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Bioluminescence, or the ability of a living organism to generate visible light, occurs as
a result of biochemical reaction where enzyme, known as a luciferase, catalyzes the
oxidation of a small-molecule substrate, known as luciferin. This advantageous trait has
independently evolved dozens of times, with current estimates ranging from the most
conservative 40, based on the biochemical diversity found across bioluminescence
systems (Haddock et al., 2010) to 100, taking into account the physiological
mechanisms involved in the behavioral control of light production across a wide range
of taxa (Davis et al., 2016; Verdes and Gruber, 2017; Bessho-Uehara et al., 2020a;
Lau and Oakley, 2021). Chemical structures of ten biochemically unrelated luciferins
and several luciferase gene families have been described; however, a full biochemical
pathway leading to light emission has been elucidated only for two: bacterial and
fungal bioluminescence systems. Although the recent years have been marked by
extraordinary discoveries and promising breakthroughs in understanding the molecular
basis of multiple bioluminescence systems, the mechanisms of luciferin biosynthesis
for many organisms remain almost entirely unknown. This article seeks to provide a
succinct overview of currently known luciferins’ biosynthetic pathways.
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INTRODUCTION

A remarkable diversity of animals and microorganisms possess the ability to generate light, or
bioluminescence, which has been adapted by thousands of species to serve the purpose of intra-
and inter-species visual communication, to attract prey, escape predators, and in mating (Haddock
et al., 2010; Widder, 2010; Shimomura and Yampolsky, 2019; Lau and Oakley, 2021). Various
luciferins, the small molecules capable of light emission upon oxidation (Figure 1), have been
derived by evolution from unrelated biochemical pathways. At the chemical level, in the majority
of known bioluminescent systems light is produced as a result of the decomposition of a four-
membered dioxetanone ring, although in some systems (such as bacterial and fungal) acyclic
peroxide moieties or a six-membered trioxanone ring intermediates are formed (Vacher et al., 2018;
Wang and Liu, 2021). Cleavage of intermediate peroxides requires relatively low energy, yielding
compounds in electronically excited state, that decay radioactively to the ground state (Bastos et al.,
2017). At the molecular level the luciferin biosynthetic routes remain largely understudied. In this
work, we review bioluminescence systems for which the mechanisms of luciferin biosynthesis have
been investigated.
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FIGURE 1 | Structures of known luciferins. aThe structure of the light-emitting species is still unknown.

BACTERIAL BIOLUMINESCENT SYSTEM

Biosynthetic pathway of bacterial bioluminescence is one of the
most thoroughly investigated among all luminescent organisms.
To date, 25 characterized luminous bacterial species belong in
three families of the Gammaproteobacteria: Shewanellaceae
(Shewanella), Enterobacteriaceae (Photorhabdus), and
Vibrionaceae (Aliivibrio, Photobacterium, and Vibrio)
(Vannier et al., 2020). All luminescent bacteria utilize a
singular mechanism for light emission and employ similar
luciferases (Marquette and Blum, 2010). Bacterial light emission
results from the cleavage of the peroxyhemiacetal formed by
the reaction among FMNH2, myristic aldehyde (Figure 1)
and oxygen within the active site of luciferase (Cormier and
Strehler, 1953) producing light at 490 nm, although in some
cases the color of luminescence is altered by an energy transfer to
fluorescent protein that interacts with the luciferase (Lee et al.,
2019). Recycling of FMN is then catalyzed by NADH-dependent
flavin reductase (Figure 2A).

One of the most important features of the bacterial
bioluminescence system lies in the fact that the full pathway
of luciferin biosynthesis and bioluminescence is encoded by a
single lux operon (Meighen, 1991), containing genes for bacterial
luciferase, consisting of two polypeptide chains (heterodimers
luxA and luxB), along with genes luxC, D, and E encoding
fatty-acid luciferin reductase complex responsible for the
synthesis of the long chain aldehyde substrate and luxG encoding

a flavin oxidoreductase (Nijvipakul et al., 2008). In addition
to luxCDABE(G) gene cluster, a number of bioluminescent
Photobacteria carry an additional luxF gene, showing a limited
identity to luxAB encoding bacterial luciferases (Brodl et al.,
2020). The LuxF protein is able to scavenge an inhibitory
byproduct of bacterial bioluminescence – 6-(3′-(R)-myristyl)-
flavin mononucleotide (myrFMN), thus increasing the total
intensity of bioluminescence over time. Due to oxygen-labile
nature of FMNH2, its transfer mechanism from reductase to
luciferase active site is a matter of considerable debate (Brodl
et al., 2018), with some research supporting the formation of
a transient luciferase-LuxG complex (Jeffers and Tu, 2001; Tu,
2008) and other favoring FMNH2 free diffusion mechanism
(Tinikul et al., 2013).

Despite their wide distribution in marine environments,
ranging from free-swimming to symbiotic species,
bioluminescent bacteria all carry a highly conserved
luxCDAB(F)E(G) core (Dunlap and Urbanczyk, 2013),
with minor variations correlated with environmental
parameters (Brodl et al., 2018) and species life-style, such
as symbiotic associations with squid or fish (Davis et al., 2016;
Schwartzman and Ruby, 2016), observed in the lux operon
architecture. A recent study employing metagenomic data
analysis revealed a much wider diversity of lux operon sequences
organization with novel lux genes and operons being more
abundant in the global ocean than the canonical CDAB(F)E(G)
operon (Vannier et al., 2020). Using structural information from
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FIGURE 2 | Luciferin metabolism. (A) Overview of bacterial luciferin bioluminescence and recycling pathways. (B) Pathway of fungal luciferin biosynthesis and
recycling. (C) Partial D-luciferin biosynthetic pathway and bioluminescence reaction.

the newly discovered individual enzymes of the overarching lux
family and addressing evolutionary conserved areas within these
structures will eventually provide insight on the evolutionary
function and origin of bioluminescence.

FUNGAL BIOLUMINESCENT SYSTEM

To date the only genetically encodable eukaryotic
bioluminescence system was described for luminous fungi. All of
the light-emitting fungal species sharing a single bioluminescent
system belong to the order Agaricales (Oliveira et al., 2012). In
2015 fungal bioluminescence substrate and its precursor were
identified as simple styrylpyrones 3-hydroxyhispidin (Figure 1)
and hispidin, respectively (Purtov et al., 2015). In contrast to
the previous theory that luciferin is obtained via reduction of
its precursor (Airth and McElroy, 1959), the 2015 paper has

established that fungal luciferin is biosynthesized by oxidation
of the hispidin, catalyzed by a soluble NADPH-dependent
hydroxylase. Further research has shown that luciferin undergoes
oxidation, catalyzed by an insoluble luciferase in a reaction
requiring no other cofactors to produce green light (520 nm)
(Kaskova et al., 2017). The fungal bioluminescence is initiated
by the cycloaddition of oxygen to luciferin forming an α-pyrone
endoperoxide high-energy intermediate, decarboxylation of
which results in fungal oxyluciferin, caffeylpyruvate (Figure 2B).
The enzymatic hydrolysis of oxyluciferin produces caffeic
acid, which is then recycled in the biosynthesis of hispidin via
the styrylpyrone pathway (Lee and Yun, 2011). Subsequent
experiments showed this mechanism to be ubiquitous in
bioluminescence reactions of different species of luminous fungi
(Oba et al., 2017).

A tendency of fungal genes encoding specific secondary
metabolites to cluster (Keller et al., 2005) has allowed the
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identification of a set of genes and enzymes involved in fungal
luciferin bioluminescence cascade, thus making it the first fully
characterized luminescence system from eukaryotes (Kotlobay
et al., 2018). Luciferase was discovered to be a member of
a conserved gene cluster, which included at least three other
genes: h3h encoding hispidin-3-hydroxylase, hisps gene encoding
a member of the polyketide synthase family – hispidin synthase,
and cph gene encoding caffeylpyruvate hydrolase, belonging
to the family of fumarylacetoacetate hydrolases involved in
oxyluciferin recycling. A detailed analysis of the reconstructed
Agaricales species phylogenetic tree for luz, h3h, and hisps genes
revealed a single evolutionary event of the bioluminescence
emergence in fungi, indicating that these genes emerged through
gene cluster duplication. The gene cluster continued to evolve
dynamically after the acquisition of bioluminescence with several
independent partial or complete gene loss events leading to the
secondary loss of bioluminescence (Ke et al., 2020). This mosaic
pattern of bioluminescence in fungi may indicate that selective
advantage conveyed by this trait depends on yet unknown specific
environmental factors.

Though biological role of light emission in higher
fungi remains unclear, further bioinformatic, genomic and
evolutionary research of luz, h3h, hisps, and cph genes and their
homologs from non-luminescent fungal taxa will provide clues to
the origin and function of bioluminescence in fungi. Moreover,
a set of 50 genes possessing regulatory function associated
with fungal luminescence intensity at different developmental
stages and tissues was recently identified (Ke et al., 2020).
Future exploration of these might shed light on the ecological
significance of fungal regulation of bioluminescence.

D-LUCIFERIN-DEPENDENT SYSTEMS

Beetle bioluminescence systems belong to one of the
most practically important and well-understood groups of
bioluminescence reactions. The ability to emit light has
evolved in several Coleoptera families including fireflies
(Lampyridae), click beetles (Elateridae) and railroad worms
(Phengodidae), with the light emission wavelength ranging
from green to red (540–640 nm) depending on the beetle
species (Viviani et al., 2011; Kotlobay et al., 2020). All
known beetle bioluminescence system depend on a common
substrate (S)-2-(6-hydroxy-2-benzothiazolyl)-2-thiazoline-4-
carboxylic acid, commonly known as D-luciferin (Figure 1),
which consists of two structural units, benzothiazole and
thiazoline rings (Shimomura and Yampolsky, 2019). D-luciferin
bioluminescence reaction proceeds in two general steps
(Figure 2C) shared by all the investigated coleopteran
species: substrate adenylation and oxygenation, resulting
in the formation of the high-energy dioxetanone moiety,
further decomposition of which leads to oxyluciferin and the
emission of a photon of light (Branchini et al., 2015). The
luciferases catalyzing D-luciferin oxidation are a family of
highly conserved homologous ATP-dependent enzymes evolved
from the ubiquitous fatty acyl-CoA synthetases (Inouye, 2010;
Fallon et al., 2018).

The synthetic D-luciferin is typically obtained via
condensation of 2-cyano-6-hydroxybenzothiazole with
D-cysteine (White et al., 1963). Although early research has
suggested that in vivo biosynthesis might proceed via the
same route, neither of these compounds has ever been isolated
from beetle biomass. A number of recent publications has
revealed the partial D-luciferin biosynthetic pathway using
incorporation of stable isotope-labeled compounds into the
adult lantern of the live firefly Aquatica lateralis (formerly
Luciola lateralis) and mass-spectrometry experiments (Oba
et al., 2013; Kanie et al., 2016, 2018). The proposed de novo
biosynthetic pathway commences with hydrolysis of arbutin
releasing 1,4-hydroquinone (Figure 2C), which is then oxidized
to para-benzoquinone. A 1,4-addition of L-cysteine to the
benzoquinone, followed by decarboxylation and carbon-sulfur
rearrangement of cysteine leads to the formation of benzothiazole
ring of the beetle luciferin (Kanie et al., 2016) in the process
similar to that of late stage pheomelanogenesis (Wakamatsu
et al., 2009; Napolitano et al., 2013). Subsequent addition of a
second L-cysteine yields L-luciferin. Current evidence suggests
that at the final step L-luciferin undergoes CoA esterification
catalyzed by luciferase, followed by epimerization and thioester
hydrolysis thus generating the D-form (Niwa et al., 2006; Maeda
et al., 2017). These results were further supported by expression
analysis of firefly luciferin biosynthetic pathway candidate genes
(polyphenol oxidase, β-glucosidase, luciferase, and acyl-CoA
thioesterase) in the luminous organs of Lamprigera yunnana and
Abscondita terminalis and L-luciferin enzymatic deracemization
experiments in vitro (Zhang et al., 2020), demonstrating that
acyl-CoA thioesterases can efficiently convert L-luciferin to
D-luciferin. An earlier hypothesis of possible luciferin storage
mechanism in the form of sulfoluciferin (Fallon et al., 2016) was
also corroborated by sulfotransferase expression analysis in the
luminous organs of both species (Zhang et al., 2020).

Although great strides in the investigation of the metabolic
biochemistry of the firefly bioluminescent system have been
made, it should be noted, that the existing hypothesis of
D-luciferin biosynthesis is based on the studies in Lampyridae
family, while luciferin biosynthetic pathways in Elateridae and
Phengodidae lineages are vastly underinvestigated. Moreover, the
question of oxyluciferin recycling mechanism in Lampyridae also
remains unanswered. Preliminary studies have proposed that in
fireflies oxyluciferin could be enzymatically converted to luciferin
by luciferin-regenerating enzyme (LRE) (Gomi and Kajiyama,
2001; Emamzadeh et al., 2010); however, more recent evidence
suggests that LRE may perform other functions in cells and its
role in D-luciferin recycling in vivo requires further clarification
(Hosseinkhani et al., 2017).

IMIDAZOPYRAZINONE-BASED
SYSTEMS

Despite the fact that the highest diversity of luminous organisms
is found in marine ecosystems, a majority of known marine
bioluminescence systems depend on two modified tripeptides,
sharing the same imidazopyrazinone core: coelenterazine and
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Cypridina luciferin (vargulin) (Figure 1; Haddock et al., 2010).
Only three animals have been shown to produce coelenterazine,
the decapod shrimp Systellaspis debilis (Thomson et al., 1995),
the copepods Metridia (Oba et al., 2009; Tessler et al.,
2018) and ctenophores Bolinopsis infundibulum and Mnemiopsis
leidyi (Bessho-Uehara et al., 2020a). Interestingly, hydromedusa
Aequorea victoria, from which coelenterazine was first isolated, is
unable to produce its own coelenterazine for bioluminescence but
acquires it through the diet (Haddock et al., 2001). In fact, most
species that use coelenterazine as a luciferin do not synthesize
it themselves, and its widespread occurrence in both luminous
and non-luminous organisms can be explained by its presence
in marine food chains (Haddock et al., 2010; Widder, 2010;
Mallefet et al., 2020). Moreover, a recent report showed that some
species, namely semi-translucent luminous fish Parapriacanthus
ransonneti, are able to obtain not only its luciferin (vargulin)
but also its luciferase enzyme, aptly termed “kleptoprotein,” from
bioluminescent ostracod prey (Bessho-Uehara et al., 2020b).

Several marine species use sulfated derivatives of
imidazopyrazinone luciferins as substrates in bioluminescence
reaction or as a form of luciferin storage (Lau and Oakley,
2021). To prevent non-specific oxidation of luciferins both
Cypridina hilgendorfii and Renilla reniformis were proposed to
utilize species-specific sulfotransferases to catalyze the reversible
sulfation of substrates in the presence of PAPS to produce
3-enol sulfate derivatives of vargulin (Nakamura et al., 2014)
and coelenterazine (Cormier et al., 1970; Inoue et al., 1977),
respectively. Other species have been found to use modified
forms of coelenterazine as luciferins: the firefly squid Watasenia
scintillans utilizes disulfated coelenterazine (Inoue et al., 1976),
while the squid Sthenoteuthis oualaniensis (Takahashi and Isobe,
1994) and bivalve mollusk Pholas dactylus (Tanaka et al., 2009)
use dehydrocoelenterazine (Lau and Oakley, 2021).

A number of coelenterazine-utilizing luciferases are well
known, including those of soft corals (Renilla), copepods
(Gaussia, Metridia) and decapods (Oplophorus) (Kotlobay et al.,
2020), while vargulin-dependent luciferases have been derived
only from an ostracod lineage Cypridinidae (Hensley et al., 2021).
Coelenterazine also serves as the light emitter in the Ca2+-
binding photoproteins, such as aequorin and obelin (Head et al.,
2000). While imidazopyrazinone luciferins are conserved, the
enzymes (luciferases and photoproteins) were thought to be
unique and species-specific (Haddock et al., 2010). However, two
recent publications have revealed a surprising similarity between
luciferases of phylogenetically distant organisms: the luminous
brittle star Amphiura filiformis (Echinodermata), tunicates
Pyrosoma atlanticum (Chordata) and the sea pansy Renilla
(Cnidaria), indicating that all three luciferases may have evolved
convergently from homologous dehalogenases (Loening et al.,
2006; Delroisse et al., 2017; Tessler et al., 2020). Bioluminescence
maxima of all naturally occurring imidazopyrazinone-dependent
enzymes lie in the blue region of the visible spectrum (450–
490 nm), although in some cases the color of luminescence is
biochemically altered by an energy transfer to fluorescent protein
that interacts with the luciferase (Kotlobay et al., 2020).

The mechanism of imidazopyrazinones bioluminescence
reaction follow classical pathway of luciferase-catalyzed

luciferin oxidation, dioxetanone intermediate formation and
decarboxylation yielding an electronically excited oxyluciferin,
that relaxes to the ground state by photon emission. Apart
from oxygen imidazopyrazinone-dependent luciferases typically
do not require any additional cofactors for light emission
(Kaskova et al., 2016), while photoproteins are triggered to
produce light upon binding to di- or mono- valent metal ions,
which cause a conformational change in the protein. Although,
the exact biosynthetic routes of imidazopyrazinone luciferins
are currently unknown, feeding studies with living animal
specimens have shown that vargulin is biosynthesized from
L-tryptophan, L-arginine, and L-isoleucine (Kato et al., 2004,
2007), while coelenterazine is derived from L-phenylalanine and
two L-tyrosines (Oba et al., 2009; Tessler et al., 2018). It had been
proposed that a sequence of cyclization–dehydration reactions
of the corresponding tripeptides could potentially lead to the
light-emitting imidazopyrazinones (McCapra and Roth, 1972).
Recently transcriptome analysis has been employed to probe for
coelenterazine biosynthesis pathway candidate genes, containing
FYY motif (Francis et al., 2015). A set of FYY-containing genes
encoding isopenicillin-N-synthase homologs were found in
the transcriptomes of 24 luminous ctenophore species but
were conspicuously absent in the transcriptomes of the non-
luminous relatives, suggesting their importance in physiology
of bioluminescent ctenophores. However, due to the lack of
experimental evidence the role of isopenicillin-N-synthase, and
the identity of other enzymes directly involved in coelenterazine
biosynthetic pathway remains unknown. Discovery of the
biosynthetic pathway of imidazopyrazinone luciferins would
enable the development of a broad range of novel reporter
systems and may ultimately provide insights into the evolution
of bioluminescence in marine organisms.

Fridericia BIOLUMINESCENCE SYSTEM

Within the past decade another ATP-dependent bioluminescence
system was discovered in the Siberian earthworm Fredericia
heliota (Petushkov et al., 2014). The luciferin and luciferase
of F. heliota bioluminescence system are structurally distinct
from those of Coleoptera, but share a requirement for ATP,
Mg2+ ions and oxygen to produce light at 478 nm. Fridericia
luciferin was revealed to be an unusual peptide consisting of a
modified tyrosine residue, γ-aminobutyric acid, lysine, and oxalic
acid residues (Figure 1). The overall mechanism of Fridericia
bioluminescence shares similarities with D-luciferin, proceeding
through ATP-dependent oxidative decarboxylation of the lysine
moiety (Dubinnyi et al., 2015a). However, unlike in the case of
beetle oxyluciferin, the conjugated π-system of Fridericia light
emitter (a modified tyrosine residue) remains unchanged during
bioluminescence reaction.

An unusual number of modified peptides structurally
analogous to Fridericia luciferin were found in F. heliota
luminescent tissues allowing Dubinnyi et al. (2015b) to propose
two putative luciferin biosynthesis pathways. Currently the
luciferase, presumably containing an adenylation domain,
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necessary for oxidation of the F. heliota luciferin and the enzymes
responsible for luciferin biosynthesis, remains unknown.

Odontosyllis BIOLUMINESCENCE
SYSTEM

The small polychaetes Odontosyllis undecimdonta
luciferin-luciferase system is the latest addition to the list
of known bioluminescence reactions. Odontosyllis worms display
green bioluminescence (510 nm), correlated with the lunar cycle.
In 2018 and 2019, respectively, the structures of Odontosyllis
luciferase (Mitani et al., 2018; Schultz et al., 2018), luciferin
(Figure 1) and oxyluciferin, both containing tricyclic thieno[3,2-
f ]thiochromene core, were reported (Kotlobay et al., 2019). The
newly discovered enzyme has proven to be non-homologous
with other known luciferases, suggesting a distinct evolutionary
origin of Odontosyllis bioluminescence.

Along with the identification of Odontosyllis luciferin
Kotlobay et al. (2019) also reported the discovery of a tricyclic
luciferin precursor, termed compound 476, in the Odontosyllis
biomass, thus allowing the researchers to propose a potential
biosynthetic pathway. The suggested pathway starts from
a common tyrosine metabolite L-DOPA, which undergoes
oxidative coupling with 2 cysteine molecules, sulfation, and
transamination, followed by spontaneous dehydrative cyclization
leading to the formation of luciferin (Kotlobay et al., 2019).
Three enzymes: tyrosinase, phenol sulfotransferase, and
transaminase, were proposed to play the key roles in each step
of Odontosyllis luciferin biosynthesis (Kotlobay et al., 2019);
however, no experimental evidence has yet been obtained to
support these claims.

UNDER-INVESTIGATED
BIOLUMINESCENCE SYSTEMS

Apart from luminescent beetles (Coleoptera), the ability to
emit visible light is also found in the insect family Keroplatidae
(Diptera), including subfamilies Arachnocampininae and
Keroplatinae (Viviani et al., 2020). These Keroplatidae
subfamilies possess biochemically distinct bioluminescence
systems both from each other and from that of Coleoptera, giving
no cross-reactions of enzymes or substrates (Viviani et al., 2002).
The plausible structure of Arachnocampa luminosa luciferin
was been recently reported to be a derivative of xanthurenic
acid and tyrosine, while the luciferase was found to belong to
the CoA-ligase superfamily (Watkins et al., 2018). Within the
Keroplatinae subfamily luciferin, termed keroplatin, was found
in both luminous and non-luminous species thus suggesting
additional biological functions for this compound, however, no
chemical structure was determined as yet.

Dinoflagellates (protists) and Euphausiids (krill) utilize two
structurally similar tetrapyrrole luciferins (Figure 1), suggesting
dietary dependence on dinoflagellate luciferin in krill (Haddock
et al., 2010). Moreover, chemical structure of tetrapyrrole
luciferins is similar to that of chlorophyll, a molecule that has
long been hypothesized to be the precursor for dinoflagellate

luciferin (Topalov and Kishi, 2001; Wu et al., 2003). However,
the discovery of the plastid tetrapyrrole biosynthetic pathway
in both photosynthetic and non-photosynthetic bioluminescent
dinoflagellate species implies that luciferin might not be
derived from chlorophyll, but originates from an earlier
intermediate in its biogenesis (Janouskovec et al., 2017).
Dinoflagellate bioluminescence is triggered by electrical or
mechanical stimulation and is thought to serve a defensive
function (Haddock et al., 2010), while the exact ecological role
of light emission in Euphausiids is yet unclear.

Two most mysterious known luciferins belong to
bioluminescence systems of freshwater limpets Latia neritoides
and Diplocardia longa earthworms, wherein the luciferins
were identified as (E)-2-methyl-4-(2,6,6-trimethyl-1-cyclohex-
1-yl)-1-buten-1-ol formate (Shimomura and Johnson, 1968)
and N-isovaleryl-3-aminopropanal (Ohtsuka et al., 1976),
respectively (Figure 1). Even though the structures of
these compounds were identified the mechanisms of their
bioluminescence and the nature of light-emitting species are yet
to be determined.

CONCLUDING REMARKS

It is curious that chemically identical luciferins can be used
as substrates by numerous independently evolved luciferases
in phylogenetically distant organisms. The most prominent
example of this phenomenon is coelenterazine, which is the most
prevalent light emitter in marine ecosystems (Haddock et al.,
2010; Kaskova et al., 2016; Lau and Oakley, 2021). One of the
explanations for this convergence is that in some cases luciferin
is not synthesized in situ but is acquired exogenously through
the diet (Frank et al., 1984; Haddock et al., 2001; Mallefet et al.,
2020). On the other hand, the significant mismatch between a
small number of natural luciferins and a large number of unique
luciferases highlights the inherent challenges in biosynthesizing
luminogenic substrates. Evolution has contrived relatively few
biochemical solutions to this problem, with a surprising number
of luciferins belonging to a class of small modified peptides, often
comprising aromatic amino acids (L-tyrosine, L-tryptophan, and
L-phenylalanine) and L-cysteine (Figure 1).

The classical enzyme-centric hypothesis stipulates that
bioluminescence might have arisen in relatively hypoxic marine
environments as a way to remove oxygen on the cellular level,
with ancestral luciferases originally acting as mixed-function
oxygenases and light being a non-functional byproduct at the
time (Widder, 2010). Current evidence revealed that in many
instances the main function of luciferases is not that of efficient
oxygenation, but rather to provide the environment for optimal
luciferin chemiluminescence, with many organisms co-opting
enzymes catalyzing non-related reactions as a starting point for
the evolution of luciferases (Viviani, 2002; Loening et al., 2006;
Dubinnyi et al., 2015a; Watkins et al., 2018; Delroisse et al.,
2021). Although the enzymatic function of the ancestral proteins
is often unknown, it is clear that not all luciferases originate
from oxygenases but, rather, luciferins themselves drove the
emergence of new oxygenase functions and shaped the evolution
of bioluminescence.
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Currently no definitive hypothesis exists on the origins
of luciferins. What selective pressures might have driven the
emergence of luciferin biosynthetic pathways, and were the
luciferins and their biosynthetic precursors of use in ancestral
organisms? One hypothesis suggests that luciferins evolved from
detoxification systems as some substrates show characteristics
of strong antioxidants (Rees et al., 1998; Timmins et al.,
2001; Dubuisson et al., 2004). Derived from tyrosine and
cysteine, biosynthetic pathways of D-luciferin and Odontosyllis
luciferin might have arisen from a mutation-induced deviation
of the melanogenic pathways to provide photoprotection
against free radical species, particularly reactive oxygen species
(Napolitano et al., 2013). No such evidence, however, exists for
dinoflagellate, Fridericia, Diplocardia, and fungal luciferins and
their precursors. Elucidation of complete luciferin biosynthetic
pathways and progress in sequencing and characterization of
luciferin metabolic pathways genes and luciferases is needed
to explore the likelihood of the “oxidative stress protection”
hypothesis in bioluminescent organisms.

Various luciferases have been incorporated into a diverse
array of cell types and long been used as reporter tools

for tracking gene expression patterns and cell movements in
research animals (Love and Prescher, 2020). The knowledge of
all enzymes participating in bioluminescence cascades opens
the possibility of engineering organisms with self-sustained
luminescence, thus allowing the development of substrate-
independent bioluminescence-based reporter technologies (Syed
and Anderson, 2021). Apart from practical importance the
exploration of luciferin biosynthetic pathways promotes our
understanding of the origins and function of bioluminescence
and provides new insights into ecological significance of this trait.
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