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Abstract
The purpose of this paper is to construct the asymptotic for natural frequencies of the shallow water
problem using the method of Wentzel-Kramers-Brillouin (WKB) and find the secular equation for
the eigenvalues.
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1 Introduction

Many applications related to water waves involve shallow water equations. It includes dam break
wave modeling, the breaking of waves on shallow beaches, tides in oceans, surges, flood waves in
rivers and seiches in lakes. It can be found in [1], [2] and [3]. Therefore, this paper focuses on the
WKB method for seiches. For the equation of the shallow water wave with a uniform small parameter,
one can use the method (WKB) Wentzel - Kramers - Brillouin [4], also known in the literature as the
approximation Liouville - Green. In [5], WKB method was used for finding asymptotic high frequency,
this method is to obtain asymptotic series for solutions powers with a small parameter.

In the next section one takes the shallow water equation.

2 Mathematical Formulation

In this section we find the approximate solution as a linear combination of two linearly independent
solutions. Substituting solution in boundary conditions, a homogeneous system of two equations is
obtained. This system has non-trivial solutions when the determinant is zero.
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2.1 Shallow water equation

In [6], it is obtained the shallow water equation

Φtt − g∇
(
d(x, z)∇Φ

)
= 0, (2.1)

where ∇ = (∂x, ∂z), g is the gravity acceleration, d(x, z) is the water depth and Φ is the free surface
elevation. The coordinates x and z are the horizontal coordinates. (See Figure 1 for the geometry of
the problem)
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Figure 1: Geometry of the problem

Looking for the solution of shallow water equation in the form, Φ = exp(iωt)Ψ(x, z), where ω is
the frequency, for Ψ we obtain:

−∇(d∇Ψ) = λΨ, λ = ω2/g. (2.2)

Assume that d describes the bottom that is parallel to the axis z: d(x, z) = h0 + V (x), and V (x) ∈
C∞0 (R).

Looking for the solution of (2.2) in the form Ψ = exp(−ikz)ϕ(x), where k is the wavenumber. We
obtain the equation

− h0ϕ
′′ − (V ϕ′)′ + k2(h0 + V )ϕ =

w2

g
ϕ, (2.3)

where “prime” means derivative with respect to x.
The boundary value problem is

−h0ϕ
′′ − (V ϕ′)′+k2(h0 + V )ϕ =

w2

g
ϕ. (2.4)

ϕ′(0) =ϕ′(l) = 0. (2.5)

The discrete spectrum of the problem (2.4)-(2.5) constitutes a sequence wn of real numbers
tending to infinity when n → ∞. Hence, we can consider ω2 = 1

ε2
, where ε → 0 [5]. Therefore the

problem (2.4)-(2.5) becomes
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−h0ϕ
′′ − (V ϕ′)′+k2(h0 + V )ϕ =

1

ε2g
ϕ. (2.6)

ϕ′(0) =ϕ′(l) = 0. (2.7)

In the next section we calculate the secular equation of the problem (2.6)–(2.7).

3 Main result

This section states and solves the problem of shallow water waves at high frequency, which is applied
the WKB method.

The mathematical formulation of the problem is the searching for nontrivial solutions of the
problem (2.6)–(2.7).

The main result is as follows

Theorem 3.1. The eigenvalues of the problem (2.6)–(2.7) are given by w2
n = 1

ε2n
, with

ωn =

(
nπ∫ l

0
a−

1
2 (x)dx

)(
1 +O

(
1

n

))
, n = 0, 1, . . . , n→∞,

where εn = L
nπ

, L =
∫ l
0
a−

1
2 (t)dt and function a−

1
2 (x) = (g(h0 + V (x)))−

1
2 .

Proof. Given that ω2 = 1
ε2

then equation (2.6) can be transformed into

ϕ = ε2g(−h0ϕ
′′ − (V ′ϕ′ + V ϕ′′)+k2(h0 + V )ϕ). (3.1)

Following the traditional WKB method, the analytical solution approximates equation (2.6) can be
replaced by a power series given by the following

ϕ(x) = A(x, ε)e
iφ(x)
ε , ε→ 0, (3.2)

where
A(x, ε) = A0(x) + εA1(x) + ε2A2(x) + . . . , ε→ 0, (3.3)

with φ(x) and Aj(x), j = 0, 1, 2, . . . are smooth functions and unknown.

Replacing (3.2) and each of the derivatives of v(x) in (3.1), we have the following expression

A(x, ε) =g[(h0 + V (x))φ2
x(x)A(x, ε)− iε(2(h0 + V (x))φx(x)Ax(x, ε) (3.4)

+ (Vx(x)φx(x) + (h0 + V (x))φxx(x))A(x, ε))] +O(ε2)

=g[(h0 + V (x))φ2
x(x)A(x, ε)− iε

(
2(h0 + V (x))φx(x)Ax(x, ε) (3.5)

+ ((h0 + V (x))φx(x))′A(x, ε)
)
] +O(ε2), ε→ 0.

Replacing (3.3) on both sides of (3.4) we obtain
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A0(x) + εA1(x) + ε2A2(x) + · · · = g
[
(h0 + V (x))φ2

x(x)(A0(x) + εA1(x)

+ε2A2(x) + · · · )− iε
(
2(h0 + V (x))φx(x)(A0x(x) + εA1x(x) + ε2A2x(x) + · · · )

)
+
(
(h0 + V (x))φx(x)

)′(
A0(x) + εA1(x) + ε2A2(x) + · · ·

)]
+O(ε2)

=g(h0 + V (x))φ2
x(x)A0(x) + ε

[
g(h0 + V (x))φ2

x(x)A1(x)

− 2ig(h0 + V (x))φx(x)A0x(x)− ig
(
(h0 + V (x))φx(x)

)′
A0(x)

]
+O(ε2), ε→ 0. (3.6)

Equating the coefficients of the asymptotic series in ε and taking corresponding to ε0 in (3.6) and
using that A0 6= 0 as seen in the equation (3.10), it can be obtained

ε0 :g(h0 + V (x))φ2
x(x) = 1. (3.7)

From equation (3.7) and choosing the corresponding equality to ε1 in (3.6), we obtain

ε1 :2(h0 + V (x))φx(x)A0x(x) + ((h0 + V (x))φx(x))′A0(x) = 0. (3.8)

By equating the asymptotic series, more equations are obtained. We consider only the first two ones,
because other equations are of order O(ε2). Since equation (3.7) has two real roots with opposite
signs, we obtain

φk(x) = (−1)k
∫

(g(h0 + V (x)))−
1
2 dx, k = 1, 2. (3.9)

From the equation (3.8) and separating the functions A0(x), (h0 +V (x))φx(x) and integrating on
both sides, it follows that

A0(x) = C((h0 + V (x))φx(x))−
1
2 , (3.10)

where C is a non-zero arbitrary constant. Therefore, differentiating with respect to x in the equation
(3.9) and substituting (3.10), function A0(x) can be expressed as follows

A0(x) = C(h0 + V (x))−
1
4 . (3.11)

Therefore, replacing (3.9) and (3.11) in (3.2) which is the solution v(x) of (2.6), we have

ϕ1(x) = d1(h0 + V (x))−1/4 sin

(
ψ1(x)

ε

)
+O(ε), ε→ 0, (3.12)

ϕ2(x) = d2(h0 + V (x))−1/4 cos

(
ψ1(x)

ε

)
+O(ε), ε→ 0, (3.13)

and writing the solution (2.6) as the first term of the linear combination of v1(x), v2(x)

ϕ(x) = (h0 + V (x))−1/4

(
c1 cos

(
ψ1(x)

ε

)
+ c2 sin

(
ψ1(x)

ε

))
, (3.14)

ε→ 0, where

ψ1(x) =

∫ x

0

a−
1
2 (t)dt, a−

1
2 (x) = (g(h0 + V (x)))−

1
2 , (3.15)

and c1, c2 are constants. It is noted that sin
(
ψ1
ε

)
, cos

(
ψ1
ε

)
, are linearly independent.
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Solution (3.14) and boundary conditions (2.5) yield a homogeneous system of two equations for
two constants ci, i = 1, 2. This system has nontrivial solutions when∣∣∣∣ 0 1

−sin (L
ε

) cos(L
ε

)

∣∣∣∣ = 0, (3.16)

where

L =

∫ l

0

a−
1
2 (t)dt. (3.17)

The equation (3.16) is the secular equation for natural frequency ωn = ε−2
n .

Therefore

sin

(
L

ε

)
= 0, ε→ 0, ε = εn =

L

nπ
(3.18)

then

ωn =

(
nπ∫ l

0
a−

1
2 (t)dt

)(
1 +O

(
1

n

))
, n→∞, n = 0, 1, . . . .

From (3.18) and initial conditions, it follows the eigenfunction is

ϕn(x) = c3(h0 + V (x))−1/4cos
(
ψ1(x)

εn

)
,

where c3 is an arbitrary constant.

4 CONCLUSIONS
This paper contains three sections providing several new ideas in the theory of shallow water waves.

a In the section (1), we have introduced seiches and WKB method.

b In the section (2), we have studied the shallow water equation for seiches.

c In the section (3), we have obtained the eigenvalues and eigenfunctions that appear in seiches.

.
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