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Abstract
Let R be a commutative ring. It is well known that any artinian module is co-hopfian and any
artinian module is mono-correct, but the converse is not true. Furthermore, commutative rings on
which co-hopfian modules are artinian have been characterized. The aim of this work is to study
the existence of commutative rings R on which mono-correct R-modules are artinian.
We establish that if there exists a commutative ring on which mono-correct R-modules are artinian,
then it is an artinian ideal principal one. And on a non-zero commutative artinian principal ideal ring
R, we have shown the existence of R-modules which are mono-correct but are not artinian.
Hence a non-singleton unital commutative ring R such that every mono-correct R-module is artinian
does not exist.
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1 Introduction
It is well known that any artinian module is mono-correct, but the converse is not true. Z considered
as a Z-module is mono-correct but is not artinian. We recall that any artinian R-module is co-hopfian
but a co-hopfian R-module is not necessarily artinian. Several studies have been done on co-hopfian
modules and on rings on which co-hopfian modules verify some interesting properties [see [7], [9],
[1], [5]]. Mono-correctness of modules has been studied in [8], and in [10] it is shown that, R being a
ring, for an R-module M , the class σ[M ] of all M -subgenerated modules is mono-correct if and only
if M is semisimple. In [4], commutative rings on which any finitely generated module is mono-correct
have been characterized.
The motivation of our investigation is the well-known characterization of rings on which co-hopfian

*E-mail: cheikht.gueye@.ucad.edu.sn

www.sciencedomain.org


British Journal of Mathematics and Computer Science 3(4), 598-604, 2013

modules are artinian [6]. By analogy, we are led to study the existence of commutative rings on which
mono-correct modules are artinian. First, we show that if such a ring exists, then it is an artinian
principal ideal one. After that, we prove on a non-zero artinian principal ideal ring the existence of
modules which are mono-correct but are not artinian. Then we have established that there does not
exist any commutative ring with identity 1 ̸= 0 on which mono-correct modules are artinian.

2 Definitions and Preliminaries
For the sake of self-containedness and the convenience of the reader, we recall in this section the
main definitions and preliminaries we shall need to establish the main results. We denote by R-MOD
the category of all R-modules.

Definition 2.1. Two modules M and N are called mono-equivalent if there are monomorphisms

f : M −→ N and g : N −→ M .

We denote M
m≃ N .

Definition 2.2. Two modules M and N are called equivalent if there exists an isomorphism

h : M −→ N .

We denote M ≃ N .

Definition 2.3. An R-module M is said to be mono-correct if for any R-module N ,

M
m≃ N implies M ≃ N .

Proposition 2.1. Z as a Z-module is mono-correct.

Proof. In fact if N is a Z-module, f and g two monomorphisms f : Z −→ N and g : N −→ Z, we
have N ≃ g(N) and g(N) is a Z submodule. Therefore there exists n ∈ Z such that g(N) = nZ.
Thus Z ≃ nZ = g(N) ≃ N . Hence Z is mono-correct.

We recall that Z is not artinian.

Definition 2.4. A class C of objects in a category C is said to be mono-correct if for any A, B ∈ C,
A

m≃ B implies A ≃ B.

Definition 2.5. An R-module M is said to be co-hopfian if every injective endomorphism f : M → M
is an automorphism.

Example 2.1. Any artinian module is co-hopfian.

Proposition 2.2. For a commutative ring R, any co-hopfian module is mono-correct.

Proof. Let R be a commutative ring and M a co-hopfian R-module. Let N be an R-module. If
there are monomorphisms f : M −→ N and g : N −→ M , then g ◦ f : M → M is an injective
endomorphism. Hence g ◦ f is an automorphism, therefore g is surjective. This implies that M ≃ N ,
thus M is mono-correct.

Definition 2.6. A submodule H of an R-module M is said to be fully invariant in M if for any R-
endomorphism f of M , we have f(H) ⊂ H.
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Proposition 2.3. Let M be a direct sum of submodules Hj (j ∈ J). If for all j, Hj is co-hopfian and
fully invariant in M , then M is co-hopfian.

Proof. Assume that for every j ∈ J , Hj is co-hopfian and fully invariant in M . Let f be an injective
endomorphism of M . The restriction fj of f to Hj is an automorphism. Since M is a direct sum of
the Hj ’s (j ∈ J), then f is bijective, hence M is co-hopfian.

Definition 2.7. A ring R is said to be an I-Ring if any co-hopfian R-module is artinian.

The following proposition gives a characterization of commutative I-rings.

Proposition 2.4. [6] Let R be a commutative ring. Then the following assertions are equivalent:
1. R is an I-Ring;
2. R is an artinian principal ideal ring;
3. Every R-module is a direct sum of cyclic submodules.

We have also

Lemma 2.2. [6] Let R =
∏
j∈J

Rj . Then R is an I-Ring if and only if J is finite and for all j ∈ J , Rj is

an I-Ring.

We shall need also

Proposition 2.5. [9] For a commutative ring R, the following assertions are equivalent:
1. Any injective endomorphism of a finitely generated R-module is an isomorphism.
2. Every prime ideal of R is maximal.

Now we are in a position to establish the following

Proposition 2.6. Let R be an I-Ring and M an R-module. If every direct summand of M is fully
invariant in M , then M is artinian.

Proof. Let M be an R-module, then by Proposition (2.4) M =
⊕
j∈J

Mj , where Mj are cyclic submodules,

and thus finitely generated. R is an I-Ring implies that every prime ideal of R is maximal, hence for
all j ∈ J , Mj is co-hopfian by Proposition (2.5). M =

⊕
i∈J

Mj and the Mj ’s are fully invariant in M ,

so it follows that M is co-hopfian by Proposition (2.3), and since R is an I-Ring, M is artinian.

We need the following

Definition 2.8. Let M be an R-module. An R-module P is said to be generated by M or M -generated
if, for every pair of distinct morphisms f, g : P −→ Q, Q ∈ R-MOD, there is a morphism h : M −→ P
and hf ̸= hg.

Definition 2.9. Let M be an R-module. An R-module N is said to be subgenerated by M if N is
isomorphic to a submodule of an M -generated module. We let σ[M ] denote the full subcategory of
R-MOD whose objects are all R-modules subgenerated by M .

Proposition 2.7. [11] Let M be an R-module. Then for N ∈ σ[M ], all factor modules and submodules
of N belong to σ[M ].

Proposition 2.8. [10] For a module M , the following assertions are equivalent:
1. The class of all modules in σ[M ] is mono-correct.
2. Every module in σ[M ] is mono-correct.
3. M is semisimple.

600



British Journal of Mathematics and Computer Science 3(4), 598-604, 2013

3 The main results
Let R be a commutative ring with identity 1 ̸= 0. Assume that R has the property that any mono-
correct R-module is artinian. In the sequel, such a ring will be called an (M)-Ring.

Example 3.1. If an I-Ring R is such that any direct summand of an R-module M is fully invariant in
M , then it is an (M)-Ring by Proposition (2.6).

Proposition 3.1. If R is an (M)-Ring, then R is an artinian principal ideal ring.

To establish the proof, we need the following

Lemma 3.2. Let R be an (M)-Ring, then R is artinian.

Proof. Assume that R is an (M)-Ring. Let K be the total ring of fractions of R. Then K is an R-
module. Let us show that K is co-hopfian.
Let f be an injective R-endomorphism of K. For every x ∈ K, x = s−1a where s ∈ R, a ∈ R and
s ̸= 0, we have sf(x) = sf(s−1a) = f(ss−1a) = f(a) = af(1). Therefore f(x) = xf(1), then f is an
automorphism, hence K is mono-correct. It follows that K is artinian and then R is also artinian.

Lemma 3.3. Every homomorphic image of an (M)-Ring is an (M)-Ring.

Proof. Let A be an (M)-Ring, φ : A −→ B a surjective ring homomorphism, and M a mono-correct
B-module. The following map:

A×M −→ M
(a,m) 7−→ φ(a)m = am

induces an A-module structure on the additive abelian group M . Let us show that M is a mono-
correct A-module. Let N be an A-module, f : M −→ N and g : N −→ M two A-monomorphisms.
Let us establish that, N is a B-module. For all b ∈ B, for all x ∈ N , there exists a ∈ A such that
φ(a) = b. We consider the following product

b.x = ax ∈ N. (3.1)

This product is well defined, since for all a, a′ ∈ A such that φ(a) = φ(a′) and for all x ∈ N , we have
g injective implies that g(N) ≃ N and

φ(a).g(x) = ag(x) = g(ax)

φ(a′).g(x) = a′g(x) = g(a′x).

Then

g(ax) = g(a′x)

hence

ax = a′x.

By (3.1), N is a B-module. we have also that f and g are B-monomorphisms, M is a mono-correct
B-module, then we deduce M ≃ N . This implies that M is a mono-correct A-module and then M is
artinian.

Lemma 3.4. Let R =

n∏
i=1

Ri, then R is an (M)-Ring if and only if all Ri are (M)-Rings
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Proof. Assume that R =
n∏

i=1

Ri and R is an (M)-Ring. Then the canonical projections pi : R −→ Ri

i ∈ {1, 2, ..., n} are surjective homomorphisms and by Lemma (3.3) all Ri are (M)-Rings.

Conversely, we assume that R =

n∏
i=1

Ri and the Ri’s are (M)-Rings. We want to show that R is

an (M)-Ring. Let M be a mono-correct R-module, as R =

n∏
i=1

Ri we can write M =

n⊕
i=1

Mi with

Mi = Mei where ei = (δji )
n
j=1 = (0, 0, .., 1

↑
, 0, ..., 0)

ithcolumn

∈ R, 1 ∈ Ri and for all i ∈ {1, 2, ..., n}, Mi is an

Ri-module.
For all i ∈ {1, 2, ..., n}, let us show that Mi is a mono-correct Ri-module. If Ni is an Ri-module,
fi : Mi −→ Ni and gi : Ni −→ Mi two monomorphisms, we have

f =
n∏

i=1

fi :
n⊕

i=1

Mi −→
n⊕

i=1

Ni and g =
n∏

i=1

gi :
n⊕

i=1

Ni −→
n⊕

i=1

Mi

are R-monomorphisms. Therefore
n⊕

i=1

Mi ≃
n⊕

i=1

Ni, then Mi ≃ Ni for all i ∈ {1, 2, ..., n}. It follows

that the Mi’s are mono-correct. As the Ri’s are (M)-Rings, we deduce that Mi is artinian for all

i ∈ {1, 2, ..., n}, hence M =

n⊕
i=1

Mi is artinian.

Lemma 3.5. Let R be a commutative artinian ring. If R has a non-principal ideal, then there exists a
mono-correct R-module which is not artinian.

Proof. It is known that R is a finite product of local artinian rings. Then we can assume that R is a
local artinian ring with Jacobson radical J(R) = aR + bR with the conditions a2 = b2 = ab = 0 and
a ̸= 0, b ̸= 0. Then there exists by [3] a local artinian principal ideal subring C of R with Jacobson
radical J(R) = aC such that R = C ⊕ bC as C-modules. Let us consider the free C-module

M =

∞⊕
i=0

Cei

with infinite countable basis {ei, i ∈ N} and σ the endomorphism of C-modules defined as follows
σ(e0) = 0, and σ(ei) = aei−1 for i ≥ 1. Let Φ be the ring homomorphism:

Φ : R = C ⊕ bC −−−−−→ EndCM

α+ bλ −−−−−→ αidM + λσ

where idM denotes the identity homomorphism of the C-module M . By [2], M has an R-module
structure, and M is a co-hopfian R-module which is not finitely generated. As a co-hopfian R-module,
M is mono-correct by Proposition (2.2). Since M is not a finitely generated R-module, M is not
artinian.

The proof of Proposition (3.1) is given by Lemma (3.2) and Lemma (3.5).
Now we are going to show that a non-zero commutative artinian principal ideal ring is not an (M)-Ring.

Proposition 3.2. Let R be a non-zero commutative artinian principal ideal ring. Then there exists a
mono-correct R-module which is not artinian.
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Proof. If R is an artinian principal ideal ring and 1 ̸= 0, then there exists n ≥ 1 such that R =
n∏

i=1

Ri

where the Ri’s are local artinian principal ideal rings. By Lemma (2.2) and Lemma (3.4), we can
assume that R is a local artinian principal ideal ring. Let J be the unique maximal ideal of R. S = R/J
is a simple R-module and any S-module M is an R-module by the following product: for every r ∈ R,
x ∈ M , rx = rx where r ∈ S.
For r, s ∈ R and x, y ∈ M , we have

• r(x+ y) = r(x+ y) = rx+ ry = rx+ ry

• (r + s)x = (r + s)x = (r + s)x = rx+ sx = rx+ sx

• r(sx) = r(sx) = rsx = (rs)x

• 1x = 1x = x.

Let us consider the infinite countable S-vector space V = S(N). V is a semisimple R-module.
S is a field and then V is mono-correct as an S-module. Let us show that V is mono-correct as an
R-module. Let N be an R-module, f : V −→ N and g : N −→ V two R-monomorphisms. N is
isomorphic to g(N) and g(N) is a submodule of V , then g(N) ∈ σ[V ] by Proposition (2.7). As V is
semisimple, all modules in σ[V ] are mono-correct by Proposition (2.8), hence g(N) is mono-correct.
Let us consider:

f̃ : V
f−−−−−→ N

i−−−−−→ g(N)

and

g̃ : g(N)
i−−−−−→ N

g−−−−−→ V .

f̃ and g̃ are monomorphisms and g(N) is mono-correct, thus g(N) ≃ V , and hence N ≃ V . This
implies that V is mono-correct as an R-module. But V is not artinian since it is an infinite dimensional
vector space.

4 Conclusion
Artinian modules are co-hopfian and mono-correct, the converse is false. Commutative rings on
which every co-hopfian module is artinian exist and have been characterized. By analogy we have
studied and shown in this paper that a non-singleton unital commutative ring R such that every mono-
correct module is artinian does not exist. In fact we have established that if such a ring exists then it
is an artinian principal ideal one, and on a non-singleton unital artinian principal ideal ring R we have
shown the existence of mono-correct R-modules which are not artinian.
Following this result on mono-correct modules, the authors think that finding non-artinian mono-
correct R-module when R is not necessarily commutative can be very interesting. And knowing
that any co-hopfian module is mono-correct, another opening problem is to find when a mono-correct
module is co-hopfian or try to characterize the rings R on which every mono-correct module is co-
hopfian.
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