
S. Sobhy, M. Hussein and A. B. El sisi 

 

1 
 

 Specification -based Test Cases Generation for 

Multi-Level Service Composition
Shymaa Sobhy, Mahmoud Hussein and Ashraf B. El sisi 

Faculty of Computers and Information,  

Menofia University, Egypt , 
shaymaa.abdelaal@ci.menofia.edu.eg ,  mahmoud.hussein@ci.menofia.edu.eg and 

ashraf.elsisi@ci.menofia.edu.eg 
 

Abstract- Testing is the traditional validation method in the software industry. To ensure the delivery of high quality and 

robust service-oriented applications, testing of web services composition has received much attention. These services have 

become more and more complex, where they have to cope with strict requirements of business processes and their 

dynamic evolution, and interactions among different companies. In this context, the analysis and testing of such services 

demand a large amount of effort. To reduce the effort required for web-services testing, in this paper, we propose a 

specification-based approach to automatically generate test cases for web services composition that is modeled at different 

levels of abstraction. This approach specifies a service structure as multi-level models. To generate the test cases, it checks 

if the first level of the model has a parallel execution or a decision table to be solved by an algorithm that solves Chinese 

postman problem. Then, it identifies paths for last level of the model and relates the results of all levels with each other. 

To evaluate our approach, we applied it to four cases study using our developed tool. Compared to exiting approaches, 

our approach reduces testing cost and execution time, and increases testing reliability.  
 

Keywords--Service-oriented Applications, Web Services Composition, Model-based Approach, and Event-driven Model. 

I. INTRODUCTION 

Service-oriented architectures (SOAs) and web services have been used to enable loosely-coupled, distributed 
applications by using independent and self-contained services [1]. These services can be combined in a workflow 
that characterizes a new composite service. The resulting composite service is also called a web service composition 
(WSC [2, 4]. Such services have complex communications where the service behavior depends not only on the 
composition but also on the integrated services. Therefore, the testing process becomes complicated.  

A common problem in testing any kind of application is to automatically generate meaningful test cases [3, 5]. 
The strategy of using models for test case generation is known as model based testing [6, 7 and 8]. Web applications 
are evolving rapidly, as many new technologies, languages, and programming models are used to increase the 
interactivity and the usability of web applications [8, 14]. This inherent complexity brings challenges to modeling, 
analysis, testing, and verification of this kind of applications.  

To reduce the complexity of designing large composite services, the designers apply service decomposition 
where services are model at different levels of abstraction [10]. Many techniques have been introduced to support 
automatic testing of composite services. For example, a multi-observer architecture is proposed to detect and locate 
faults in composite web services [6], and a new model to describe a service choreography that manipulates data flow 
by means of XPath queries is introduced [18]. In addition, a model-based integration testing for service 
choreography using a proprietary model, called message choreography model (MCM) is proposed [24]. But, these 
techniques do not support testing service compositions that are modeled at different levels of abstraction. 

In this paper, we propose an approach for generating test cases for composite web services that are modeled at 
different levels of abstractions. We use a model based technique called “Event Sequence Graph for Web Services 
Composition” to generate cost-effective test cases for service compositions that modeled at one level [9]. We 
improve that technique to generate test cases for web services modeled at a multiple level of abstraction. Our 
approach check if the first level has a parallel execution or decision tables to be solved using an algorithm that 
solves Chinese postman problem for a directed graph to identify paths by generating a Euler network. Then it 
identifies paths for last level of the service model by same algorithm. Finally, the approach relates results of all 
levels with each other. We evaluate our approach by applying it to four case studies that have different complexity. 
We also developed a tool to generate test cases for the case studies.  

The remainder of this paper is organized as follows. Related work is analyzed in Section 2. Proposed approach in 
Section 3. Section 4 experimental results. Section 5 presents conclusion.  

mailto:shaymaa.abdelaal@ci.menofia.edu.eg%20,
mailto:mahmoud.hussein@ci.menofia.edu.eg%20and
mailto:mahmoud.hussein@ci.menofia.edu.eg%20and
mailto:mahmoud.hussein@ci.menofia.edu.eg%20and
https://en.wikipedia.org/wiki/Model_(abstract)


IJCI. Vol. 5 – No. 1, July 2016 

2 

 

II. RELATED WORK 

This section introduces work that is related to our approach. We also explain in detail an existing technique that 

we use as a base for our approach. Web service testing has been studied intensively in the last years [1, 3, and 4] 

with a particular effort on formal testing (for a systematic review of the literature, see [17]). The service testing 

provides the reliability analysis and formal reviews to the service. In the following, we describe some of the existing 

approaches. 

A model that describes a service choreography that manipulates data flow by XPath queries is introduced [18]. In 

the choreography, XPath queries can handle different XML schema files. This work is focused on test case 

generation for web service composition but modeled at one level only. Benares [6] proposes a multi-observer 

architecture to detect and locate faults in composite web services. The proposed architecture is composed of a global 

observer and local observers that cooperate to collect and manage faults found in the composite service. Their 

approach aims at testing the service composition that modeled as one level.  Wieczorek [24] proposes a model-based 

integration testing for service choreography using a proprietary model, called message choreography model (MCM). 

The work is close to the proposed approach, with difference that, our approach uses a more abstracted model 

compared to MCMs, which form a domain-specific language created to design service choreography.  Fevzi Belli and 

Christof Budnik proposed an approach for generation and selection of test cases based on statecharts [22]. This 

approach with scalable way uses regular expressions and regular expressions are used in the test process. But here 

we introduce event sequences graph that generate tests for multi-level graphs. JanTretmans proposed an overview of 

formal, model-based testing in general and of model-based testing for labeled transition system models in particular 

[23]. Also, it introduces the same concept of model-based testing but this still not deal with multilevel graphs.  Belli 

and Endo [9] have proposed an event-based model, named (ESG4WSC) Event Sequence Graph for Web Services 

Composition that represents the request and response messages exchanged between services involved in a WSC. 

This approach is for generate tests for graph that modeled at one level only. We will improve it to deal with 

multilevel graphs. Table 1 shows algorithm for deriving CESs from an ESG4WSC. 

 

III. THE PROPOSED APPROACH 

This section introduces firstly background secondly present a running example thirdly the proposed approach. 

A. Background 

This section introduces formal notions and algorithms that are relevant to the proposed approach. It also presents 
the underlying fault model, test case generation and minimizing test set [9, 15 and 21].  Event Sequence Graph for 
Web Services Composition: Event Sequence Graph (ESG) for Web Services Composition represents the request and 
response messages exchanged between services involved in a service composition. When a given event is refined by 
input parameters that determine the next events, decision tables (DTs) are associated to augment this representation. 
Decision tables are widely employed in information processing and are also traditionally used for testing. Table 2 
shows decision table for xloan case study. Definition 1: A (simple/binary) decision table DT ={C, E, R} represents 
events that depend on certain constraints, where: C is nonempty finite set of constraints (conditions), which can be 
evaluated as either true or false, E is the nonempty finite set of events, and R is the nonempty finite set of rules each 
of which forms a Boolean expression connecting true/false configurations of constraints and determines executable or 
waited events. Definition 2: An ESG for web service ESG4WSC = {V, E, M, R, DT, f, Ξ, Γ} is a directed graph, 
where: 

 V is a nonempty finite set of vertices representing events; 

 E⊆V x V is a finite set of arcs (edges); 

 M is a finite set of refining Event Sequence Graph for Web Services Composition models; 

 R⊆V x M is a relation that specifies which Event Sequence Graph for Web Services Compositions are 
connected to a refined vertex;  

 DT is a set of DTs that refine events according to function f;  

  F: V→DT {ɛ} is a function that maps a decision table dt ∈DT to a vertex v ∈  V. If v ∈  V is not associated 
with a DT, then f(v)=ɛ; 

 Ξ , Γ ⊆V are finite sets of distinguished vertices with ξ ∈  Ξ and γ ∈  Γ called entry nodes and exit nodes, 
respectively, wherein for each v ∈  V there exists at least one sequence of vertices  (ξ ,v0, . . .,vk ) from ξ ∈  Ξ 
to vk=v  and one sequence of vertices (v0,…,vk, γ ) from v0=v to γ∈  Γ with (vi,vi+1) ∈E for i=0,….,k-1and  
v≠ ξ, γ.  Definition 3: Let V be as in Definition 2. Then, the set of vertices V is partitioned into Ve, Vrefined, 



S. Sobhy, M. Hussein and A. B. El sisi 

3 

 

Vreq, and Vresp that is, V =  Ve ⋃ Vrefined ⋃ Vreq ⋃ Vresp and Ve, Vrefined, Vreq, and Vresp are pairwise disjointing, 
where: 

 Ve is a set of generic events,  

 Vrefined = {v ∈  V \ ∃m ∈  ⋀  (v, m) ∈  R} is a set of vertices refined by one or more Event Sequence Graph 
for Web Services Compositions. A refinement with more than one Event Sequence Graph for Web Services 
Compositions represents behavior running in parallel, 

 Vreq is a set of vertices modeling a request to its own interface/operations (public) or an invoked service 
(private), and  Vresp is a set of responses to a public or private request. Therefore, it is also remarked as public 
or private. Definition 4: Let DT be defined as in Definition 2. Then, the set of decision tables is partitioned 
into DTseq and DTinput, where: DTseq is the set of DTs that model the execution restrictions for following 
events and DTinput is the set of DTs that model constraints for input parameter of invoked operations. 

B. Fault Model: An ES (see Definition 5) describes a specific execution of a WSC that has to be enforced during 

testing. Thus, it is expected that exactly those events in the specified order are executed [9].  

C. Test Case Generation: To cause and control a specific CES of the WSC, it is often inevitable to take control of 

partner services because they communicate with the system under test (SUT).  And the flow of the WSC might 

depend on a returned response. The modeled constraints of DTs enable to validate the data passed to the service 

operations [13, 15 and 19]. 

D. Minimizing the Test Sets: The total number of CESs with minimal total length that cover the ESs of a required 

length is called Minimal Spanning Set of Complete Event Sequences (MSCES). Eentire walk occurs when the 

CES contains all EPs at least once [28]. The Chinese Postman Problem is expected to have a higher degree of 

complexity than MSCES problem introduced here as the edges of the ESG are not weighted [11, 12, 23 and 20]. 

E. Running example: The example involves three services: LoanService (LS), BankService (BS), and 

BlackListInformationService (BLIS). LoanService represents the business process xLoan. It has three 

operations: request, cancel, and select. BankService represents the financial agency that approves (or not) loans, 

and provides loan offers to its clients. The operations used in the example are approved, offer, confirm, and 

cancel. The BlackListInformationService provides an operation checkBL to check if a client has debits with 

other financial organization. The example is extended to add parallel flow in the process by including 

CommercialAssociationService (CAS). Similar to BlackListInformationService, CAS provides operations to 

check whether a client has debits with other commercial organization. In the extension, both services are 

supposed to be called in parallel. If the client has debit according to one of them, the client needs the bank 

approval [9]. The multi-level Event Sequence Graph for the running example (xloan) is in Figure 1. 

F. The proposed approach: When the input is multi-level graphs, we apply our proposed approach. For increase 

efficiency, we apply the CPP algorithm only to two levels the first level and the last level. And then relate the 

results to each other. First, we apply (CPP) to first level. Second, we check if last level is a parallel execution. If 

true, we find the CESs for it. Then, we identify the valid successor for each CES with respect to the DT. 

Thirdly, we find the CESs of the inner sublevels. Then, we make replacing operation. Table 3 shows the 

algorithm for the proposed approach. 

 

 
Table 1. An algorithm for deriving CESs from an Event Sequence Graph 

Input: An Event Sequence Graph for Web Services Composition (one level).  

Output: CESs. 

1. Foreach (vertex = refined vertices) do 

   Go to step 3 to Generate CESs for the refined vertices first. 

2. Add multiple edges (representing EPs) to Event Sequence Graph for Web Services Compositions: 

   If (refined vertex has a DT restricting the ongoing execution)  

       Identify the valid successor for each CES with respect to the DT.   

       Add an edge from the refined vertex to the allowed successor.    

   Else 

      Add an edge from the refined vertex to the successor (there should be only one) for each CES. 

3. Generate CESs according to the CPP algorithm (i.e., cover all EPs by CESs of minimal total length). 

4. Replace refined vertices in the resulting CES set of Step 3 with the CESs derived in Step 1 with respect to their 

allowed successors. 

Return CESs 
 

 

 

 



IJCI. Vol. 5 – No. 1, July 2016 

4 

 

 

Table 2. The decision tabel for check  Refined 

 

 
 

 

 

 

 

 

 
Table 3 . The proposed approach 

Input: Event Sequence Graph for Web Services Compositions that decomposed into different levels of abstraction (multiple levels). 

Output: CESs. 

Step 1: Apply (CPP algorithm) to (Frist level) to generate CESs for it and save it to an array data structure. 

If (last level = parallel execution ) Go to step 2   

    If (refined vertex has a DT restricting the ongoing execution)  

        Identify the valid successor for each CES with respect to the DT. 

 Else 

      Put the sequence from the refined vertex to the successor (there should be only one) for each CES. 

Step 2: Apply (CPP algorithm) to (last level) to generate CESs for it and do and operation on results. 

Step 3: Get the CESs of the inner sublevels manually. 

Step 4: Replace the abstracted frist level node in CESs from Step 1 with other sublevels nodes result from step 3. 

Step 5: Replace CESs from step 4 with CESs result from Step 2. 

Return CESs 

I.  

 

IV. EXPERIMENTAL RESULTS 

In this section, we show applying the proposed approach to the xloan example then show the evaluation by 
applying it to other three cases study 

A. Applying proposed approach to the xloan example: 

We will now apply the proposed approach for the xloan case study. Table 4 apply CPP algorithm to the first level 

that list two only sequences [16]. Table 5 shows the application of CPP algorithm to the last level to get the CESs 

and shows four sequences. Table 6 shows applying the AND operation to them. Finally, we go to replacing 

operation to relate the results. Table 7 shows the CESs of level 1 after replacing by level 2. Table 8 shows replacing 

results with results from table 6 related to DT constrains. The new propose approach is applied only at two levels 

rather than calling it three time as done at the old approach   and its result is related to each other. This increase 

efficacy by reduce execution time and number of iteration of CPP algorithm. 

B. Evaluation 

We evaluate our approach by applying it to three other cases studies. The first one called Travel Agent Service. It 

provides a set of facilities to query and book a trip. It interacts with two services: ISELTA-hotel and Airlines 

services. It combines these two services to provide operations for searching and booking a travel involving flight 

and hotel reservations.  
As the flight ticket and hotel reservation are essential in any travel, a successful booking using this service 

guarantees hotel and flight reservations [9]. The second called ABC services case study [25]. This service interacts 
with three other services: PartnerService01 (PS01), PartnerService02 (PS02), and PartnerService03 (PS03). It focuses 
on the flow of messages triggered by the operations of ABCService. The third called BCS-05 service which is a 
version from Business Connectivity Services. We have applied the old and proposed approach to these three cases 
studies (for the details, see [26]). In the following, we give the information about the case studies including test model 
information for higher length, and the execution time and number of iteration for the old algorithm and the proposed 
approach. 

 

Dtcheck R1 R2 R3 R4 

Event :BLIST: inBlist happen T T F F 

Event :BLIST: NotinBlist happen F F T T 

Event :CAS:DebetorTrue happen T F T F 

Event :CAS:DebetorFalse happen F T F T 

BSoffer     

BSapproveBank     



S. Sobhy, M. Hussein and A. B. El sisi 

5 

 

Table 4. CES1,2 after apply CPP for level 1of multi level graph 

Start LSrequestLoan BSapproveBank BSapproved BSoffer BSOffers LSreplyOffers LSSelectOffers LSWrongOffer 

LSSelectOffers BSconfirmBank LSreplySelect End 
CES1 

Start LSrequestLoan check BSapproveBank BSapproved BSoffer BSOffers LSreplyOffers LSSelectOffers 

LSWrongOffer Timeout >2h BScancelBank End 
CES2  

 

 
Table 5. CESG after apply cpp for last level 

CES1  [BLIS:checkBL     , BLIS:inBList] 

 

 
Tabel 6. CESG after AND operation for last level 

CES1  [BLIS:checkBL BLIS:inBList] || [CAS:inDebtorsList CAS:debtorsTrue  ] 

 

 
Table 7. CES1,2 after replacing level 2 for the proposed approach 

No replace  CES1  

Start LSrequestLoan checkBLIS BSapproveBank BSapproved BSoffer BSOffers LSreplyOffers LSSelectOffers 

LSWrongOffer Timeout>2h BScancelBank End 
CES2  

Start LSrequestLoan checkCAS  BSapproveBank BSapproved BSoffer BSOffers LSreplyOffers LSSelectOffers 

LSWrongOffer Timeout>2h BScancelBank End 
 

 
Table 8. Replace with the original node from step one by DT Constrains 

CES1 No Replace 

CES2 Start LSrequestLoan BLIS:checkBL BLIS:inBList CAS:inDebtorsList CAS:debtorsTrue BSapproveBank 

BSapproved BSoffer BSOffers LSreplyOffers  LSSelectOffers LSWrongOffer Timeout>2h BScancelBank End 

 

C. Generating Event Sequences 

A phenomenon in testing interactive systems that most testers seem to be familiar with is that faults can be 
frequently detected and reproduced only in some context. Further, the coverage criteria can be made more powerful 
by increasing the value of length coverage to be obtained thereby further reducing any negative effect of reducing the 
length of tests on the fault detection effectiveness. This makes a test sequence of a length greater than 2 is necessary 
since repetitive occurrences of some subsequences are needed to a failure to occur. Summary of the results are in 
Table 9. The Xloan service has execution time 280 ms for length 3 and 276 ms for length 4 while the number of test 
cases for length 3 is 8 and for length 4 are 11.  The Travel agent service has execution time 276 ms for length 3 and 
350 ms for length 4 while the number of test cases for length 3 is 15 and for length 4 are 17. The ABC services has 
execution time 359 ms for length 3 and 400 ms for length 4 while the number of test cases for length 3 is 9, and for 
length 4 are 10. The BCS-05 Service has execution time 372 ms for length 3 and 500 ms for length 4 while the 
number of test cases for length 3 is 15 and for length 4 are 18. 

D. The Execution Time and Number of Iteration  

    The execution time and the number of iterations of our approach and the old algorithms are summarized in 
Table 10. First, the Xloan service has execution time of 414 ms for old algorithm and 260 ms for proposed approach 
while the number of iterations for old algorithm is 16 and for proposed approach are 10.  Second, the travel agent 
service has execution time 860 ms for old algorithm and 607 ms for proposed approach and number of iterations for 
old algorithm is 34, and for proposed approach are 18. Third, the ABC service has execution time of 285 ms for old 
algorithm and 209 ms for proposed approach while the number of iterations for old algorithm is 10 and for the 
proposed approach are 8. Third, the BCS-05 service has execution time 332 ms for old algorithm and 274 ms for 
proposed approach, number of iteration for old algorithm is 17, and for proposed approach are 15.  We found that 
when applying the old algorithm to the decomposed graphs this will require repeated algorithm N time equals to N 
levels of graphs which increases the execution time and the number of iterations of algorithm. Figure 2 shows 
execution time in millisecond and Figure 3 shows number of iterations for the old and the proposed approaches. 



IJCI. Vol. 5 – No. 1, July 2016 

6 

 

 

 

 

Table 9. Test model information for higher length 

 

Length greater than 2  

Execution time Test cases 

Length   (K=3) Length   (K=4) Length   (K=3) Length   (K=4) 

Xloan  service 280ms 377ms 8 11 

Travel agent  276ms 350ms 15 17 

ABC services 359ms 400ms 9 10 

BCS-05 Service 372ms 500ms 15 18 

 

Table 10. The execution time and number of iteration for the old algorithm and our proposed approach 

 
Cases 

Execution time Iterations 

Old proposed Old proposed 

Xloan  service 414 260 16 10 

Travel agent service 860 607 34 18 

ABC services 285 209 10 8 

BCS-05 Service 332 274 17 15 

 

 
Fig. 2: Excution time for CES4WS and proposed approach 

 

 

 
Fig. 3. Iteration time for CES4WS and proposed approach 

 

V. CONCLUSION 

Testing is the most critical and expensive phase of the software development life cycle. In this paper, we have   
improved a technique called Event Sequence Graph for Web services compositions to generate cost-effective test 
cases for WSCs that decomposed at different levels of abstraction. We found that when the input is multiple graphs, 
the old approach generates unrelated test cases and takes more iteration and execution time. When our approach is 
applied, it works properly with less iteration and less execution time and gives related test cases. We introduce 
algorithms to generate test cases from multi-level graphs. We also generate test cases for length greater than 2 that is 
necessary since repetitive occurrences of some subsequences are needed to a failure to occur/reoccur. We have 
evaluated our approach by four case studies with different complexity, parallel execution and decision tables.  In the 
future, we will make our approach holistic to perform positive testing as we do here and also to test undesirable 
situations (i.e. negative testing) based on the service model. We will also perform other testing stages such as test 
cases execution. Finally, it is essential to conduct experimental comparisons with other approaches, such as structural 
testing for web service compositions. 



S. Sobhy, M. Hussein and A. B. El sisi 

7 

 

REFERENCES 
[1] G. Canfora, and M. Penta, "Service-oriented architectures testing: a survey", In Software Engineering: International Summer Schools 

(ISSSE), Springer, 2009. 

[2] M.Papazoglou,W. Heuvel," Service oriented architectures: approaches, technologies and research issues", The International Journal on Very 

Large Databases The VLDB journal,vol. 16(3),pp. 389-415,2007. 

[3] D. Kung, C.Liu, and P. Hsia, "A model-based approach for testing Web applications", In: Proc. of Twelfth International Conference on 

Software Engineering and Knowledge Engineering, Chicago, July, 2000. 

[4] M.Schmidt, B.Hutchison,and P.Lambros, "The enterprise service bus: making service-oriented architecture real", IBM Systems Journal, vol. 

44(4), pp.781-797, 2005. 

[5] F. Lars, T.Jan, and R. de Vrie., "Towards model –based testing of web services", International Workshop on Web Services Modeling and 

Testing, 2006. 

[6] A. Benharref, R.Dssouli, R. Glitho,and M.Serhani,"Towards the testing of composed Web services in 3rd generation networks", In IFIP 

International Conference on Testing of Communicating Systems (TESTCOM), Vol. 3964, pp. 118-133,2006. 

[7] F.Belli,and B.Christof, and W.Lee,"Event-based modeling, analysis and testing of user interactions: approach and casestudy", Software 

Testing, Verification and Reliability, vol.16(1), pp.3-32 ,2006. Van der Aalst WMP. Formalization and verification of event-driven process 

chains. Information and Software technology,1999;  

[8] F.Robert, and B.Rumpe,"Model-driven Development of Complex Software", A research roadmap, Future of Software Engineering,IEEE 

Computer Society,pp. 37-54,2007. 

[9] F.Belli, A.Endo, M. Linschulte, and A.Simao, "A holistic approach to model-based testing of Web service compositions", Software – 

Practice and Experience, vol. 44(2), pp. 201-234 ,2014. 

[10] F.Belli,and B.Christof, and W.Lee,"Event-based modeling, analysis and testing of user interactions: approach and casestudy", Software 

Testing, Verification and Reliability, vol.16(1), pp.3-32 ,2006.  

[11] F.Belli,and M. Linschulte,"Event-driven modeling and testing of real-time Web services", Service Oriented Computing and Applications, 

4(1), pp.3-15, 2010. 

[12] F.Belli, A.Endo, M.Linschulte,and A.Simao,"Model-based testing of Web service compositions", Service Oriented System Engineering 

(SOSE),  pp. 181-192, IEEE, 2011. 

[13] Z.Hong, P.Hall, and J.May,"Software unit test coverage and adequacy", ACM Computing Surveys (CSUR),vol. 29(4), pp.366-427 1997. 

[14] A.Paul, and J.Offutt, "Introduction to software testing", Cambridge University Press, 2008.  

[15] F.Belli, and C.Budnik,"Minimal spanning set for coverage testing of interactive systems",In First International Colloquium on Theoretical 

Aspects and Computing (ICTAC),Springer, pp. 220-234, 2004. 

[16] Y. Lin, and Z.Yongchang,"A new algorithm for the directed Chinese postman problem" ,Computers & operations research ,vol.15(6 ), pp. 

577-584,1988. 

[17] A.Endo, A.Takeshi, and A.Simao,"A systematic review on formal testing approaches for Web services", Brazilian Workshop on Systematic 

and Automated Software Testing, International Conference on Testing Software and Systems, pp.89, 2010. 

[18] L.Mei, C.W, and T.Tse, "Data flow testing of service  choreography", Proceedings of the 7th joint meeting of the European software 

engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering, pp. 151-160, 2009. 

[19] V.Stoyanova, P.Dessislava, and I.Sylvia, "Automation of test case generation and execution for testing web service orchestrations",Service 

Oriented System Engineering (SOSE), IEEE, pp. 274-279, 2013.   

[20] F.Belli, and C.Budnik,"Towards optimization of the coverage testing of interactive systems", Computer Software and Applications 

Conference, Vol. 2, pp. 18-19, IEEE, 2004. 

[21] W.Douglas " Introduction to graph theory. ",Vol. 2,Upper Saddle River: Prentice hall, 2001. 

[22] F.Belli and A.Hollmann, "A holistic approach to testing of interactive systems using statecharts". InProceedings of 2nd South-East 

European Workshop on Formal Methods (SEEFM 05), South-Eastern European Research Center SEERC 2005 (pp. 1-15). 

[23] J.Tretmans ,"Model-based testing and some steps towards test-based modelling". InFormal Methods for Eternal Networked Software 

Systems 2011 (pp. 297-326). Springer Berlin Heidelberg. 

[24] A. Cavalli, TD.Cao, W.Mallouli,"Webmov: A dedicated framework for the modelling and testing of web services composition",InWeb 

Services (ICWS), 2010 IEEE International Conference,2010 Jul 5 (pp. 377-384),IEEE. 

[25] A.Endo,"Using models to test web service-oriented applications.", an experience report, 2012. 

[26] https://www.docdroid.net/cbR9qpv/version7detalid.pdf.html, Last accessed: July 2016. 

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1689
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1689
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1689
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1689
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132474
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132474
https://scholar.google.com/scholar_url?url=http://ieeexplore.ieee.org/xpls/abs_all.jsp%3Farnumber%3D1342657&hl=en&sa=T&oi=gsb&ct=res&cd=0&ei=yq6CV-XVGtCymAGLpKyADA&scisig=AAGBfm3S15zYyA43ibWxIxUFB7VNT0CKdw
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9304
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9304
https://www.docdroid.net/cbR9qpv/version7detalid.pdf.html

