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Abstract

In this paper, we consider a t-species ratidependent predat-prey system with fre
diffusion and discrete time delay. We study the asymptoive@e speed to give the necessary
condition on the front speed, and prove that the travelingewsolution by combining th
approach introduced by Canosa with the method of upper and kmhgions is monotone.
Finally, we give a conclusion to summarize the achieveménie avork.
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1 Introduction

In the natural world, there are many species whose individuadbes have a life history that
takes them through two stages: immature and maturl, assome amphibious animals, which
exhibit the above two stages. To investigate the above femggophenomenon of species, some
researchers introduce one delay or many delays to the-Maolkarra equations [1-5] to obtain
delayed ordinary differential equations (DDEs, or callad rbtarded functional differential
equations (RFDES)). For the details, one can refer i®]&nd so on.

Also, we remark that the specie's diffusion, which i$ &@h specie's natural tendency is to move
from the areas of bigger population concentration to onemaller population concentration, is
an important phenomenon of species. So, following the autifdil1-17] to add diffusion terms,
and considering the stage structure, we derive the foltpdelayed reaction-diffusion equations:
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- D, =au(x 9= yu(x §-a & y( X £7),
Ny e G DX )
D, =ae” ux )= pi(x)- SAEILE

o _ _ fu(x9 (LD
D,Av = v( X B)( d+u2(>gt)+ )

ot
U,(% 0)=4,(%)> 0,V(x,0)= ¢, (> 0,

u,(X t)=¢,(x,t)=0,-T1<t< 0,

wherel, (X, t), U, ( X t)represent the densities of the immature and mature prey iopala
respectively;V(X, t) represents the density of predator populatbr? 0, is the transformation
coefficient of mature predator populatiame_yruz(t— T) represents the immatures who were
born at timet — 7 and survive at timd (with the immature death ratif), and 7 represents the

transformation of immatures to mature§ >0, is the birth rate of the immature prey
population;)/ > O.is the death rate of the immature prey populaﬁrPO represents the

mature death and overcrowding rate; the positive constag, Dl and D2 are called
diffusion coefficients,d >0,m> 0 and XU[! . The initial data @, (X),#,(X) and
¢3(X, t)(—7 < t < 0)are bounded and piecewise-continuous with a finite numbevinfspof

discontinuity.

By the way, such models or similar models involving delayd free diffusion are increasingly
applied to a variety of situations, such as infectiousadiselynamics, porous medium, chemical
reaction, engineering control theory and others fields.

Note thatU, (X, t) and V( X, t) are independent dfl, ( X, t) but determinél, ( X, t), hence, we
can obtain the behavior of the solutions of the sy{fbrﬂ.)by studying the subsyste@l.Z).

Denotell, (X, t), V(X )by U, (X, 1), U, (X 1), respectively, and so is the initial data, then we
get
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oy, _ — et A _ Gu(x9)u(x9

at DAy, =ae” u(x t-7) ﬂlf(XD ul(x,t)+mg(xb’

ou, _ _ _ fu(x 9

o DAz = Ua(X ) d+u1(m)+ ng(xt))’ 1.2)
u,(x,0)=¢@, (x,0),u (x,t)=p, (x,t),Xd R-7< & 0.

Before proceeding further, let us nondimensionalize the sy{ﬂe.rﬁ) with the scaling
U, =pu,U,=mBu, T= tand denott),,U,,T by U, U,, t, respectively, we have

oy _ = -7 - _bu(xdu(x)

5 DAY, =au(x t-7)— E(% 9 LD+ (X0

ou, _ . fu(x 1)

St D,Au, = u,(x t)( d+—u1(x,t)+ (X t))’ 1.3

u,(x0)=¢,(x,0),u (x,t)=p, (x,t),Xd I-7< £ 0,

whered =@ €, b= &,

m
The existence of traveling wave solution of the sys(flan@)is difficult and interesting problem
[18]. Motivated by the results of [18], we study the extise of traveling wave solution of the
two-species delayed syste(ri.?)). The key idea is to couple the uniformly approximated
approach introduced by J. Canosa in [19] with the methodpp&r and lower solutions. The
difficult issue is to construct the upper and lower solutiohthe syster(1.3)which has some
suitable continuity.

The remaining parts of this paper are organized as fslldw Section 2, we prove that the
traveling wave solution of the systs(ﬂq.3)exist and appear to be monotone. Finally, we draw a
conclusion summarizing the overall achievements of the work.

2 Traveling Wave Solution

2.1 Asymptotical Stability of Nonnegative Equilibria

Firstly, we discuss the asymptotical stability of thennegative equilibria by the linearized
method. It is easy to check that the sysl(—ikm3) has an equilibriurEl(a, 0)and a unique the
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(a-b) f+bd

positive equilibrium E,(c/,¢) if f >d and %+%>1 where ¢’ = :

02D — (f _d)ciu_

d
To use the linearized technique [7], we Beft) = (u (X t),u,(x ) -E(i=12)and
U=Ut+8)(-Tr<8<0) , so we get the partial functional differential equation
inCLJ C([-T, O] : R)as follows

%u (t) = DAU (t) + N(7)(U,) + f,(U (1), 7), (2.1)

whereD = diag(D,, D,), f,: Cx R - Ris a nonlinear operator,an(7):C - Ris a
linear operator given by

- t;(CE)DZ > 9,(0)— ) > #.(0)+ag,(-7)- 26,6,(0)
N(7)(®) = :C(l )CZ) :?ﬂ )‘5) o
_1(G) 3 0)-dg¢,(0
@y O (g gz 0740

forall ¢ =(¢,,¢,)0C.

0
So, the characteristic equation for the linear equblift) = DAU (t) + N(7)(U,) is equivalent
to

2
(/H,ukD —ae" +2¢+—2— b(c,) J

(C_L+C2)
F@) ). bA(EE)?
A+ D, +d-—2) =0, 2.3
(”’ ’ (qw)} G+ o) (23)

wherey4, (k =1,2,3;--)is the eigenvalues of the operataf\ onQ with the homogeneous
Neumann boundary condition such tpat< i, < ff, <--- < [ <---

By determining the sign ofl of (2.3) at the equilibriunks; (I =1,2), omitting the detailed
derivation (for the similar case, one can refer to[h@] have
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Theorem2.1. Ifaf > max{ 2ad, Db (f- d} , then the positive equilibriunE, (¢, C,) is
locally asymptotically stable; if > d then the equilibriuniE, (@, 0)is unstable, moreover, if
f <d then the equilibriuntc, (&, 0)is locally asymptotically stable.

2.2 Asymptotical Wave Speed of Traveling Wave Solution

To seek a pair of traveling wave solution of the sylstél..?)) of the form

u(xt)=@(9, bL( % =@ ( 9,withs= x+ ctandCis the wave speed. So, we have
(9) - ad(§ - 7 ( 3-LAOB(S. -
(9= (3¢9~ T2 T+ (s D=0

ey _ fasa(s _
D49~ (9~ dp( 3+ AT <o, 2.4)

@(-0) =0, (+0) =}, ¢, (~) = 0,9, (k» )= C,.

For the system(2.4), we are interested in the minimurewaeed and it will decrease or increase
when delay varies. Next, we give a necessary condition oindhiespeed ahead of the front for

O
the case 08 — —o0. To do this, we seek the solutions of the proportion{l%gj e to get

D

s SAT —
DA*-cA-c€® - +Cz+ae =0, (2.5)
|
DA’ —cA-d+—a_=0. (2.6)
G +e

a(s)
%(s)

necessary for (2.5) and (2.6) to have some real positits. 190, if7 is zero, thenCand A satisfy
0

DA -cd-—2% _+a=0 (2.7)
¢+

Using (2.7)and (2.6), we have
O 0
c=D, |—3  j=—_D2G (2.8)
D,-D, c¢(D,-D)

In order to have a fronE ]that tends td asS — —oo without oscillating, it will be
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which need®, > D, .
For smalll’, using(2.5) and(2.6),we get

(D,-D)A2=c’-a@l-e"P")= ¢~ a? Dr (2.9)

Using(2.6)and (2.9), we have

c Q
A= |—=2  _¢=D,|— 2 (2.10)
aD,r+D,- D, aD, + D,- D,

Thus, we see that the wave is slowed down by the stalal/7 .
2.3 Monotone Traveling Wave Solution

In the subsection, we discuss the existence of monotone hgwvedive solution by constructing a
uniformly valid asymptotic approximation to the wavefroffidlowing the approach of [19]),

. . . " S .
which connect the zero solution with the positive steaalgstet/) = \/ES =—and seek a pair
C

of solutions of the following form

(q(s)lem)} 2.1
@(s)) @,
Substituting (2.11)into (2.4) yields
" , 2 by (7),(17) _
D - - - -7)=0,
DY) —wi(m) -3 (n) L0+ +ay,(n-1)
] , ANAW)
D - -d — P avl’ =, 2.12
EDAYS () — @) —dwr, () + L+ 00) (2.12)
401(—°°) = 0#’1("'00) = Clu#’z(—w): 0#/2("'00 ): CDZ'

Denote

W (7,€) =) + Y () +- 0 (7, €)= (1) + EY 1)+, (2.13)

Substituting (2.13) into (2.12) by grouping the same ordef offor the cases’ we have
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! = —7) —//2 _ U//m(ﬂ)l//zo(ﬂ)
Uior) =y =) ~idm) = Fe LS

D f (MW ,0(17)
=—d 10 20 ,
l//ZO(n) l//ZO(”) * 1/’10(’7) + ‘/’zo(’?) (2 14)

1/110(_00) = 0’[//10(+00) = C?J// 20(_00) = 0#’ 20(+O° ): CDZ-

1
Remarks 2.1 For the case of large endiigthat is, £ = — is a small parameter. So, the system
C

(2.14) is uniformly valid asymptotic approximation to the egs(2.12).

For convenience, dendf,(17), &/ ,,(17) by, (17).4/,(17) , respectively, then we get

! = w4 — ) 2 _ l:1:[/1(’7)1;[/2(’7)
w(m)=ae”y,(n-1)-¢: () )+ i)

Loy i (M. (7)
=—d — PN
W, () = —dy,(n7) + ) +.) (2.15)

lﬂl(—°°) = 01‘//1(+°°): Clm#’z(—w): 0#/2(+°° ): CDZ'

Theorem 2.2 Ifaf = max{ 2ad,2b(f- d} then the positive solution of (2.15) is
nondecreasing fofy [] (—oo, +00).

Proof: Follow the method of [20] and [21], we show thaik& of upper and lower solutions

(1/71(0),(/72(/7))T and(%l(q),%z(ly))T exists. To do that, we define the set

r ={z//DC(R, Rz):qllr[lmtp =0,limy = ¢'= (¢, &)}.

n - +o

wherel// is nondecreasing il , andy/ = (Zl (U)J

Define
[m} (u}
%e*”,nso, %e"”,nso
@,(n) = . @,(n) = . (2.16)
CE—?le‘””,/7>0, (f—% e n>o0,
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Where
A> max{ae‘” ,d,2c§} (2.17)

Using (2.16), we have

|
/];1 /W,,7<0 ATQ@”,HS 0,
wim =1 2. = (2.18)
2% e o, “Z2eMpn>0.
2 e 2 €A
()

From (2.18), we know thed/ ( LI, Next, we check tha@ is an upper solution of
W, ()

(2.15). Substituting (2.18) into the system(2.15) and usirig)2for /7 < 0 we have

P _ 2 bz, () @,(17)
gy(n) —ae”@,(n r)+4ﬁl(/7)+—l/_/1(,7)+ 7.0
Acl eﬂn aCLD e(w SAT _|_((l1j éﬂ)Z bff@é”
26 +¢)
&De"[/} a+C1e?”+ bcg}
2 2 C+c,
Y Y LW b<f ¢ \
=3 [/] al 5 (1 )}0 (2.19,
and
: f@g,mg,(n) _c, fc,
2 ag, - . 2 =2e"| A+ d- 0 lD
T D = oy v ) 2 { ' cwcj

=Ac,e” >0 (2.20)

Forf) > T, we obtain

642



British Journal of Mathematics & Computer Scien¢4)3635-648, 2013

4171’(/7) - a[’Zl_l(” - T) +4712(,7) + W1(’7)¢72(I7)

gi(n)+@,(n)
O - yr
> C?le—/]q + aez ClDe—/](ly—r) _ ( (15)2 e—/l/] + (% é/l17)2
0.0 sAn
- bac oy, bag (€7
C1 + CZ Cl + Cg 2
O ]
> &g [/1 +ae e -2¢ - %b(‘?m}
2 C,/+¢C,
O
= G g [A+ae” € -2ae]>0.
2 (2.21)
As for the cas@ <77 < T, using (2.17), we get
: by, (M@, (17)
@) —a, (7 — 1) + @5 (7) + =BT
' ' AR A
O — 0
Zie—my + ae 4 qDe_,\(”-r) _( (Iu)z émy +(i é(m)z
2 2 2
0 -2
e Ly, bEE e,
G+ G+G 2
O
>Sem| Jrgerd -2 ¢- gbdﬂ
2 G +G
O
=S g [A+ae” € -2ae”
2
>0. (2.22)
_ _ bc, _ o _
during the calculation we use the faﬁ+ D+C2D—aand the following inequality
G
mm___mm
,m>m>0,m> m>0. 2.2
m+m  m+m (223

Similarly, using (2.23) and (2.17), we have
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] _ fl,Z/_l(I7)lZ72(I7) ACE —An _dcg SAn _ f(fidg
PG g 2 O T ¢ g
:A_sze_"’] —E g™ :g e‘A”(A - ()

2 2 2
> 0. (2.24)

From the above discussion, we have showr{/h'exta pair of upper solutions. Next, we show that

T
Y= ((//1 (/]) W, (/])) is a pair of lower solutions. To this end, we define

Eee n<o,

f-ge M. 20 and ¢ ,(77) =0, (2.25)

W) = {

where

0<e<min{d(<a)fae™ - Aé} ,0< ), < ae™ (2.26

andfis small enough.

From the definition(2.25), we get

A &ee, ifn <0,

_ (2.27)
Aéee™, ifn=0

AN {

Using (2.26)and(2.27), fdd < /] <T we have

by (my,(17)
Y (m+y (1)
=\éce ™ —ae” e ) + (e - e €7)? (2.28)

<e(Aé-ase’ +e)
<0

W ) -a (7 -1)+ @ () +

Andfor /) 2 T , we have
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: i ( y,(n)
W, (n)-ae”y(n-1)+(w,(n =2
=Aéee™ —ae” (5 - & e'”l(”")) + (5 - & e”l”)
<0. (2.29)
For 7 <0, we get
DN . ARG)
Y. m-ae”y (o ﬂﬂ%w»+26ﬁﬁjﬁ
=)\ ee” —ae"écéV T + (b &)
< éee [/11 —ge’ + EE]
<0. (2.30)

From(2.26), we know thaf < Cl* , which implies that// < {// holds.

Next, we check that the right terfn((//) = ( f, (l//), f, ((//))T is qusi-monotone, where

f(y)=ap,(-7)-w:(0)- ( ()4)_(//2(( ))

(0) = (0)+ N0

(2.3)

W,) 0c([-7.002).
( ) for HD[—T,O] and there exists a positive
o

) ( (0)_‘//1( O)) ,then we have

Forp= ( )and(/I:( Y.,
if O<l//( c =

S
constan® such tha@( )
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i f 2(0)(0) 0, (0, (0)

£,(0) - £,) = -d@0)+ BB | 4 (0)- £ OW,0)

A=) =020 0y v a0 Y0 0w, 0
f @ (0W4 (0)

=-d(¢(0)-,(0 0)-¢, (0
(@0)-¢,( ))+(¢1(0)+¢2(0))(1//1(0)+1//2(0))(%( )=%,(0))

e 0)-¢,(0))= -d @ (0)-¢,(0)).  (2.32
(@(0)"'@(O))(401(0)+4[/2(O))(¢1( )=~ ¢,(0))= —d (¢ (0)-¢,(0)) ( )

Takingé-2 > d and using (2.32), we have

f2 (@ - fz(‘//) + 52(#2 (0) _‘//2(0))

2 (9, ~d)(& (0)-¢,(0))

>0. (2.33)
Similarly, taking 51 = ZCI + b+ b and using (2.31), we obtain

f.(@) - 1.@) + 4(@(0) - ¢.(0))
2 (0~ 26/~ b- 1)@ (0)-¢,(0))
>0. (2.34)

Taking 0= (51, JZ)T , we have

fo(@) =~ f.(@) +o(¢A0)-¢(0))2 (0 -B)@(0)-¢(0))z O, (2.35

wherel is a2 X 2identity matrix andB = diag(2¢’+ b+ &', d)..

From [20], we know that there exists at least one solutigheirset]” . The proof of the theorem
is completed.

3 Conclusion

S.A. Gourley and Y. Kuang pointed out that the existenosanfefront solutions for this single

specie model in[18] is an open question. In the paper, weédeved the asymptotical behavior of
traveling wave solution of a two-species delayed pmdaty system for the case of large
enough wave spee@.

The free diffusion has no effect on the monotone propertyaskling wave solution of a two-
species delayed predator-prey system when the wave speadyésednough. However, from

Subsection 2.2 we know that the signDE - Dland the delayl affect the wave speed, which
is an interesting problem.
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