T —— Journal of Advances in Mathematics and Computer Science

Volume 38, Issue 9, Page 105-114, 2023; Article no.JAMCS.104168
R = ISSN: 2456-9968
e (Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

Investigation of Lower and Upper
Bounds of a Jump Graph Using
Topological Indices

*

M. G. Veena * and V. H. Narendra "
8 Department of Mathematics, Govt. First Grade College, Chickaballapur, karnataka, India.
bDepartment of Mathematics, Govt. First Grade College, Holalkere, Karnataka-577 526, India.
Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final
manuscript.

Article Information
DOI: 10.9734/JAMCS,/2023 /v38i91808

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and
additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc
are available here: https://www.sdiarticle5.com/review-history /104168

Received: 29/05/2023
Accepted: 01/08/2023
| Short Research Article| Published: 04/08/2023

Abstract

Topological indices are a type of mathematical measure that relate to the atomic composition of any
straight forward finite graph. For quantitative structure-activity relationship (QSAR) and quantitative
structure-property relationship (QSPR) analyses [1]. The main aim of this paper is to find new bounds of a
jump graph using some topological indices like Hyper Zagreb index, Nirmala Index, VL Index and Forgotten
topological index.The Topological indices are mathematical techniques used to mathematically correlate the
relationship between the chemical structure and various physical attributes, chemical reactivity, or biological
activity.
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1 Introduction

A mathematical method termed a topological graph index, also known as a molecular descriptor, can be used to
analyse any graph that represents a molecular structure. This index can be used to assess numerical numbers
and further look into various physicochemical aspects of a molecule. As a result, it is a good way to eliminate
time-consuming and expensive laboratory studies. In particular, in studies of quantitative structure-property
relationships (QSPR) and quantitative structure-activity relationships (QSAR), molecular descriptors play a
crucial role in mathematical chemistry. Topological descriptors are a type of molecular descriptor. Numerous
topological indices are used nowadays, some of which are in chemistry. They can be categorised based on the
structural characteristics of the graphs that were used to calculate them. Here we will discuss some topological
indices Let G be a simple graph connected with vertex set V(G) and edge set E(G). Clearly, the number
of vertices and the number of edges are the two fundamental parameters in topological indices. Numerous
topological indices have been developed and used in recent years for a variety of purposes, including chemical
documentation, isomer discrimination, molecular complexity research. In any graph,the number of edges with u
as an end vertex is called degree of u and is denoted by degg(u) the minimum and maximum degrees of graph
are represented as dg and Ag respectively.

2 Materials and Methods

Many scholars have found bounds for many topological indices[2]. The J-vertex corona product of the graph is
a new class of operator graph that will now be defined[3][4]

Hyper Zagreb Index:
In 2013, Shirdel et al introduced distance based Zagreb indices named Hyper zagreb index as[5][6][7]

HZ(G)= Y (di+d;)?
i,jEE(G)
Nirmala Index:
Inspired by the work of Sombor indices, V R Kulli introduces the Nirmala index of a graph G as|[8§]

NG = > (Vdi+dy)

L,JEE(G)
VL Index:
By the work of Zagreb index, Deepika T introduced the VL index of a graph and is defined as[9][10]

1
VL(G) = 5 | Z [di + dj + di - d;]
,jEE(G)
Forgotten Topological index:

Furtula and Gutman introduced Forgotten topological index and established its some properties . This index is
defined as[11][12][13]

F(G)= Y [d+d]

1,jEB(G)

Definition 2.1. The Jump Graph J(G) of a graph G is the graph defined on E(G) where two vertices are
adjacent if and only if their corresponding edges are not adjacent in G[14][15].
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Definition 2.2 The corona product of G and H of two graphs are obtained by taking one copy of G and
ny copies of H and by joining each vertex of the i*" copy of H to the i'™ vertex of G, where 1 < i < n;.[16][3]

Definition 2.3: The corona product of a Jump graph is obtained from one copy of J(G) A1 copies of H
and joining a vertex V[J(G)], that is, one of the i*" position in J(G) to every vertex in the i*" copy of H.[17][18]

3 Properties of Jump Graph

The graph has

(3).A1 + Aim2 vertices

(73). M (A2 +m2) + W — 2 i jeB @) w edges
(#17).The degree of a vertex, ve v(G) is given by

degc (i) = degu (i) + 1, ifi € V(H)
deg(c) (i) + 12, ifi € V[J(G)]

4 Preliminary Results

Theorem 1: Let G and H be two simple connected graphs, then the bounds for the hyper Zagreb index of
jump graph given by
HZ(G) > 4Aida(A + 1) + [Ap — 286 + 2+ M\ + 2]+

M —1
[% — /\1(AG — 1)][2/\1 — 4AG — 24 2772}2
and
HZ(G) < A\Xa (6 + 1) + [6 — 206G + 24 A1 + m2)*+
MM —1
[% — M (6c — D)][2A\1 — 466 — 2 + 2n2)?
Proof:

HZ(G) =X Y [(degu(i)+1)+ (degu(j) + 1)]*+
1,JEE(G)

ST > [(degu (i) +1) + (degsc)(e) + n2)]

eV (J(G)) i€V (H)

+ Y [(degso(e) +m2) + (degsa)(t) +n2)]
e te E(J(Q))

= MAso[(degn (i) + 1) + (degn (§) + 1)]* + Mima[(degn (i) + 1) + (deg(c) (e) + n2)*+

[()\1()\12 — 1)) - Al[degc(i) i ;ing(G) - 2]][(dng(c>(e> +112) + (deg ) (1) +12)]?
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= Me[degn (i) + (degn () + 21* + Minz[(degn (i) + 1) + [(\ — 1) — (dega (i) + dega (5) — 2) + 12>+

[(Al()‘; - 1)) _ /\l[degG(i) + ZEQG(j) - 2”

[[(M — 1) = (dega(d) + dega(j) — 2) + n2] + [(M1 — 1) — dege (i) + dega (§) — 2) + n2]]?

> MXe[Ag +H +2]2 +An[(Ag+1)+ (M —1) — (Ag + Ag — 2) + 2]+

A=y g (BEFRE o 1) (a6 Ag - 2) bl + [ - 1)~ (Aa + Ag —2) ]l

> Mdod(Ay + 1) + [Ap — 2A¢ + 2+ M1+ no*+

AN —1
D)5 (a6 - D] 286 - 34 m) + [~ 286 + 1+ ]
< MAod(0m 4+ 1) + [0m — 206 + 2+ M1 + n2)*+
AN —1
[[1(%)] — M0 — 1)][M —20¢ —3+m2] + [M1 —20g + 1+ 772]]2

Theorem 2: Let G and H be two simple connected graphs, then the bounds for the Nirmala index of a Jump
graph is given by

N(G) > V2 e (Ag +1) + Mdev/Ap —2A¢ + M + 2 + ot

[[%] —M(Ag — DIV2y/A — 246 + 1+ 72
e N(G) < V22X (6 + 1) + Mida/0m — 20 + A1 + 2 + na+
A0 — (de — DIVEYA 286+ T+
proof:
NG = Y Vit
1,€B(G)
N@G) =X Y VI(degu(i) + 1)+ (degn (j) + 1]+

,jEE(G)
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S idegn() + 1) + (degse (e) + )]

e€V (J(G)) i€V (H)

+ Y ldegsa(e) +m) + (dege (1) +m2)]

e,te E(J(G))

= MA2y/[(degn (i) + 1) + (degn (§) + 1)] + >\1772\/[(d€9H(i) + 1) + (degs(a)(e) + n2]+

(MOl 9T A0 2y g o + ) + ([degaien () + o)

= M2 V/[degn (i) + (degn (7) + 2] + Aim2/[(degr () + 1) + [(\ — 1) — (dega(i) + degea(5) — 2) + 2]

(MM =1)
2

)_ A [degc( )—|—(;€gc( ) 2”

+

VI = 1) — (dega (i) + dega(j) — 2) + 2] + [(A1 — 1) — dege (i) + dege(5) — 2) + n2]]

> MAeV2(An + 1)+ MdevV/Ar —2A¢ + M + 2 + na+

[ ( = Xi(Ae = DIV2(A = 1) = 4(Ac — 1) + 212

A — 1)
2

< MAeV2(0m + 1) + Mde /0 — 206 + M + 2+ 2+

) A6~ DIV2O 1)~ 4G — 1) + 2

Theorem 3: Let G and H be two simple connected graphs , then the bounds for VL index is given by

1
VL(G) > 5[\ (44k + A% +3)+ Ame(M — Am + 1+ 2)+
M —1)
(An + D =280 + 1+ m] + [FF5—] = M(Ac = ]2\ — 44¢ + 2n2 + 2]+

(A — 12 =4 — D(Ag — 1) +4(Ag — 1) + 22 (M — 1) — 2n2(Ac — 1) + n3]]
and

VL(G) < Z[MA2(46m + 03 +3) 4+ Mim2 (A1 — 6 + 12 + 2)+

M\H
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(A —
2

G+ DM — 265 +14+m2] +[1 D) = (66 — 1)][20 — 406 + 202 + 20+

(A= 1)2 =4\ = 1)(0e — 1) + 4(0c — 1)* 4+ 2n2(M — 1) — 2m2(6c — 1) + n3]]
Proof:
VIG) =5 3 it ds+dixdy

,j€EE(G)

= %P\l > [degu(i) + 1+ (degu (4) + 1) + (degn () + 1) + (degu (i) + 1) * (degm (i) + 1)+
i,j€EE(H)

S°> 7 [degu(i) +1) + (degsc () + m2) + (dega) (i) + 1)(deg(a)(e) + n2)]+
ecJ(G) i€V (H)

> [(degiay(e) +m2) + (degsa) () + n2) + (deg.sc) () + 1) (deg ) (t) + n2)]
e, teJ(G)

= %[Al)\g[degH(i) + 1+ (degu(j) + 1) + (degu (5) + 1) + (degu (3) + 1)(degn (3) + 1)]]+

Ainz[(degr (i) + 1) + (deg(a(e) +n2) + (deg ) (i) + 1) * (deg(a) () + m2)]+

[[A1(/\;— 1)] _ )\l[dega(i) + ;legG(j) - 2[(dng(G)(€) +m2) + (dng(G)(t) +m2)+

(degy(ay(e) +n2)(degs(a) (t) +n2)]

%[AMQ (degir (i) + degu (j) + 2 + degn (j)degn (i) + degu () + degr (i) + 1]

Minzldegr (i) + 14 [(M\ — 1) — (degu (i) + degm (5) — 2] + 2]+

=)y ool 2 degold) = 2y, 1) (dego (i) + dega () —2) + ml+

(A = 1) = (dega (i) + dega(5) — 2) + n2] + [[(M — 1) — (dega (4) + dega (5) — 2) + 2]

(A = 1) = (dega (i) + dega(5) — 2) + nel]
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1
= 5[4y + A% + 3]+ M [(Am + 1) (A — 1) — 284 +2) + n2]+

A=) - (A6 = D00 = 1) - (286 = 2) + el + [0 = 1) — 28 + 2 +nal+

(A —1) = 2(Ag — 1) +m2) (A1 — 1) — 2(Ag — 1) +12)]

1
> 5[)\1)\2[4AH + A% 43+ MM = A+ me) + (A + D0 = 285 +1) + 2]+

P00 (8 = )2h - 48 + 2+ 20+

(M =12 =4\ — 1) (Ag — 1) + 4(Ag — 1)* + 2m2 (A1 — 1) — 2m2(Ag — 1) + 73]

< S[MXa[40m + 0F + 3] + Mima( A — 0m + 1m2) + [(0m + 1) (M1 — 201 + 1) + n2]+

N | —

H%] —M(0e — D][2M — 40 + 22 + 2]+

(A1 —1)2 —4(A1 — )0 — 1) + 4(6c — 1)* + 22 (M1 — 1) — 2n2(6c — 1) + 13]]
Theorem 4: Let G and H be two simple connected graphs the bounds for the forgotten index of a Jump graph
is given by[11],[12]

F(G) > 2A1)\2(AH -+ 1)2 =+ )\17]2 [A?{ +2Ag —2Ag + 3\ + T)2]2+

MM —1)

[[f] —M(Ag — DM —28¢ +m2 +1)° + [\ — 2A¢ + 2 + 1)°
and
F(G) < 2X122(0n + 1)* + \im2[6% + 261 — 26 + 3A1 + 2]+
A(A—1
[[%} —Mi(6g — DM — 206 +m2 + 17 + [\ — 206 +m2 + 1]°
Proof:

FG)= Y [d+d]

L,jEE(G)
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F(G)=X Y [(degu(i)+1)*+ (degu(j) + 1)*]+
1,jEE(G)

> degu (i) +1)° + (deg(c)(t) +m2)°]+
e, teE(G)

S0 > degu (i) +1)° + (degyc(e) +n2)°

ecv(i,j) i€v(G)

= Ae[(degy (1) + 1)% + (degr (5) + 1)%]+

Mipzl(degn (i) +1)° + (degsc(e) +12)" 1+

(A —

dega (i) + dega(j) — 2]
R

2

1)} = A2 llldegisc)(e) +m2)? + (degsic) (t) + n2)°]

= MA2[(dega (i) + 1)% + (degn (5) + 1)°]+

Ma[(degr (i) + 1)° + [( — 1) — (dege (d) + dega () — 2) + n2)*+

[[)\I(A;_ 1)] _ )\l[degG(i) + ;legG(j) - 2”

(A = 1) — [dega (i) + dega(j) — 2] + m2]” + [(A1 — 1) — [deg (i) + dega (§) — 2] + 12]

> MAe[(Ar + 12+ (Ag + D+ Mml(Ar + 12+ (A — 1) — (Ag + Ag — 2) +m2)+

A REERC TR, 1)~ (Aa + Ac - 2) 4wt

(M —1) = (Ac + A - 2) + o)
> 202 (Ag + 1) + M [AF + 245 + 301 — 2A¢ + 2]+

D) (a6 - D) - 286 — D]~ 286 +m 1+ [ — 286 + s + 117
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5

< 2XMA2(0m + 1)% + Mnp[6% + 201 + 3\ — 280G + n2]°+

[[w] — A (06 — D] — 266 — D]\ — 206 + 72 + 1% + [\t — 206 + 12 + 12

Conclusions

Four topological indices were taken into account to establish the lower and upper boundaries in this article.
Researchers can also take into account additional topological indices and calculate their bounds for the graph

in a similar manner.
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