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Abstract
In this paper, we mainly study the boundary behavior of solutions to boundary blow-up quasilinear
elliptic problem {

div(|∇u|m−2∇u) = b(x)f(u), x ∈ Ω,
u|∂Ω = +∞,

where Ω is a bounded domain with smooth boundary in RN , m > 1, b ∈ Cα(Ω̄) which is positive in
Ω and maybe vanishing on the boundary and rapidly varying near the boundary.

Keywords: Large solutions, quasilinear elliptic equation, boundary blow-up, asymptotic behavior.
solution.
2010 Mathematics Subject Classification: 35J65; 35J25

1 Introduction and the main results

In this paper, we plan to investigate the exact asymptotic behavior of solutions
near the boundary for the following problem{

div(|∇u|m−2∇u) = b(x)f(u), x ∈ Ω,
u|∂Ω = +∞, (1.1)

where the last condition means that u(x) → +∞ as d(x) = dist(x, ∂Ω) → 0,
and the solution is called “a large solution” or “an explosive solution”, Ω is
a bounded domain with smooth boundary in RN (N ≥ 2), m > 1. The
functions b and f satisfy
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(b1) b ∈ Cα(Ω̄) for some α ∈ (0, 1), is positive.
(f1) f ∈ C1[0,+∞), f(0) = 0, f is increasing on [0,+∞);
(f2)

∫∞
1

dv

f
1

m−1 (v)
<∞;

(f3) there exists Cf > 0 such that

lim
s→+∞

f
1

m−1
−1(s)f ′(s)

∫ ∞
s

dv

f
1

m−1 (v)
= Cf .

(f4) f satisfies Keller-Osserman condition∫ ∞
1

(

∫ u

0

f(s)ds)−1/mdu <∞.

Quasilinear elliptic problems with boundary blow-up{
div(|∇u|m−2∇u) = f(u(x)), x ∈ Ω,
u|∂Ω =∞, (1.2)

have been studied, see [1-4] and the references therein. Diaz and Letelier
[1] proved the existence and uniqueness of large solutions to the problem(1.2)
both for f(u) = uγ, γ > m − 1(super-linear case) and ∂Ω being of the class
C2. Lu, Yang and E.H.Twizell [2] proved the existence of Large solutions
to the problem(1.1) both for f(u) = uγ, γ > m − 1,Ω = RN or Ω being
a bounded domain (super-linear case) and γ ≤ m − 1,Ω = RN (sub-linear
case) respectively.Quasilinear elliptic equation (system) with Dirichlet problem
and other problem has been studied, see [1− 15].

When m = 2, problems (1.1) becomes

∆u = b(x)g(u), x ∈ Ω, u|∂Ω = +∞. (1.3)

The problem (1.3) arises from many branches of mathematics and applied
mathematics, and have been discussed by many authors and in many contexts.see[16-
36].

Now we introduce a class of functions. Let Λ denote the set of all positive
nondecreasing functions in C1(0, δ0)(δ0 > 0) which satisfy

lim
t→0+

d

dt
(
K(t)

k(t)
) := Ck ∈ [0,∞), K(t) =

∫ t

0

k(s)ds. (1.4)

The set Λ was first introduced by Cr̂stea and Rǎdulescu [23] for studying the
boundary behavior and uniqueness of solutions of problem (1.3).

In this paper, we will investigate the exact asymptotic behavior of solutions
near the boundary for the problem (1.1), when m = 2, Zhijun Zhang [37]
have studied the boundary behavior of solutions of problem (1.3) for more
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general nonlinearities f . Our result generalize and improve the corresponding
result of [37] in some sense. In the second section, we will give some
preliminaries for the main result, in the last section, we will give the proof
of the main result.

Our main result is summarized in the following theorem.
Theorem 1.1. Let f satisfy (f1),(f2),(f3) and b satisfy (b1) and (b2), where

(b2):

lim
d(x)→0

(−1)mb(x)

Km−2(d(x))km(d(x))
= b0. (1.5)

If
2Cf + (m− 1)Ck > 2(m− 1), (1.6)

then for any solution u of problem (1.1) satisfies

lim
d(x)→0

u(x)

ψ(τ0K2(d(x)))
= 1, (1.7)

where ψ is uniquely determined by∫ ∞
ψ(t)

ds

f
1

m−1 (s)
= t, ∀ t > 0, (1.8)

and
τ0 =

1

2
(

b0

2Cf + (m− 1)Ck − 2(m− 1)
)

1
m−1 .

2 Preliminaries

In this section, we present some bases of the theory which come from Senta
[38], Preliminaries in Resnick [39], Introductions and the appendix in Maric
[40].

Definition 2.1. A positive measurable function f defined on [a,+∞), for
some a > 0, is called regularly varying at infinity with index ρ, written as
f ∈ RVρ, if for each ξ > 0 and some ρ ∈ R,

lim
s→∞

f(ξs)

f(s)
= ξρ. (2.1)

In particular, when ρ = 0, f is called slowly varying at infinity.
Definition 2.2. A positive measurable function f defined on [a,+∞), for

some a > 0, is called rapidly varying at infinity if for each p > 1

lim
s→∞

f(s)

sp
=∞. (2.2)
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Clearly, if f ∈ RVρ, then L(s) := f(s)/sρ is slowly varying at infinity.
Proposition 2.1 (Uniform convergence theorem). If f ∈ RVρ ,then (2.1)

holds uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2. Moreover, if ρ < 0, then
uniform convergence holds on intervals of the form (a1,∞) with a1 > 0; if
ρ > 0, then uniform convergence holds on intervals (a1,∞] provided f is
bounded on (a1,∞] for all a1 > 0.

Proposition 2.2 (Representation theorem). A function L is slowly varying
at infinity if and only if it may be written in the form

L(s) = ϕ(s) exp(

∫ s

a1

y(τ)

τ
dτ), s ≥ a1, (2.3)

for some a1 > a, where the functions ϕ and y are measurable and for s →
∞, y(s)→ 0, andϕ(s)→ c0,with c0 > 0.

We call that
L̂(s) = c0 exp(

∫ s

a1

y(τ)

τ
dτ), s ≥ a1, (2.4)

is normalized slowly varying at infinity and

f(s) = c0s
ρL̂(s), s ≥ a1, (2.5)

is normalized regularly varying at infinity with index ρ (and written as f ∈
NRVρ).

Similarly, g is called normalized regularly varying at zero with index ρ
,written as g ∈ NRV Zρ if t → g(1/t) belongs to NRVρ. A function f ∈ RVρ
belongs to NRVρ if and only if

f ∈ C1[a1,∞), for some a1 > 0, and lim
s→∞

sf ′(s)

f(s)
= ρ. (2.6)

Proposition 2.3. If functions L,L1 are slowly varying at infinity, then
(i) Lσ for every σ ∈ R, c1L+ c2L1 (c1 ≥ 0, c2 ≥ 0withc1 + c2 > 0), L ◦ L1

(if L1(t)→ +∞ as t→ +∞), are also slowly varying at infinity;
(ii) for every θ > 0 and t→ +∞,tθL(t)→ +∞ and t−θL(t)→ 0;
(iii) for ρ ∈ R and t→ +∞, ln(L(t))

ln t
→ 0 and ln(tρL(t))

ln t
→ ρ.

Proposition 2.4. (Asymptotic behavior). If a function L is slowly varying
at infinity, then for a > 0 and t→∞,

(i)
∫ t
a
sβL(s)ds ∼= (β + 1)−1t1+βL(t), for β > −1;

(ii)
∫∞
t
sβL(s)ds ∼= (−β − 1)−1t1+βL(t), for β < −1.

Proposition 2.5 (Asymptotic behavior). If a function H is slowly varying
at zero, then for a > 0 and t→ 0+,

(i)
∫ t
a
sβH(s)ds ∼= (β + 1)−1t1+βH(t), for β > −1;

(ii)
∫∞
t
sβH(s)ds ∼= (−β − 1)−1t1+βH(t), for β < −1.
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Our results in this section are summarized in the following.
Lemma 2.1. If f satisfies (f1), (f2) and (f3), then
(i) Cf ∈ [1,+∞);
(ii) If (f3) holds for Cf > 1, then f ∈ NRVCf/(Cf−1);
(iii) Cf = 1, f is rapidly varying at infinity.
Proof (i) Let

J(s) = f
1

m−1
−1(s)f ′(s)

∫ ∞
s

dv

f
1

m−1
−1(v)

, ∀ s > 0.

Integrating J(s) from a(a > 0) to t and integrate by parts, we obtain∫ t

a

J(s)ds = f
1

m−1
−1(t)

∫ ∞
t

dv

f
1

m−1
−1(v)

−f
1

m−1
−1(a)

∫ ∞
a

dv

f
1

m−1
−1(v)

+t−a,∀ t > a.

It follows from the l’Hospital’s rule that

0 ≤ lim
t→∞

f
1

m−1
−1(t)

∫∞
t

dv

f
1

m−1−1
(v)

t
= lim

t→∞

1

t

∫ t

a

J(s)ds−1 = lim
t→∞

J(t)−1 = Cf−1,

i.e.,Cf ≥ 1.
(ii) By (i), we see that

lim
s→+∞

f(s)
sf ′(s)

= lim
s→+∞

f
1

m−1 (s)
∫∞
s

dv

f
1

m−1 (v)

sJ(s)

= 1
Cf

lim
s→+∞

f
1

m−1 (s)
∫∞
s

dv

f
1

m−1 (v)

s

=
Cf−1

Cf
.

i.e.,f ∈ NRVCf/(Cf−1) for Cf > 1.
(iii) When Cf = 1, we see by the proof of (iv) that

lim
s→+∞

f(s)

sf ′(s)
= 0.

Consequently, for arbitrary p > 1, there exists S0 > 0 such that

f ′(s)

f(s)
> (p+ 1)s−1, ∀ s ≥ S0,

Integrating the above inequality from S0 to s, we obtain

ln(f(s))− ln(f(S0)) > (p+ 1)(ln s− lnS0), ∀ s ≥ S0,
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letting s→ +∞, we see by Definition 2.2 that f is rapidly varying at infinity.
Lemma 2.2. Let f satisfy (f1), (f2),(f3) and let ψ be the solution to the

problem ∫ ∞
ψ(t)

ds

f
1

m−1 (s)
= t, ∀ t > 0.

Then
(i) −ψ′(t) = f

1
m−1 (ψ(t)), ψ(t) > 0, t > 0, ψ(0) := lim

t→0+
ψ(t) = +∞, and

ψ′′(t) =
1

m− 1
f

2
m−1

−1(ψ(t))f ′(ψ(t)), t > 0;

(ii) ψ ∈ NRV Z−(Cf−1);
(iii) −ψ′ = f

1
m−1 ◦ ψ ∈ NRV Z−Cf/(m−1);

Proof. By the definition of ψ and a direct calculation, we show that (i)
holds. (ii) It follows from the proof of Lemma 2.1 that

lim
t→0+

tψ′(t)

ψ(t)
= − lim

t→0+

tf
1

m−1 (ψ(t))

ψ(t)
= − lim

s→+∞

f
1

m−1 (s)
∫∞
s

dv

f
1

m−1 (v)

s
= −(Cf − 1),

i.e., ψ ∈ NRV Z−(Cf−1).
(iii) (f3) implies

lim
t→0+

tψ′′(t)
ψ′(t)

= − lim
t→0+

t
m−1

f
1

m−1
−1(ψ(t))f ′(ψ(t))

= − lim
s→+∞

1
m−1

f
1

m−1
−1(s)f ′(s)

∫∞
s

dv

f
1

m−1 (v)

= −Cf/(m− 1).

Lemma 2.3. k ∈ Λ implies:
(i) lim

t→0+

K(t)
k(t)

= 0;

(ii) Ck ∈ [0, 1] and lim
t→0+

K(t)k′(t)
k2(t)

= 1− Ck.

3 Proofs of the main result

Before prove our main results,we give the following Lemma 3.1( From [2,4]).
Lemma 3.1. (weak comparison principle) Let Ω be a bounded domain in

RN (N ≥ 2) with smooth boundary ∂Ω and ϕ : (0, a)→ (0, a) be continuous
and non-decreasing, let u1, u2 ∈ W 1,m(Ω) satisfy∫

Ω

|∇u1|m−2∇u1∇ψdx+

∫
Ω

ϕu1ψdx ≤
∫

Ω

|∇u2|m−2∇u2∇ψdx+

∫
Ω

ϕu2ψdx,
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For all non-negative ψ ∈ W 1,m
0 (Ω). Then the inequality

u1 ≤ u2, on ∂Ω,

implies that
u1 ≤ u2, in Ω.

Now let v0 ∈ C2+α ∩ C1(Ω̄) be the unique solution of the problem

div(|∇v0|m−2∇v0) = 1, v0 > 0, x ∈ Ω, v0|∂Ω = 0. (3.1)

By the Höpf maximum principle in [41], we see that

∇v0 6= 0, ∀ x ∈ ∂Ω, and c1d(x) ≤ v0 ≤ c2d(x), ∀ x ∈ Ω, (3.2)

where c1, c2 are positive constants. For any δ > 0, we define

Ωδ = {x ∈ Ω : 0 < d(x) < δ}.

Since Ω is smooth, there exists δ0 > 0 such that d ∈ C2(Ωδ0) and

|∇d(x)| = 1. (3.3)

Proof of Theorem 1.1. Let ε ∈ (0, m−1
√
b0/4) and

τ1 = τ0 −
2ετ0

m−1
√
b0

, τ2 = τ0 +
2ετ0

m−1
√
b0

.

It follows that
τ0/2 < τ1 < τ0 < τ2 < 2τ0.

By (b1), (b2) and Lemma 2.1-2.3, we see that there is δε ∈ (0, δ0/2)(which is
corresponding to ε) sufficiently small such that

(r1) (b0 − ε)k2(d(x)− ρ) ≤ (b0 − ε)k2(d(x)) < b(x), x ∈ D−ρ = Ω2δε/Ω̄ρ;

b(x) < (b0+ε)k2(d(x)) ≤ (b0+ε)k2(d(x)+ρ), x ∈ D+
ρ = Ω2δε−ρ, where ρ ∈

(0, δε) .
(r2) For i=1,2,

4(2τ0)m−1|(m− 1)τiK
2(t)f

1
m−1

−1(ψ(τiK
2(t)))f ′(ψ(τiK

2(t)))− Cf |+ 2(2τ0)m−1

(m− 1)|k
′(t)K(t)
k2(t)

− (1− Ck)|+ 2(2τ0)m−1K(t)
k(t)
|4d(x)| < ε, ∀(x, t) ∈ Ω2δε × (0, 2δε).

Let
d1(x) = d(x)− ρ, d2(x) = d(x) + ρ, (3.4)

ūε = ψ(τ1K
2(d1(x))), x ∈ D−ρ and uε = ψ(τ2K

2(d2(x))) x ∈ D+
ρ . (3.5)
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It follows that, for x ∈ D−ρ
div(|∇u|m−2∇u)− b(x)f(ūε(x))

= (2τ1)m−1[(m− 1)(ψ′(τ1K
2(d1(x))))m−2ψ′′(τ1K

2(d1(x)))2τ1K
m(d1(x))km(d1(x))

+(m− 1)(ψ′(τ1K
2(d1(x))))m−1Km−2(d1(x))km(d1(x))

+(m− 1)(ψ′(τ1K
2(d1(x))))m−1Km−1(d1(x))km−2(d1(x))k′(d1(x))

+(ψ′(τ1K
2(d1(x))))m−1Km−1(d1(x))km−1(d1(x))4d(x)]− b(x)f(τ1K

2(d1(x))))
= (−1)mf(ψ(τ1K

2(d1(x))))km(d1(x))Km−2(d1(x))[2mτ1
m−1((m− 1)τ1K

2(d1(x))

f
1

m−1
−1(ψ(τ1K

2(d1(x))))f ′(ψ(τ1K
2(d1(x))))− Cf ) + 2mτ1

m−1Cf − (m− 1)(2τ1)m−1

−(m− 1)(2τ1)m−1(k(d1(x))k′(d1(x))
k2(d1(x))

− (1− Ck))− (m− 1)(2τ1)m−1(1− Ck)
−(2τ1)m−1K(d1(x))

k(d1(x))
4d(x)− ( (−1)mb(x)

Km−2(d1(x))km(d1(x))
− b0)− b0]

≤ |(−1)mf(ψ(τ1K
2(d1(x))))km(d1(x))Km−2(d1(x))|{(2τ1)m−1[2|(m− 1)τ1K

2(d1(x))

f
1

m−1
−1(ψ(τ1K

2(d1(x))))f ′(ψ(τ1K
2(d1(x))))− Cf |+ (m− 1)|k

′(d1(x))K(d1(x))
k2(d1(x))

− (1− Ck)|
+K(d1(x))

k(d1(x))
|4d(x)|] + 2mτ1

m−1Cf − (m− 1)(2τ1)m−1(m− 1)(2τ1)m−1(1− Ck)
−( (−1)mb(x)

Km−2(d1(x))km(d1(x))
− b0)− b0}

≤ (2τ1)m−1 ε
2(2τ0)m−1 − ( (−1)mb(x)

Km−2(d1(x))km(d1(x))
− b0)

+(2τ1)m−1[2Cf + (m− 1)Ck − 2(m− 1)]− b0

≤ ε
2
− ε

2
+ (2τ1)m−1

(2τ0)m−1 b0 − b0 ≤ 0.

i.e., ūε is a supersolution of Eq.(1.1) in D−ρ .
In a similar way, for x ∈ D+

ρ

div(|∇u|m−2∇u)− b(x)f(uε(x))
= (2τ2)m−1[(m− 1)(ψ′(τ2K

2(d2(x))))m−2ψ′′(τ2K
2(d2(x)))2τ2K

m(d2(x))km(d2(x))
+(m− 1)(ψ′(τ2K

2(d2(x))))m−1Km−2(d2(x))km(d2(x))
+(m− 1)(ψ′(τ2K

2(d2(x))))m−1Km−1(d2(x))km−2(d2(x))k′(d2(x))
+(ψ′(τ2K

2(d2(x))))m−1Km−1(d2(x))km−1(d2(x))4d(x)]− b(x)f(τ2K
2(d2(x))))

= (−1)mf(ψ(τ2K
2(d2(x))))km(d2(x))Km−2(d2(x))[2mτ2

m−1((m− 1)τ2K
2(d2(x))

f
1

m−1
−1(ψ(τ2K

2(d2(x))))f ′(ψ(τ2K
2(d2(x))))− Cf ) + 2mτ2

m−1Cf − (m− 1)(2τ2)m−1

−(m− 1)(2τ2)m−1(k(d2(x))k′(d2(x))
k2(d2(x))

− (1− Ck))− (m− 1)(2τ2)m−1(1− Ck)
−(2τ2)m−1K(d2(x))

k(d2(x))
4d(x)− ( (−1)mb(x)

Km−2(d2(x))km(d2(x))
− b0)− b0]

≥ |(−1)mf(ψ(τ2K
2(d2(x))))km(d2(x))Km−2(d2(x))|{(2τ2)m−1[−2|(m− 1)τ2K

2(d2(x))

f
1

m−1
−1(ψ(τ2K

2(d2(x))))f ′(ψ(τ2K
2(d2(x))))− Cf | − (m− 1)|k

′(d2(x))K(d2(x))
k2(d2(x))

− (1− Ck)|
−K(d2(x))

k(d2(x))
|4d(x)|] + 2mτ2

m−1Cf − (m− 1)(2τ2)m−1(m− 1)(2τ2)m−1(1− Ck)
−( (−1)mb(x)

Km−2(d2(x))km(d2(x))
− b0)− b0}

≥ −(2τ2)m−1 ε
2(2τ0)m−1 − ( (−1)mb(x)

Km−2(d2(x))km(d2(x))
− b0)

+(2τ2)m−1[2Cf + (m− 1)Ck − 2(m− 1)]− b0

≥ − ε
2

+ ε+ (2τ2)m−1

(2τ0)m−1 b0 − b0 ≥ 0.
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We can show that uε is a subsolution of of Eq.(1.1) in D+
ρ . Now let u be

an arbitrary solution of problem (1.1), we assert that there exists a positive
constant M such that

u ≤Mv0(x) + ūε, x ∈ D−ρ , (3.6)

uε ≤ u+Mv0(x), x ∈ D+
ρ , (3.7)

where v0 is the solution of problem (3.1). In fact, we may choose a large M
such that

u ≤Mv0(x) + ūε, on Γ2δε := {x ∈ Ω : d(x) = 2δε}.

By (f1), we see that Mv0(x) + ūε is also a supersolution of Eq.(1.1) in D−ρ .
Since u < ūε on Γρ := {x ∈ Ω : d(x) = ρ}, (3.6) follows by Lemma 3.1. In a
similar way, we can show (3.7). Hence, x ∈ D−ρ ∩ D+

ρ , by letting ρ → 0, we
have

1− Mv0(x)

ψ(τ2K2(d2(x)))
≤ u(x)

ψ(τ2K2(d2(x)))

and
u(x)

ψ(τ1K2(d2(x)))
≤ 1 +

Mv0(x)

ψ(τ1K2(d2(x)))

Consequently,

1 ≤ lim
d(x)→0

inf
u(x)

ψ(τ2K2(d2(x)))
and lim

d(x)→0
sup

u(x)

ψ(τ1K2(d2(x)))
≤ 1.

Thus by letting ε→ 0, we have

lim
d(x)→0

u(x)

ψ(τ0K2(d2(x)))
= 1.

The proof is finished.
The existence of solutions to problem (1.1) is similar as that in [4], so we

omit it in this article.
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[30] J.Garcı́a Meliáán, R.Letelier Albornoz, J.Sabina de Lis, Uniqueness and asymptotic
behaviour for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc.
2001;129(12):3593-3602.
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