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Abstract

In this paper, the oscillation of the solutions for a Parkinson’s disease model with multiple delays is discussed.
By linearizing the system at the equilibrium point and analyzing the instability of the linearized system,
some sufficient conditions to guarantee the existence of periodic oscillation of the solutions for a delayed
Parkinson’s disease system are obtained. It is found that under suitable conditions on the parameters, time
delay affects the stability of the system. The present method does not need to consider a bifurcating equation.
Some numerical simulations are provided to illustrate our theoretical prediction.
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1 Introduction

It is known that the beta oscillations in the basal ganglia may be induced by anomalous interaction of circuits
that consist of the subthalamic nucleus (STN) and the globus pallidus pars externa (GPe). The STN and the
GPe form an inhibitory-excitatory coupling loop. Holgado et al. provided the following oscillation model [1]:{

τSS
′(t) = FS(−WGSG(t− TGS) +WTSCtx)− S(t),

τGG
′(t) = FG(−WSGS(t− TSG)−WGGG(t− TGG)−WXGStr)−G(t),

(1)

where S(t) and G (t) represent the average discharge rates of STN and GPe, respectively; S(t − T ), G(t − T )
represent the corresponding delay discharge rates. FS and FG are the activation functions of population S and G,
showing the effect of synaptic input on the average discharge rate. WAB are the weights of the connections from
neural population A to neural population B. TAB is the transmission delay of connections from population A to
population B. The authors identified a simple set of necessary conditions on model parameters that guarantee
the existence of beta oscillations in the model (1). Many authors have investigated the nonlinear dynamics in
Parkinson’s disease by means of the experimental method or analytical method [2-27]. For example, Wang et
al. described the model by mean-field firing rate equations with discrete and distributed delays [12]:

τSS
′(t) = FS(−WGSG(t− TGS) +WCS

∫ t
−∞K1(t− s)E(s)ds)− S(t),

τGG
′(t) = FG(WSGS(t− TSG)−WGG

∫ t
−∞K2(t− s)G(s)ds− Str)−G(t),

τEE
′(t) = FE(−WSC

∫ t
−∞K3(t− s)S(s)ds− INN + c)− E(t),

(2)

where E(t) represents the firing rate of cortical excitatory pyramidal neurons (EXN). The authors studied the
absolutely stable, conditional stable, conditional oscillation, and absolutely oscillation for model (2), which can
explain different mechanisms of oscillation origin. Wang et al. systematically studied Parkinson’s oscillation
origin mechanism, oscillation amplitude and frequency characteristics in an improved cortex-basal ganglia (EXN-
INN-STN-GPe) resonance model as follows [14]:

τSS
′(t) = FS(−WGSG(t− TGS) +WCSE(t− TCS))− S(t),

τGG
′(t) = FG(WSGS(t− TSG)− Str)−G(t),

τEE
′(t) = FE(−WCCI(t− TCC)−WSCS(t− TSC) + C)− E(t),

τII
′(t) = FI(WCCE(t− TCC))− I(t),

(3)

where FY (x) = MY
1+((MY −BY )/BY )exp(−4x/MY )

(Y = S,G,E, I) are activation functions, I(t) represents the firing

rate of inhibitory nuclei (INN). Assume that τS = τG = τE = τI = 15, TSG = TGS = TCS = TCC = TEE = T,
the Hopf bifurcation of system (3) was considered. For a modified model of the system (3) as follows:

τSS
′(t) = FS(−WGSG(t− TGS) +WCSE(t− TCS))− S(t),

τGG
′(t) = FG(WSGS(t− TSG)− Str)−G(t),

τEE
′(t) = FE(−WCCI(t− TCC) +WEEE(t− TEE) + C)− E(t),

τII
′(t) = FI(WCCE(t− TCC)−WIII(t− TII))− I(t).

(4)

Assume that

τS = τG = τE = τI = 10, TSG = TGS = T1, TCS = TCC = TEE = TII = T2 (5)

The Hopf bifurcation critical condition of the system (4) was provided. However, no matter what τ = 15, TSG =
TGS = TCS = TCC = TSC = T, or condition (5), those always are special cases for the parameter values.
According to the simulation result in [16], the parameters τS = 12.80ms, τG = 20ms, τE = 10–20ms, and
τI = 10–20ms. Therefore, the results in [14] and [16] are only for special parameters. In this paper we study
the dynamic behavior for model (4) under general parameter values and do not use the bifurcation method. For
convenience, we rewrite model (4) as the following:

S′(t) = −r1S(t) + r1FS(−WGSG(t− TGS) +WCSE(t− TCS)),
G′(t) = −r2G(t) + r2FG(WSGS(t− TSG)− Str),
E′(t) = −r3E(t) + r3FE(−WCCI(t− TCC) +WEEE(t− TEE) + C),
I ′(t) = −r4I(t) + r4FI(WCCE(t− TCC)−WIII(t− TII)),

(6)
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where r1 = 1
τS
, r2 = 1

τG
, r3 = 1

τE
, r4 = 1

τI
. From FY (x) = MY

1+((MY −BY )/BY )exp(−4x/MY )
we know that FS <

MS , FG < MG, FE < ME , and FI < MI . Therefore,
S′(t) < −r1S(t) + τ1MS ,
G′(t) < −r2G(t) + τ2MG,
E′(t) < −r3E(t) + τ3ME ,
I ′(t) < −r4I(t) + τ4MI .

(7)

System (7) implies that |S(t)| < r1MS
r1

= MS , |G(t)| < r2MG
r2

= MG, |E(t)| < r3ME
r3

= ME , and |I(t)| < r4MI
r4

=
MI , in other words, all of the solutions of system (4) are boundedness. According to the parameter values in [16]:
MS=300 spk/s, BS=17 spk/s, MG=400 spk/s, BG=75 spk/s, ME=71.77 spk/s, BE=3.62 spk/s, MI=276 spk/s,
BI=7.18 spk/s, we know that FY (x) are monotone increasing functions for Y = S,G,E, and I. Therefore system
(4) has a unique equilibrium point (S∗, G∗.E∗, I∗)T . Make the change of variables S(t) → S(t) − S∗, G(t) →
G(t) − G∗, E(t) → E(t) − E∗, I(t) → I(t) − I∗, the Taylor expansion of system (4) at the equilibrium point is
the following: 

S′(t) = −r1S(t) + a12G(t− TGS) + a13E(t− TCS)

+
∑
i+j≥2

[G(t−TGS)]i

i!
[E(t−TCS)]j

j!
· ∂

i+jFS
∂Gi∂Ej |(G∗,E∗),

G′(t) = −r2G(t) + a21S(t− TSG) + F ′′G|S∗S2(t− TSG) + · · · ,
E′(t) = −r3E(t) + a33E(t− TEE) + a34I(t− TCC)

+
∑
i+j≥2

[E(t−TEE)]i

i!
[I(t−TCC)]j

j!
· ∂

i+jFE
∂Ei∂Ij

|(E∗,I∗),

I ′(t) = −r4I(t) + a43E(t− TCC) + a44I(t− TII)
+
∑
i+j≥2

[E(t−TCC)]i

i!
[I(t−TII )]

j

j!
· ∂

i+jFI
∂Ei∂Ij

|(E∗,I∗),

(8)

where a12 = r1
∂FS
∂G
|(G∗,E∗), a13 = r1

∂FS
∂E
|(G∗,E∗), a21 = r2F

′
G|S∗ , a33 = r3

∂FE
∂E
|(E∗,I∗), a34 = r3

∂FE
∂I
|(E∗,I∗), a43 =

r4
∂FI
∂E
|(E∗,I∗), a44 = r4

∂FI
∂I
|(E∗,I∗). The linearized system of system (8) is the follows:

S′(t) = −r1S(t) + a12G(t− TGS) + a13E(t− TCS),
G′(t) = −r2G(t) + a21S(t− TSG),
E′(t) = −r3E(t) + a33E(t− TEE) + a34I(t− TCC),
I ′(t) = −r4I(t) + a43E(t− TCC) + a44I(t− TII),

(9)

Let s = min{TGS , TCS , TSG, TEE , TCC , TII}. Consider a special case of the system (9):
S′(t) = −r1S(t) + a12G(t− s) + a13E(t− s),
G′(t) = −r2G(t) + a21S(t− s),
E′(t) = −r3E(t) + a33E(t− s) + a34I(t− s),
I ′(t) = −r4I(t) + a43E(t− s) + a44I(t− s),

(10)

The matrix form of the system (10) is as follows:

u′(t) = Cu(t) +Au(t− s), (11)

where u(t) = [S(t), G(t), E(t), I(t)]T , u(t− s) = [S(t− s), G(t− s), E(t− s), I(t− s)]T , and

A = (aij)4×4 =


0 a12 a13 0
a21 0 0 0
0 0 a33 a34
0 0 a43 a44

 ,

B = (bij)4×4 = diag(−r1 − r2 − r3 − r4).
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2 The Existence of Periodic Solution

Since the system (9) is a linearized system of (8). Thus, we can see that the system (8) is a disturbed system of
(9). If the trivial solution of system (9) is unstable, then the trivial solution of system (8) is also unstable. In
what follows, we first consider the instability of the zero equilibrium point of the system (10) (or (11)). So we
have the following Theorems.

Theorem 1. Assume that the system (11) has a unique trivial solution, α1, α2, α3, α4 are characteristic values
of matrix A. If there is a characteristic value, say α1,
(i) Re(α1) = 0, Im(α1) 6= 0, and α1 = ωi;
(ii) Re(α1) > 0 , and Re(α1) > max{r1, · · · , r4},
(iii) Im(α1) = 0, α1 > 0 and α1 > max{r1, · · · , r4}. Then the trivial solution of system (11) (thus the system
(8)) is unstable, implying that there exists a limit cycle in the system (4), namely, system (4) has a periodic
solution.

Proof. We will show that the trivial solution of the system (11) is unstable. When Re(α1) = 0, Im(α1) 6= 0, and
α1 = ωi, then eωit = cosωt+ i sinωt. Since cosωt is a periodic function, therefore, the trivial solution of system
(11) is unstable. Obviously, all characteristic values of matrix B are −r1,−r2,−r3,−r4. Since α1, α2, α3, α4 are
characteristic values of matrix A, then the characteristic equation of the system (11) is the following:

Π4
i=1λ+ ri − αie−λs = 0. (12)

So we have

λ+ r1 − α1e
−λs = 0. (13)

If Re(α1) > 0 , and Re(α1) > max{r1, · · · , r4}, or α1 > 0, and α1 > max{r1, · · · , r4}, this means that the
equation (13) has a positive real part characteristic value or a positive characteristic value. It suggests that the
trivial solution of the system (11) is unstable. According to the basic theory of delayed differential equation, if
the trivial solution is unstable for a small delay, then the trivial solution is still unstable as the delay increases
[28]. In other words, the trivial solution of system (9) is unstable. This implies that the equilibrium point
(S∗, G∗.E∗, I∗)T of system (8) is unstable. Equivalently, the unique equilibrium point of the system (4) is
unstable. This instability of the unique equilibrium point together with the boundedness of the solutions will
force system (4) to generate a limit cycle, namely, a periodic solution according to the extended Chafee’s criterion
[29, 30].The proof is completed.

Let m = max{|a21|, |a12|, a33 + |a13|+ |a43|, a44 + |a34|, } then we have

Theorem 2. Assume that the system (11) has a unique trivial solution. If the following condition holds

m− τ > 0. (14)

where τ = min{r1, · · · , r4}. Then the trivial solution of system (11) is unstable, implying that there exists a
limit cycle of system (4), namely, system (4) has a periodic solution.

Proof. To prove the instability of the trivial solution of the system (11), Let z(t) = |S(t)|+|G(t)|+|E(t)|+|I(t)|.
Therefore, z(t) > 0 for t > 0, and

z′(t) ≤ −τz(t) +mz(t− s). (15)

Specifically, consider a scalar equation

v′(t) = −τz(t) +mz(t− s). (16)

According to the comparison theory of differential equation, we have z(t) ≤ v(t). We claim that the trivial
solution of equation (16) is unstable. Indeed, the characteristic equation of (16) is as follows:

λ = −τ +me−λs. (17)
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Consider a function ϕ(λ) = λ+τ−me−λs. Then ϕ(λ) is a continuous function of λ. Noting that ϕ(0) = τ−m =
−(m− τ) < 0. Obviously, there exists a L > 0 such that ϕ(L) = L+ τ −me−Ls > 0. By the Intermediate Value
Theorem, there exists a λ0 ∈ (0, L) such that ϕ(λ0) = 0. In other words, there exists a positive characteristic
root of the equation (16), which means that the trivial solution of equation (15) is unstable, implying that the
trivial solution of system (11), thus (4) is unstable. Similar to Theorem 1, the system (4) has a periodic solution.
The proof is completed.
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(a) Solid line: S(t), dashed line: G(t).
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Fig.1 Periodic oscillation of the solutions, r1=0.05, r2=0.1, r3=0.1, r4=0.08, 

delays: TSG=15.2, TGS=15.3, TCS=TCC=TEE=15.4, TII=15.5.
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Fig.2 Periodic oscillation of the solutions, r1=0.08, r2=0.05, r3=0.08, r4=0.0625,

delays: TSG=15.2, TGS=15.3, TCS=TCC=TEE=15.4, TII=15.5.
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Fig.3 Periodic oscillation of the solutions, r1=0.1, r2=0.08, r3=0.125, r4=0.2,

delays: TSG=15.2, TGS=15.3, TCS=TCC=TEE=15.4, TII=15.5.
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Fig.4 Periodic oscillation of the solutions, r1=0.05, r2=0.1, r3=0.1, r4=0.08,

delays: TSG=24.8, TGS=25.5, TCS=TEE=26.4, TCC=24.2, TII=24.5.

3 Computer Simulation Result

In model (4), according to the parameters in [16], setting MS = 300,MG = 400,ME = 72,MI = 276,WGS =
3,WCS = 6,WSG = 2.5,WII = 0.1,WEE = 1,WCC = 3, BG = 75, BS = 17, BE = 3.6, BI = 7, C = 277, Str =
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Fig.5 Periodic oscillation of the solutions, r1=0.1, r2=0.2, r3=0.2, r4=0.05,

delays: TSG=24.8, TGS=25.5, TCS=TEE=26.4, TCC=24.2, TII=24.5.
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Fig.6 Periodic oscillation of the solutions, r
1
=0.05, r

2
=0.1, r

3
=0.16, r

4
=0.1,

delays: T
SG

=24.8, T
GS

=25.5, T
CS

=T
EE

=26.4, T
CC

=24.2, T
II

=24.5.

40, when we select the time delay TSG = 15.2, TGS = 15.3, TCS = TCC = TEE = 15.4, TII = 15.5, firstly,
τS = 20, τG = 10, τE = 10, τI = 12.5, namely, r1 = 0.05, r2 = 0.1, r3 = 0.1, r4 = 0.08, then the unique
positive equilibrium point (S∗, G∗, E∗, I∗) = (61.2085, 167.5346, 60.7945, 72.0425). Thus, a12 = r1

∂FS
∂G
|(G∗,E∗) =

−0.0055, a13 = r1
∂FS
∂E
|(G∗,E∗) = 0.0112, a21 = r2F

′
G|S∗ = 0.1213, a33 = r3

∂FE
∂E
|(E∗,I∗) = −0.0963, a34 =

r3
∂FE
∂I
|(E∗,I∗) = 0.0328, a43 = r4

∂FI
∂E
|(E∗,I∗) = 0.2186, a44 = r4

∂FI
∂I
|(E∗,I∗) = −0.0076. The characteristic

values of matrix A1 are 0.0436,−0.1475, 0.0258i, −0.0258i. Since there exists a characteristic value 0.0258i,
and the conditions of Theorem 1 are satisfied. There exists a periodic oscillatory solution (see Fig.1). Then
setting τS = 12.5, τG = 20, τE = 12.5, τI = 16, namely, r1 = 0.08, r2 = 0.05, r3 = 0.08, r4 = 0.0625,
the other parameters are the same as Fig. 1, then (S∗, G∗, E∗, I∗) = (64.3124, 164.6548, 62.4903, 75.8162).
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There exists a periodic oscillatory solution (see Fig.2). When we select τS = 10, τG = 12.5, τE = 8, τI = 5,
namely, r1 = 0.1, r2 = 0.08, r3 = 0.125, r4 = 0.2, the other parameters are the same as Fig. 1, then
(S∗, G∗, E∗, I∗) = (51.9186, 142.0682, 54.1432, 64.9544). There exists a periodic oscillatory solution (see Fig.3).
When we select the time delay TSG = 24.8, TGS = 25.5, TCS = TEE = 26.4, TCC = 24.2, TII = 24.5,
τS = 20, τG = 10, τE = 10, τI = 12.5, namely, r1 = 0.05, r2 = 0.1, r3 = 0.1, r4 = 0.08, then the unique
positive equilibrium point (S∗, G∗, E∗, I∗) = (79.7544, 143.0359, 49.5957, 66.1679). Thus, a12 = −0.0623, a13 =
0.1246, a21 = 0.2487, a33 = −0.0641, a34 = 0.0213, a43 = 0.1352, a44 = −0.0046. The characteristic values
of matrix A2 are 0.0271,−0.0975, 0.1245i,−0.1245i, and the conditions of Theorem 1 are satisfied. There
exists a periodic oscillatory solution (see Fig.4). Then setting τS = 10, τG = 5, τE = 5, τI = 10, namely,
r1 = 0.1, r2 = 0.2, r3 = 0.2, r4 = 0.05 the other parameters are the same as Fig. 4, then (S∗, G∗, E∗, I∗) =
(88.6328, 209.1742, 56.4323, 68.6519). There exists a periodic oscillatory solution (see Fig.5). When we select
τS = 20, τG = 10, τE = 6.25, τI = 10, namely, r1 = 0.05, r2 = 0.1, r3 = 0.16, r4 = 0.1, the other parameters
are the same as figure 4, then (S∗, G∗, E∗, I∗) = (42.4116, 178.3734, 52.2841, 62.1911). There exists a periodic
oscillatory solution (see Fig.6). From the figures, we see that time delays affect the oscillatory frequency.

4 Conclusion

The present paper discusses the oscillation of the solutions for a Parkinson’s disease model with multiple delays
by means of the extended Chafee’s criterion. Two sufficient conditions are provided to guarantee the existence
of periodic solutions. We change the nonlinear model to an equivalent system. The instability of the solution
of the equivalent system implies the instability of the equilibrium point of the original system. Our criterion is
only a sufficient condition.
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