasing AF part 
and narrow Raman peaks. AF was approximated by a 
tenth order polynomial function. The Raman component 
of the spectrum was obtained by subtracting the AF 
component from the raw spectrum. Further analysis of 
RS and AF spectra was performed independently. 

	
Fig. 2 Raw spectrum of urine. 

The processing of experimental data and calculation 
of posterior lung cancer determination from other types 
of tumors by body fluid spectral characteristics were 
performed on the bases of regression analysis. Prior to 
regression analysis, the raw spectral data were centered, 
smoothed by the Savitsky-Golay filter, and normalized 
by using standard deviation of a normal variate method 
(SNV) [17]. Data centering decreases the model rank by 
one, and is applicable in uniform model cases. The SNV 
method subtracts mean value from each spectrum and 
divides each signal value by the standard deviation of 
the whole spectrum. The SNV method is used for 
leveling the experimental data dispersion [17]. 

The recorded spectra of body fluids may contain 
hidden links between different spectrum bands, due to 
the contribution of the same chemical components to 
these bands. Which results in the appearance of multiple 
correlations (collinearities). Consequently, the analyzed 
spectral data is multicollinear, therefore, the projection 
methods are required for such data analysis. Since we 
have a priori information about exact cancer type 
corresponding to each study sample, it is recommended 
that training and classification problem should be 
solved. The most popular approach to such problems is 
the discriminant analysis method with regression on 
latent structures – PLS-DA [18]. 
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The regression problem is solved by the PLS 
method, further it allows for the regression prediction 
application in classification of new samples. The 
regression problem solution by PLS method was 
performed by the following algorithm: a two-
dimensional matrix of spectra (predictors block) and a 
one-dimensional matrix of diagnoses (responses block) 
are decomposed into a matrix of scores, a matrix of 
loadings and a residual matrix. The matrix of loadings 
provides information about the role of variables, the 
matrix of scores provides information about the data 
similarity and correlation. After model construction the 
k-fold cross validation was used for accuracy testing. 
Cross validation was carried out as follows: 10% of the 
samples are excluded from the data set, a model is built 
to the excluded part and then applied to the remaining 
part of samples. Then the excluded part of the samples 
is returned, and the cycle is repeated 9 times with 
excluding of the following samples parts. 

The spectrum informative bands during the 
regression model construction were determined by the 
analysis of the variable importance in projection (VIP) 
[19]. VIP allows for evaluating individual variables 
from the predictors block influence on the PLS model. 
The higher the VIP-score of an individual variable is, 
the more significant it is in model construction. 
Variables with a low VIP-score are less important, and 
may be regarded as candidates for exclusion from the 
model. The VIP distribution makes it possible to define 
the most informative spectral bands in the blood and 
urine spectra for constructing a regression model for 
classification of patients with lung cancer and patients 
with other tumors. 

Multivariate analysis was carried out with using the 
TPTcloudbeta software module (https://tptcloud.com). 
The statistical processing of the results, analysis of the 
correlation dependence and calculation of the Pearson 
correlation coefficient were performed in the IBM SPSS 
Statistics ver. 23 software package. 

3 Results 

3.1 Raman spectra of blood 
The Raman spectra of blood are presented in Fig. 3. As 
shown in Fig. 3, blood samples of patients with various 
tumors have qualitatively coinciding spectra. 
Differences are observed in the intensity amplitude of 
the individual spectral bands. Human body fluids have a 
complex chemical composition; therefore the shape of 
body fluids Raman spectra and certain spectral bands 
intensities depend on the contribution of molecular 
vibrations of several components. This set of blood 
spectra was a subject to the multivariate analysis for 
constructing regression model. Fig. 4 shows the VIP-
scores of Raman spectra matrix of blood samples for the 
constructed regression model of lung cancer detection 
among tumors of other localizations. 

Results shown in Fig. 4 allow for defining the most 
informative spectral bands in the constructed regression 

model fordiscriminating the lung cancer from other 
tumors during the analysis of blood Raman spectra. For 
example, the spectral band 790-820 cm-1 corresponds to 
glutathione [20]. Oncological diseases are followed by a 
change in the relative amount of neutrophils, which 
stimulates oxidative stress in the patient’s blood. 

 
Fig. 3 Raman spectra of tested blood samples. 

	
Fig. 4 VIP-scores of blood samples Raman spectra 
matrix. 

Changes of glutathione concentration causes the 
antioxidant activity decrease of plasma, therefore, this 
decrease may be regarded an informative criterion for 
assessment of the organism oxidative stress [21]. Cancer 
tissues are characterized by increased proteolysis and 
increased concentration of acute phase proteins [22]. 
Informative Raman bands associated with these changes 
are 946-970 cm-1 (proteins), 1465-1475 cm-1 (lipids, 
proteins), 1640-1660 cm-1 (proteins, phospholipids) [23 
- 25]. The intensity of the spectral band 1135-1140 cm-1 
is proportional to the mannose concentration [26]. 

The metabolic imbalance of minor sugars and 
changes in the mannose concentration lead to changes in 
the glycoproteins synthesis and changes in glycosylation 
[27]. As a result, the organism produces "abnormal" 
immunoglobulins, and the immune system ability to 
identify "abnormal" cells decreases. The constructed 
regression model enables to discriminate the lung 
cancer from other tumors by blood sample spectral 
characteristics analysis with 84.9% a posteriori 
probability. To improve our research informativity 
spectral characteristics of urine samples from cancer 
patients were analyzed. 
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3.2 Spectral characteristics of urine 
The porphyrins (nitrogen-containing pigments) 
accumulate in sites of active cell division and excrete 
with urine [28]. Alterations in the AF urine spectrum 
reflect changes and metabolic imbalance of porphyrins. 
Therefore, the AF intensity of urine can be used as an 
informative criterion of oncopathology growth. The AF 
spectrum of porphyrins has features in red and near-
infrared spectral ranges [29], so the excitation of the AF 
spectra by 785 nm laser allows to evaluate the presence 
of porphyrins in the test sample. The raw spectra of 
urine samples from patient with stomach cancer and 
patient with lung cancer at different exposure times of 
laser radiation are shown in Fig. 5 (a, b). 
 

	
a	

	
b	

Fig. 5 Urine samples spectra: a) stomach cancer, b) lung 
cancer. All spectra were obtained as a result of three 
consequent measurements. 

Fig. 5 demonstrates changes in AF intensity and 
changes in photobleaching process for patients with 
different diagnoses. The photobleaching mechanism for 
various porphyrins in urine is quite complicated, since 
photosensitizing porphyrins may interact with various 
photo-oxidizing molecules in biological fluids [30]. A 
standardized spectra recording was performed to 
correctly estimate AF; the sample irradiation time being 
3 minutes. Approximation curves of urine AF for test 
samples are shown in Fig. 6. Features of various urine 
samples AF are caused by porphyrin metabolism 
changes and interaction of porphyrins with various 
organic molecules [29, 30]. 

On the basis of AF, approximating curves set the 
regression model was built. For the model obtained the 

a posteriori probability of lung cancer determination 
from other tumors was 83.3% for obtained model. Thus, 
it is necessary to study the Raman spectra of urine 
samples from cancer patients towards improving 
informativity of the analysis of urine spectral 
characteristics for detecting lung cancer. Raman spectra 
of urine samples are presented in Fig. 7. 

	
Fig. 6 Polynomial approximation of urine samples AF. 

	
Fig. 7 Raman spectra of tested urine samples. 

A multivariate analysis based on the obtained urine 
Raman spectra was carried out, and a regression model 
was built. VIP-scores of urine Raman spectra samples 
for the constructed regression model of lung cancer 
detection are shown in Fig. 8. 

	
Fig. 8 VIP-scores of urine samples Raman spectra 
matrix. 
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Fig. 9 Phase plane discriminant analysis of lung cancer patients (◊) and patients with other tumors (□): 
a – urea (1003 cm-1) in urine and glutathione (803 cm-1) in blood; b – tryptophan (1553 cm-1) in urine and glutathione 
(803 cm-1) in blood; c – pyruvate (1700 cm-1) in urine and glutathione (803 cm-1) in blood; d – urea (1003 cm-1) in urine 
and mannose (1138 cm-1) in blood; E – tryptophan (1553 cm-1) in urine and mannose (1138 cm-1) in blood; f – pyruvate 
(1700 cm-1) in urine and mannose (1138 cm-1) in blood; g – urea (1003 cm-1) in urine and protein (1660 cm-1) in blood; 
h – tryptophan (1553 cm-1) in urine and protein (1660 cm-1) in blood; e – pyruvate (1700 cm-1) in urine and protein 
(1660 cm-1) in blood. 

Fig. 8 demonstrates the most informative spectral 
bands in the regression model constructed for 
discriminating the lung cancer from other tumors in the 
analysis of the urine Raman spectra. These bands are 
1000-1015 cm-1 (urea) and 1525-1560 cm-1 (tryptophan, 
proteins) [31, 32]. Progress of oncopathology growth is 
followed by an increased proteolysis, which 
corresponds to the changes in 1525-1560 cm-1 band 
intensity. Synthesis of ammonia during proteolysis in 
the body leads to further ammonia fermentation in the 
liver with the formation of urea. Urea is the nitrogen 
metabolism end product in the proteins metabolism and 
it may be a criterion for protein metabolism evaluation 
in the body cells [33]. 

Tumor cells are characterized by a high glucose 
intake. In this case, there is an anaerobic glycolysis. The 
marker of increased glycolysis is lactic dehydrogenase 
(LDH) [34]. LDH affects the pyruvic acid concentration 
corresponding to the spectral band 1690-1705 cm-1 
(pyruvate) [32]. The constructed regression model 
allows for discriminating the lung cancer from other 

tumors during the urine spectral characteristics analysis 
with the a posteriori probability of 93.9%. 

3.2 Combined analysis of urine and blood 
spectral data 

Improving the proposed approach accuracy for lung 
cancer determination is possible by combining spectral 
analysis data of blood and urine. A two-dimensional 
distribution of intensities proportional to the previously 
described changes of Raman spectra components in 
blood and urine is shown in Fig. 9 (a-i). 

The a posteriori probability of lung cancer 
determination for the selected Raman bands of urine and 
blood spectra shown in Fig. 9 laid down between 76.2% 
and 94.9%, wherein proteins (1660 cm-1) in blood and 
pyruvate (1700 cm-1) in urine are the most informative 
combination of blood and urine components, which is 
indicative of lung cancer. 

We estimated the correlation between the main 
informative Raman bands of urine and blood. Urine is a 
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Table 1 Pearson coefficients matrix for pair correlations between the most informative criteria for lung cancer 
separation from other tumors. 

 Ibl.803 Ibl.955 Ibl.1138 Ibl.1471 Ibl.1556 Ibl.1660 Iur.1003 Iur.1375 Iur.1525 Iur.1553 Iur.1700 

Ibl.803 1 0.426 0.468 0.009 0.434 0.786 -0.172 -0.102 -0.289 -0.067 -0.282 

Ibl.955 0.426 1 0.113 0.351 0.322 0.330 0.077 0.235 0.054 -0.095 -0.061 

Ibl.1138 0.468 0.113 1 -0.122 0.283 0.602 -0.201 -0.120 -0.316 0.017 -0.47 

Ibl.1471 0.09 0.351 -0.122 1 -0.188 -0.031 -0.017 -0.101 0.153 -0.126 -0.284 

Ibl.1556 0.434 0.322 0.283 -0.188 1 0.361 -0.257 0.120 -0.312 -0.179 -0.336 

Ibl.1660 0.786 0.33 0.602 -0.031 0.361 1 -0.064 0.114 -0.089 -0.075 0.161 

Iur.1003 -0.172 0.077 -0.201 -0.017 -0.257 -0.064 1 0.187 0.204 -0.046 0.257 

Iur.1375 -0.102 0.235 -0.120 -0.101 0.120 0.114 0.187 1 0.552 -0.213 0.028 

Iur.1525 -0.289 0.054 -0.316 0.153 -0.312 -0.089 0.204 0.552 1 -0.401 0.003 

Iur.1553 -0.067 0.095 0.017 -0.126 -0.179 -0.075 -0.046 -0.213 -0.401 1 0.627 

Iur.1700 -0.282 -0.61 -0.047 -0.284 -0.336 -0.161 0.257 0.028 0.03 0.627 1 

 
product of blood filtration through the kidneys. 
Consequently, increasing blood components 
concentration to a certain reabsorption threshold can 
lead to a change in concentration of the corresponding 
components in urine. Therefore, the urine component 
concentration can correlate with the blood component 
concentration. As it follows from the VIP distribution, 
the most informative Raman bands for lung cancer 
determination are: Ibl.803 (glutathione), Ibl.955 (proteins), 
Ibl.1138 (mannose), Ibl.1471 (proteins, lipids), Ibl.1556 
(tryptophan), Ibl.1660 (proteins, phospholipids) in blood 
analysis; and Iur.1003 (urea), Iur.1375 (arabinose), Iur.1525 
(proteins, tryptophane), Iur.1553 (tryptophane), Iur.1700 
(pyruvate) in urine analysis. Here Ibl(ur).i is the Raman 
intensity on the i-th band of blood (bl) or urine (ur) 
spectra. Table 1 shows pair correlations between the 
most informative criteria for discriminating the lung 
cancer from other tumors of both test body fluids are 
presented in. Significant correlations (p-value< 0.01) are 
in bold type. 

It follows from Table 1 that there is no correlation 
between the most informative criteria of lung cancer 
detection for both test body fluids. Consequently, 
simultaneous analysis of the several body fluids spectral 
characteristics may improve the accuracy of the 
proposed lung cancer detection method. Significant 
correlations between Ibl.803 –Ibl.955, Ibl.803 –Ibl.1138, Ibl.803 –
Ibl.1660 criteria can be explained by the presence of 
glutathione. Glutathione spectrum has strong Raman 
peaks at 953 cm-1, 1143 cm-1, 1660 cm-1 wavenumbers 
[32], and therefore, glutathione contributes to the 
corresponding blood spectra bands. Likewise, a 
significant correlation between Ibl.1556 –Ibl.803 is probably 
related to the fact that the tryptophan Raman spectrum 
has peaks at 803 cm-1 and 1556 cm-1 wavenumber 

region and tryptophan may contribute to the 
corresponding spectral bands [32]. 

4 Discussion and Conclusions 
On the basis of blood sample experimental data 
multivariate analysis the Raman bands intensity changes 
are proportional to the concentration changes of 
glutathione, mannose and proteins, and these bands may 
be an informative criteria for discriminating the lung 
cancer from other tumors. The fluorescence intensity 
changes associated with porphyrins and the Raman 
intensity changes corresponding to urea, tryptophan and 
pyruvate are the most informative criteria for lung 
cancer and other tumors classification by urine analysis. 
The a posteriori probabilities of lung cancer separation 
from other tumors based on the proposed methods of 
blood and urine analysis are presented in Table 2. 

In current study, the highest a posteriori probability 
of lung cancer detection is 94.9%. It was achieved by a 
simultaneous analysis of urine and blood by the RS 
method. Decoupled RS analysis of urine and blood 
allows for achieving 84.9% and 93.9% a posteriori 
probability of lung cancer detection respectively. AF 
urine analysis made it possible to separate lung cancer 
from other tumors with 83.3% a posteriori probability. 
However, the blood spectra analysis was performed for 
a larger number of samples, while a lower a posteriori 
probability in blood RS analysis in comparison with 
urine RS analysis may be associated with this fact. 
Therefore, additional studies with a large number of 
body fluid samples are necessary in order to determine 
the precise capabilities of the proposed method. On the 
other hand, there is no significant correlation between 
the most informative criteria of lung cancer detection 
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for both body fluids. This fact has shown that 
simultaneous study of the blood and urine samples can 
increase the analysis informativeness and improve the 
probability of lung cancer separation from other tumors 
by using a combination of RS and AF. 

Comparison of the obtained results with those of 
other studies shows that the proposed optical method 
may become the basis for cancer screening and may be 
used in combination with other methods for enhancing 
research informativeness. For example, a non-invasive 
and cost-effective cancer screening method (breast 
cancer, cervical cancer, colon cancer, leukemia, 
esophageal cancer, liver cancer, bladder cancer) by 
fluorescence analysis was demonstrated by V. 
Masilamani et al. [35]. This study showed 86.7% a 
posteriori probability of various cancers detection by 
changes of flavoproteins and porphyrins excreted with 
urine. 

Table 2 A posteriori probability of lung cancer 
separation from other tumors. 

Body fluid (Method of analysis) 
Posterior 
probability, 
% 

Blood (Raman) 84.9 

Urine (Autofluorescence analysis) 83.3 

Urine (Raman) 93.9 

Urine (Raman) Pyruvate + Blood (Raman) 
Protein  94.9 

 
Adding the data of urine and blood Raman analysis 

allows to increase the accuracy of lung cancer detection 
by including the information about urea, tryptophan and 
pyruvate content to the analysis. G. Del Mistro et al [14] 
demonstrated 95% a posteriori probability of prostate 
cancer detection by urine RS analysis. The greatest 
spectral changes for the urine samples of the prostate 
cancer group are associated with changes in the 6-
oxypurine content. The diagnostic study of the body 
fluids spectral characteristics by using RS for the oral 
cancer detection was demonstrated by S. Jaychandran et 
al [31]. Analysis of 158 urine samples, 158 blood 
samples and 158 saliva samples made it possible to 
define the differences between the healthy, 
precancerous and cancer groups with 90.5%, 78%, and 
93.1% a posteriori probability respectively for each 
body fluid. For the studied groups, the main spectral 

differences of blood samples are associated with 
changes in phenylalanine, lipids, collagen, purine and 
amide I; the spectral differences of urine samples were 
associated with changes in creatinine, tryptophan, 
indoxyl sulfate. Thus, the informativeness increase for 
the above mentioned studies is possible due to adding 
the glutathione, porphyrins and pyruvate content data to 
the analysis.  

Besides the combined analysis of the several body 
fluids, the increasing of the cancer detection accuracy 
using body fluids spectral characteristics analysis is 
possible by preallotment of certain markers from tested 
samples as demonstrated by Shangyuan Feng et al [36]. 
The proposed method uses modified nucleotides 
separation from the urine samples by affinity 
chromatography with the following nucleotides RS 
analysis. The PLS-DA analysis of spectroscopic data 
allows for achieving 95% a posteriori probability of 
nasopharyngeal cancer, esophageal cancer, and a 
healthy group separation by urine RS analysis. This 
method demonstrated high accuracy; however, such 
analysis is complicated, since the specific substance 
separation from a body fluid sample requires utilizing 
certain ligand. 

The discussed approaches to various cancer 
detection demonstrate that the proposed method may 
prove alternative to the available cancer detection 
techniques. The increase in the study informativeness of 
blood and urine may be achieved by AF and RS 
combined study and joint analysis of registered 
spectroscopic data. However, a comprehensive 
understanding of cancer detection possibility with the 
proposed method requires that the number of patients 
enrolled should be increased. Also it is advisable that 
method sensitivity and specificity be cheeked for 
detecting cancer among the patients with non-
oncological diseases and healthy people. In order to do 
this, numerous studies with body fluid samples from 
people without oncological pathologies should be 
performed. In addition to studying the spectral 
characteristics of urine and blood, it is also possible that 
other body fluids be utilized [37, 38] as research objects 
for increasing the cancer detection accuracy. 
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