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Detecting Premature Ventricular Contraction by Using
Regulated Discriminant Analysis with Very Sparse Training
Data
Per Lynggaard

Center for Communication and Information Technologies, Aalborg University Denmark, Copenhagen,
Denmark

ABSTRACT
Pathological electrocardiogram is often used to diagnose
abnormal cardiac disorders where accurate classification of
the cardiac beat types is crucial for timely diagnosis of danger-
ous conditions. However, accurate, timely, and precise detec-
tion of arrhythmia-types like premature ventricular contraction
is very challenging as these signals are multiform, i.e. a reliable
detection of these requires expert annotations.

In this paper, a multivariate statistical classifier that is able
to detect premature ventricular contraction beats is presented.
This novel classifier can be trained with a very sparse amount
of expert annotated data. To enable this, the dimensionality of
the feature vector is kept very low, it uses strong designed
features and a regularization mechanism. This approach is
compared to other classifiers by using the MIT-BIH arrhythmia
database. It has been found that the average accuracy, speci-
ficity, and sensitivity are above 96%, which is superior given
the sparse amount of training data.
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Introduction

Analysis and interpretation of electrocardiograms (ECG) for monitoring
cardiac abnormalities have been used and researched for many decades.
Especially, computer-based ECG devices, which benefit from advanced sig-
nal-processing and machine learning, are wide spread today (Luz et al. 2016).
These computer-based ECG devices collect and analyze the tiny electric
impulses produced by the heart muscles. When the heart is healthy its
produces an ECG signal with a characteristic shape that can be used by
doctors to support their diagnosis. Any irregularity or arrhythmia in the ECG
signal can indicate a serious heart condition. There are various types of
arrhythmias that can be classified into different categories such as morpho-
logical arrhythmia and rhythmic arrhythmia. One arrhythmia that belongs to
these groups is the premature ventricular contraction (PVC) or its synonym
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ventricular ectopic beat (VEB). This arrhythmia is very difficult to detect why
it is subjected to intensive researched (Luz et al. 2016; Jambukia, Dabhi og
Prajapati 2015; Chang et al. 2017).

This paper discusses, elaborates, and designs a model for a novel PVC
classifier that focuses on classifying PVC beats. This novel PVC classifier has
the ability to achieve high performance scores with a very sparse amount of
annotated training data (<30). This limited amount of training data enforces
a low number of features to balance the model complexity (a bias-variance
compromise) and to overcome the “curse of dimensionality” paradigm
(Theodoridis og Koutroumbas 2008). To achieve low dimensionality, five fea-
tures have been used where two of these are novel, i.e. they are designed to
classify PVC beats. The three other features have been selected because they are
often used to classify patterns similar to PVC beats (Jambukia, Dabhi, and
Prajapati 2015). More features could have been used, but this would increase
the costs in terms of more annotated training data. The PVC classifier is based
on amultivariate probabilistic approach, which is regularized to balance the high
performance scores against robustness. This approach is related to the process
used in semi-supervised learning (Oster et al. 2015); however, in contrast, this
PVC classifier does not use unsupervised data as part of its training, and it is able
to achieve high scores with a very limited amount of training data.

A model of the presented PVC classifier has been constructed in
a mathematical program and its performance has been simulated by using
randomly selected ECG sets from the MIT-BIH arrhythmia database (MIT
2018; Moody og Mark 2001). Based on the outputs from these simulations,
the quality of the used features and the PVC classifier scores are elaborated
and discussed in the light of using 10, 20, or 30 annotated training data.

This paper is organized with a background section, which provides the
basics in ECG signals in relation to the heart activity. This is followed by
a section, which sets this work in contrast to similar research. After this, the
model used for the simulations is presented and discussed. Finally, the results
from the simulations on the MIT-BIH database are discussed and elaborated.

Background

An ECG signal reflects the electrical activity that controls the different phases
of a heartbeat (Figure 1). The first phase is the atrial depolarization (P beat),
which pumps blood from the atria into the ventricles. This is followed by
the second phase where the ventricles depolarizes (QRS complex) and
thereby pumps blood from the ventricles to the system, i.e. it maintains the
cardiac output. Finally, in the last phase the ventricles repolarize (T beat) to
prepare for the next beat.

Each phase of the ECG signal has limited amplitude and a limited duration
as stated in Table 1 (Jambukia, Dabhi, and Prajapati 2015). Deviation from
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these values can indicate damages to the hearts conducting system or to its
cells. Especially morphology and rate changes can indicate a serious cardiac
arrhythmia such as ventricular tachycardia or ventricular fibrillation.

The challenges in monitoring these signals are that morphology and rate
changes can be imposed in the form of noise, power-line interference, base-
line drift, muscle contraction, and motional artifacts.

VEB or PVC is a group of arrhythmia beats that is triggered from an
abnormal electric activity in the ventricles where the signals do not
come from the correct electric sources, i.e. the sino atrial node, the
atrioventricular node, and the purkinje fibers. Because the PVC does
occur without being triggered from the sino atrial node, it is not
preceded by a P beat, and it has a wider QRS complex. On an ECG
plot, this can be seen as very irregular shapes named multiform.
Because the shapes are multiform the morphology of the PVC beats is
different from one person to another which makes these very hard to
detect in a machine learning setting without using individual supervised
learning. However, supervised learning is challenging with respect to
getting enough annotated data.

Related Works

Most of the literature which deals with small training sets uses dimension-
ality reduction techniques like PCA and SVD. However, a problem with this

P Q

R

S

T

PR

R
RR interval

Figure 1. ECG SIGNAL – A TYPICAL P-QRS-T COMPLEX.

Table 1. Selected ECG physiologic features.
Phase Description Amplitude/duration

P The first upwards wave of the ECG <80 mS
RR The time interval between to RR peaks 0.6–1.2 S
PR The time between the P and the R wave 120–200 ms
QRS Time between Q and S beats 80–120 ms
ST Time between S and T beats 320 ms
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concept is low accuracy for small training set sizes (Raudys et al. 2015).
Similar techniques are feature selection and feature extraction, which are very
alike to dimensionality reduction techniques (Louis et al. 2017).

A classifier, which is based on a limited amount of training data, is
provided by Louis et al. They assumed that the ECG signals are multivariate
Gaussian distributions in a generative model, which was used to generate
training samples. However, with small sample size, they had instability
problems, which were solved by adding parallel classifiers that were trained
with more data. It is noted that they used a proprietary database (Toronto
database) for validating the scores (Louis et al. 2017). Andreao et al. have
used the Hidden Markov Model (HMM) to detect QRS complexes in
a selected set from the MIT BIH database. They obtain a beat detector
performance where the sensitivity and the positive predicted value (PPV)
were above 99%. However, the PVC scores are 87% for sensitivity and 86%
for PPV. This difference between QRS and PVC scores clearly supports the
facts that high PVC scores are hard to get. Jung et al. used a wavelet-base
statistical approach to detect PVC beats, and they achieved a sensitivity of
98%, a specificity of 87%, and a PPV of 85%. However, this approach uses
a control variable (α), which needs to be tuned to balance the true positive
score against the false positive score, i.e. some amount annotated data are
needed (Jung og Heeyoung 2017). Other researchers have looked into the use
of Artificial Neural Networks (ANN) to classify arrhythmias. Minami et al.
used Fourier transformation and ANN to extract features (Minami, Nakajima
og Toyoshima 1999). A low-complexity system has been proposed by Chang
et al. which use simple features to classify ECG signals. The scores for this
system are above 98% for both sensitivity and specificity; however, the PVC
scores are not available in the presented results (Chang et al. 2017).
Regarding QRS detection Andrysiak et al. used a sparse ECG signal repre-
sentation based on dictionaries, and they used neural networks to detect
these (Andrysiak 2016). They achieved sensitivity scores beyond 98% in
detecting QRS complexes from the MIT-BIH database (MIT 2018). This
number is comparable to the QRS detector from Pan et al. which has been
used in this work (Pan og Tompkins 1985). Hence, it would be possible to
use this detector to find the QRS complexes in future works.

The Arrhythmia Detection Model

To classify ECG signals some steps are required: ECG filtering to remove noise
and artifacts; dividing the heartbeat into segments; feature extraction; and
feature classification. Regarding ECG filtering most authors’ use simple finite
impulse response filters (FIR) because they are stable, they provide linear
phase, and they are simple to implement (Chazal, O’Dwyer og Reilly 2004;
Yeh, Wang, and Chiou 2009; Luz et al. 2016; Lynn 1979). However, other
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approaches such as wavelet transform (Saysdi og Shamsollahi 2007) and non--
linear filters have been used (de Lannoy et al. 2014). The heart beat signal
segmentation step divides the signal into segments, which is processed and
used as features in the classification step (Pan and Tompkins 1985; Oster et al.
2015; Hejazi1, et al. 2015; Jambukia, Dabhi, and Prajapati 2015; Murphy 2012).

The previous discussed four steps have been used to design the PVC classifier
used in his work. First, the signal is filtered by a FIR filter that removes
noise; second, the filtered signal is processed by a QRS detector which indicates
the position of the beats in the signal stream. In this work, the QRS detector
described by Pan et al. (Pan and Tompkins 1985) is used because it scores more
than 99% in specificity and sensitivity (Jambukia, Dabhi, and Prajapati 2015).
Third, the ECG signal and the beat positions are processed by the feature
extraction step where five features are used in this work. It is noted that
increasing the amount of features often increase the classification scores,
given that the features are uncorrelated and that the classifier variance is within
reasonable limits. Nevertheless, as previously discussed the PVC classifier
designed in this work uses a very limited amount of annotated training data,
which means that the number of features must be kept low to balance the model
complexity (bias-variance) and to overcome the “curse of dimensionality”
paradigm (Theodoridis and Koutroumbas 2008). Hence, five features have
been selected where three of these (feature 1, 4, and 5, Table 2) have been
selected because they provide high scores in most PVC-related classifiers
(Jambukia, Dabhi, and Prajapati 2015). The two last features have been devel-
oped with focus on classifying PVC patterns only (features 2 and 3, Table 2).
These features are inspired from the facts that: physiologically there is no
premature beat (P beat) before a PVC beat, they are robust in noisy environ-
ments, and they are uncorrelated to the other features. The final step is selecting
a classifier for this work. Because of the very limited amount of annotated
training data used for supervised learning in this work a multivariate probabil-
istic classifier has been chosen. This classifier offers accessibility to classifier-
uncertainty and it offers robustness to dichotomous variables (Herault og
Grandvalet 2007; William 1980). It is noted that the “no free lunch” theorem
states that there is no one model that works best for every problem, which
means that other classifier types could provide acceptable results, given the

Table 2. Selected features.
Feature
no.

Feature
symbol Feature description Units

1 m_PQ Find maximal signal value in the PQ interval Amplitude
2 a_PQ Calculate the area between the signal in the PQ

interval and zero.
Amplitude multiplied
with time

3 ms_PQ Maximal slope in the PQ interval Samples/time
4 i_RR Time between two consecutive R beats Samples
5 i_PR Time between the P beat and the R beat Samples
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limited amount of training data (Wolpert og Macready 1997). The used multi-
variate probabilistic classifier is a hybrid between a regularized Quadratic
Discriminant Analysis (QDA) classifier and a regularized Linear Discriminant
Analysis (LDA) classifier. This hybrid mix of the well know QDA and LDA
classifiers is needed to obtain the benefits from the off diagonal covariance
elements as well as the benefits that the principal diagonal is stable (it prevents
the covariance matrix from becoming singular). This classifier is a powerful
choice which uses a linear combination of features to split classes with the best
performance. In addition, it is widely applied in similar applications such as
speech recognition, image retrieval, and pattern recognition (Yeh, Wang, and
Chiou 2009).

The developed feature extraction model is shown in Figure 2. Leftmost the
raw ECG-signal enters the bandpass-filter and the ECG beat detection blocks.
After being processed in the bandpass-filter it is normalized and fed to the
feature extraction block. Similarly, the signal output from the ECG beat
detection block is fed to the feature extraction block. This block extracts
characteristic features which describe the morphology of the ECG signal and
passes this to the classifier block. The classifier block builds a statistical
model from the incoming data in its training phase and uses this model to
classify in its classification phase.

The bandpass-filter limits the ECG signal bandwidth to reduce the influ-
ence of power-line interference, baseline drift, muscle contraction, and
motional artifacts. Details of the filter design are given below (Figure 3).

The deployed filter is a 3ʹ order Butterworth band-pass filter which cuts
below 5 Hz and above 15 Hz (Figure 3). The position of the three zeros at DC
and the three complex poles inside the pass-band provides a high damping
below the lower limit of the filter. This is necessary to reduce the relatively
high amplitude often found in baseline drift, in muscle contraction, and in
motional artifacts. Above the pass-band three zeros are located at half the
sampling frequency to provide filter attenuation and to reduce the impact
from power-line interferences. The filter is deployed by convolving the filter
coefficients with the samples.

The normalization block finds the largest amplitude in the filtered signal
and normalizes the signal with respect to this Equation (1).

j ¼ argmax
n

ðS0nÞ where n 2 1; 2; :::;Nf g
Sn ¼ S0n

Sj

(1)

Where Sn is the incoming sampled ECG signal and Sj is the value of the
largest sample.

The ECG beat detection block is a strait forward implementation of the
Pan-Tompkins algorithm. This algorithm is known for being one of the best
for detecting beats with sensitivity and specificity scores higher than 99%
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(Pan and Tompkins 1985). In addition, it is computationally efficient and it
includes noise removal steps (Jambukia, Dabhi, and Prajapati 2015).

The feature extraction block processes the characteristics of the ECG
signal, i.e. it extracts the location, duration, amplitude, and morphology
features. This block is triggered by the ECG beat detection block. As dis-
cussed five features have been derived and developed in this work (Table 1).
These are based on the fact that: PVC beats are not triggered by the sino-
atrial-node, which means that P beats are not generated; the distance between
the R beats will be different compared to the distances when a normal sinus
rhythm is present; and the distance from the P beat candidate to the follow-
ing R beat will be different too.

The first feature m_PQ works directly on the filtered and normalized
input signal (Table 2). The first step is to shape a time window in form of
samples that represents the time period where a P beat would be expected. As
stated in Table 1, the minimum time for the PR distance is 120 mS and the
maximum distance is 200 mS which can be recalculated into samples with
a lower limit of 72 samples and a higher limit of 42 samples. To find the
maximum of the signal in this sample window, the derivative of the signal is
calculated by using a five-point derivative approximation with the transfer
function F(z). By substituting z with exp(-jωT) the absolute transfer function
can be plotted in a normalized sample space (Figure 4). It is noted that the
transfer function behaves as a derivate as long as the frequency is blow
approximately ω = π/4, (approximately 90 Hz) which is below the upper
bandpass-filter limit.

After taking the derivative of the signal its maximum can be located where
the slope is low and the signal value is high Equation (2). In this equation
C is a constant, R(n) is the position of the R beat number n, Sll is the low
limit and Shl is the high limit in samples.

Figure 3. Bandpass- filter. The left plot is the roots and zeros (X-axis is the real part, Y-axis is the
imaginary part). The right plot is the filter attenuation in DB as a function of input frequency.
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Q � S { Qðn;mÞ ¼ SðRðnÞ � Sllþ 1þmÞ where m 2 f0; 1; :::; Sll � Shlg
QΔðn; l� 2Þ ¼ 1

8T
ð�Qðl� 2Þ � 2Qðl� 1Þ þ 2Qðlþ 1Þ þ Qðlþ 2ÞÞ

where l 2 f2; 3; :::; Sll� Shl� 2g
m PQðnÞ ¼ argmin

k2K
ð QΔðn; kÞj j � C � Qðn; kÞÞ where K 2 f0; 1; :::; Sll � Shl � 4g

(2)

A plot of this feature for two ECG signals (MIT-BIH database sets 119 and
217) are provided in The a_PO feature calculates an area approximation (in
sample space) between the PQ interval and the zero level for the R beat
number n Equation (3).

a PQðnÞ ¼ 1
Sll � Shl� 3

XSll�Shl�4

m¼0

Qðn;mÞ (3)

By plotting this feature, it is noted that the areas are very different for N beats
compared to the V beats (MIT-BIH database sets 119 and 217, Figures 5 and 7).
This plot indicates that the variance and the mean values for the multivariate
Gaussian distributions are different, which increases the probability for correct
classification.

The ms_PQ feature expresses the maximum slope of the signal in the PQ
interval Equation (4).

Figure 4. The derivative of function (F(Z) and the absolute transfer function for F(Z).
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ms PQðnÞ ¼ max
m

ðQΔðn;mÞÞwherem 2 0; 1; :::; Sll� Shl� 4f g (4)

A plot of this feature is provided in Figures 5 and 7 for the MIT-BIH
database sets 119 and 217. Similarly to the a_PO feature the variance and
mean values can be separated by a classifier.

The i_RR feature is found by counting the number of samples there are
between two adjacent R beats. A similar process is used for the i_PQ beats.
A plot of these features is provided in Figures 5 and 7 for the MIT-BIH
database sets 119 and 217.

After being processed in the feature extraction block, the generated feature-
vector is fed to the classification block (Figure 2). This block implements
a regularized quadratic/linear discriminant analysis classifier named
Regularized Discriminant Analysis (RDA), which assigns the feature vector to
one (and only one) of K classes. Formally, the feature-vector is assumed to be
a member of one class only and assignments to any other classes is considered
a misclassification. Hence, the goal is to design a misclassification risk function
R(y = clx,θ) which can then be minimized Equation (5).

Rð~y ¼ ~c~x;~θÞ
��� ¼

P
c
πcð1� δð~c; cÞÞ 2πPc

�1
2

��� ��� exp � 1
2 ð~x�~μcÞT

P�1
c ð~x�~μcÞ

h i
P

c0 πc0 2π
P

c0
�1

2

��� ��� exp � 1
2 ð~x�~μc0 ÞT

P�1
c0 ð~x�~μc0 Þ

h i (5)

It is assumed that the distribution for the true ECG signals can be approxi-
mated by Gaussian distributions (Louis et al. 2017). The risk function uses

Figure 5. A histogram of the five features when the MIT-BIH set 217 is processed.
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the dirac-delta function (δ(p,q)), the unconditional prior (πi), the multi-
variate mean vector (μi), and the multivariate covariance matrix (Σi).
Minimizing the risk function Equation (6) leads to the optimal classification
rule Copt.

Coptð~x;~θÞ ¼ argmin
~c

ðRð~y ¼ ~c~x;~θÞ
���

¼ argmax
"~c2C

π~c 2π
P

~c

�1
2

��� ��� exp � 1
2 ð~x�~μ

~c
ÞTP�1

~c
ð~x�~μ

~c
Þ

h i
P

"c2C^:c�~c
πc 2π

P
c
�1

2

��� ��� exp � 1
2 ð~x�~μcÞT

P�1
c ð~x�~μcÞ

h i (6)

The optimum class Copt is found when the largest estimated class in the
set C is positioned in the numerator of Equation (6), which means that
it is sufficient to maximize this Equation (7). This maximization is easily
performed by using the Negative Log Likelihood (NLL) (Murphy 2012)
where minimizing the NLL is equivalent to maximizing the log
likelihood.

Coptð~x;~θÞ ¼ argmin
"~c2C

NLLð~x;~θÞ

¼ argmin
"~c2C

ðð~x�~μ
~c
ÞT
X�1

~c

ð~x�~μ
~c
Þ þ ln

X
~c

�����
�����

 !
� 2 lnðπ~cÞÞ

(7)

The optimization equation Equation (7) consists of two parts. The first part is
the discriminant function which is all the terms except the last one and
the second part is the first term which is the well known Mahalonobis
distance (Murphy 2012) between the multivariate feature vector x and
a multivariate class mean μ.

The training of the classifier is performed by using multivariate mean
μ and multivariate variance Σ ML-estimators on the training data
sets Equation (8) where it is assumed that the samples are i.i.d and
xi = N(μ,Σ).

μ̂ ¼ 1
N

XN�1

i¼0

~xi

X̂
¼ 1

N

XN�1

i¼0

ð~xi � μ̂Þð~xi � μ̂ÞT
(8)

Where the feature vector xi is constructed by assigning the features one by one to
each of the five positions in the vector. The variable N is the number of training
sets used in the k-fold cross validation.

This classifier approaches a QDA classifier when individual covariance
matrixes are used for each class, and it approaches a LDA classifier when the
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covariance matrixes for the classes are equal. Especially the covariance matrix
is the main challenges in using discriminant analysis with a sparse training
dataset, i.e. the size of the dataset is close to the dimensionality of the feature
vector. This challenge can be explored by decompose the covariance matrix
into its eigenvectors (V) and eigenvalues (D), which can then be used in the
discriminant function Equation (9).

dF ¼ ð~x�~μÞTðVDVTÞ�1ð~x�~μÞ þ lnð VDVT
�� ��Þ

¼ trð��TD�1Þ þ lnð Dj jÞ where : � ¼ ð~x�~μÞTV
(9)

It is observed Equation (9) that the discriminant function (dF) is heavily
weighted by small eigenvalues and the direction of the eigenvectors.
Unfortunately, estimators for covariance values are biased so large eigen-
values are biased toward higher values and small eigenvalues are biased
toward lower values (Friedman 1988). Many approaches have been tried to
remove this distortion from the eigenvalues and to make the covariance
matrix nonsingular (Louis et al. 2017; Murphy 2012). Especially in the
context with small sample size settings a promising approach is deploying
a regularization method that decreases the variance and regulate the covar-
iance principal diagonal. This approach is deployed by using a pooled
covariance where a weighted amount of the covariance matrix for the
N beats is pooled with the covariance of the V beats. Added to this is
a weighted part of the principal diagonal of the pooled covariance matrix
itself Equation (10).

Σ̂nðλ; γÞ ¼ ð1� γÞðλΣv þ ð1� λÞΣnÞ þ γðtrðλΣv þ ð1� λÞΣnÞIÞ (10)

Where Σn and Σv are the covariance matrixes for N beats and V beats,
respectively. The λ and γ values control the degree of regularization.

The performance of the PVC classifier has been found by comparing
classifications in relation to the provided annotations (i.e. the “ground
truth”). This comparison has been based on counting (i.e. TP, TN, FP, and
FN) as suggested by Jager et al. (Jager et al. 1991). By using this concept,
a measure of accuracy, specificity, sensitivity, positive predicted value PPV
and negative predicted value NPP can be calculated Equation (11).

Accuracy ¼ TNþTP
TNþTPþFNþFP Specificity ¼ TN

TNþFP Sensitivity ¼ TP
TPþFN

PPV ¼ TP
TPþFP NPV ¼ TN

TNþFN

(11)

Model Simulations and Elaborations

The model discussed in the previous section (Figure 2) has been used to
classify N beats and V beats in the ECG sets from the MIT-BIH database
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(MIT 2018). This has been done by using 5-fold validation with 15N and 15V
beat samples which have been selected randomly from a full ECG set in the
MIT BIH database. It is noted that the selected training samples are excluded
from the test sets.

To explore the performance of the PVC classifier with a very sparse amount
of annotated training data 10 ECG sets have been selected (Table 3). These
series have been selected randomly from the complete sets in the MIT BIH
database with the only restriction that there is more than 100 PVC beats in
a selected set. This restriction is necessary for ensuring that it is possible to
select the training data for the V beats randomly in a k-fold process. To set
these scorings into a context, they are compared to results provided by other
researchers.

Regarding the regularization parameters λ is set to 0.1 and γ is set to 0.2
by using a trial and error approach, i.e. more research is needed to clarify
the settings of these parameters in the context of classifying a nonlinear
ECG signal.

It is observed (Table 3) that the results from the PVC classifier on the ECG
sets in general score above 90% for most sets, which is acceptable taken into
consideration that the training set consists of 30 annotated beats only. It is
noted that two ECG sets stands out (119 and 217). ECG set 119 scores
beyond 99% in all measures, whereas ECG set 217 scores lower with
a score of 80 on its PPV measure. To explore these deviations in relation
to the features a histogram for each of them are plotted together with their
time/amplitude and their Reduction in Features Mutual Information (RFMI)
(Figures 5–8). The plotted histograms contain the five features where the
curve is the normalized number of N/V beats (y-axis) together with its
relative feature values (x-axis). Regarding the RFMI plot it expresses the
reduction in mutual information between the classifier output and each
individual feature. The “backwards principle” has been used, i.e. one feature
is removed at a time given that all other features are present (it is noted that
these will not sum to 100% because the percentage is relative to the RMFI

Table 3. PVC classifier scorings on 10 ECG sets from the mit-bih database.
MIT BIH ECG
set

Specificity
[%]

Sensitivity
[%]

Accuracy
[%]

PPV
[%]

NPV
[%]

Total number of
beats

PVS
beats

106 99 100 100 100 100 2027 520
116 99 100 100 97 100 2412 109
119 99 100 100 100 100 1987 444
200 95 96 96 93 97 1775 826
201 94 98 98 89 99 1802 198
214 97 100 99 98 100 2006 256
217 96 98 98 80 100 2208 162
221 97 99 99 95 99 2031 396
223 90 96 95 84 98 2605 473
233 93 99 98 98 97 2249 831
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Figure 6. ECG set 217: A time/amplitude plot and the reduction in mutual information when one
of the features (5) is left out.

Figure 7. A histogram of the five features when the MIT-BIH set 119 is processed.

Figure 8. ECG set 119: A time/amplitude plot and the reduction in mutual information when one
of the features (5) is left out.
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when no features are removed). It has been assumed that the features are
uncorrelated (Wang og Hu 2009). The principle and equations for calculating
the RFMI as a function of the two score metrics can be found in Wang et al
(Wang and Bao-Gang 2009).

For ECG set 217 its histogram (Figure 5) and RFMI (Figure 6) have been
plotted. It is noted that the low PPV score is caused by an increase in the FP
count, i.e. some N beats have been classified as V beats. One reason for this
can be found by examining the time/amplitude where it is observed that this
ECG set is from a patient with a pacemaker that paces in the ventricles, i.e.
the systoles are initiated by this. However, the designed features detect that
the P beat is absent in the PVC patterns, but in this paced rhythm there is no
P beat because the pacing takes place directly in the ventricles, so it seems as
the features behaves as expected. From the FMRI plot it is observed that
removing one of the features 1 to 4 will reduce the FMRI with a considerable
amount. It turns out that feature 5 only reduces the FMRI with less than 1%,
i.e. the contribution from this feature is limited in this ECG set. Similarly, the
reduction in the PPV score can be seen from the histogram plot where it is
observed that the variance of the V beats and the N beats are close to being
similar. In addition, it is observed that the mean values of these distributions
are close to coincide. Thus, the overlapping variances and mean values cause
some N beats to be classified as V beats, i.e. it increases the FP measure.

As discussed ECG set 119 performs very well. The reasons for this can be
found by performing a similar analysis as for ECG set 217, i.e. its histogram
(Figure 7), time/amplitude, and RFMI (Figure 8) have been plotted. From the
RFMI score it is noted that most of the features contribute to the high scores.
Actually the new developed PVC features (feature 2 and 3) perform well with
a stable contribution and with a limited variance. Additional insight can be
found by looking into the histogram for these features where it is noted that
the distributions of the beats are more separable compared to the distribu-
tions for ECG set 217.

In general, it is noted that the contribution of each feature depends on the
selected beat set, which indicates that the ECG signals have a large spreading
on their morphology and signal composition, i.e. they need to be handled by
dissimilar robust features.

The ECG set scores as a function training set size needs some clarification.
As already discussed, the size of the training data must exceed the number of
features considerably (dimensionality of the feature vector) to prevent the
covariance matrix from becoming singular. However, the regularization used
in this work enables the size of the training data to come very close to the
number of features. This means that it is possible to perform the classifica-
tion with a very small training set size. To substantiate this important result
the same ECG set that was used with the 15N and 15V beats (Figure 9) have

APPLIED ARTIFICIAL INTELLIGENCE 243



been used for a 10N and 10V (Figure 10) beats set and for a 5N and 5V beats
set (Figure 11).

As discussed, the scores for the 15N and 15V beats (Figure 9) are close to
90% for most ECG sets (except PPV score for 217 and 223). By reducing the
training set size to 10N and 10V beats it turns out that the scores drop a few
percentages except for the PPV scores in set 217 and set 223, which drops
considerably more (Figure 10). The same tendency is found when the train-
ing set size drops to 5N and 5V beats (Figure 11). At this very low training
set size the scores for most of the sets fluctuates considerably, which indicates

Figure 9. Scores (Y-axis) for the randomly selected ECG sets (X-axis) with 15N and 15V beats in
the training set.

Figure 10. Scores (Y-axis) for the randomly selected ECG sets (X-axis) with 10N and 10V beats in
the training set.
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that few eigenvectors and eigenvalues in the covariance matrix dominates
and they vary considerably, i.e. they introduces the instability.

To substantiate these importance results they are compared with scores
from other researchers. Luz et al. provides a comparison from five authors
which are averaged to one score in this work (Luz et al. 2016). Their scores
provide a specificity of approximately 85% and a PPV of approximately 89%
(Table 9). Similarly, Christov et al. compared four authors (Christov, Jekova
og Bortolan 2005), which when averaged provide a specificity of 98% and
a sensitivity of 96%. Oster et al. compared six authors which when averaged
provide a specificity of 92% and a PPV of 92% (Oster et al. 2015). It is noted
that these authors uses the full dataset in different k-fold based training and
testing procedures – not only 15N and 15V beats. The multivariate Gaussian
model presented by Louis et al. is able to handle 30 beats training data;
however, they used the proprietary Toronto database for validating the
performance of their system. This means that their result is not directly
comparable with the results from the MIT-BIH database; however, for the
sake of completeness their error percentage (7%) is added to Table 4 (Louis
et al. 2017). In addition, a comparison presented by Louis et al. (Table 5 in
their paper) is averaged and added to Table 4.

From Table 4 it is noted that the PVC classifier performs comparable to
similar works (even though author number 2 to 4 uses larger training data
sets in a k-fold manner).

Figure 11. Scores (Y-axis) for the randomly selected ECG sets (X-axis) with 5N and 5V beats in the
training set.
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Conclusion

In this work, a novel PVC classifier has been presented, which provides very
good results in relation to similar classifiers where it is noted that comparable
classifiers uses much more data for training in form of a k-fold spilt of the
data. In contrast, the developed PVC classifier only uses supervised anno-
tated data in form of 15N beats and 15V beats to obtain an average perfor-
mance of more than 96% in accuracy, specificity, and sensitivity and more
than 93% in the PPV and NPV scores. These non-trivial results indicate big
potentials in designing robust PVC classifiers which can be trained with only
30 classified beats (classified by an expert). It is noted that a training set size
of 30 beats is the upper limit to obtain the discussed performance which
means that many beat patterns can be trained with fewer annotated beats to
obtain similar performance; however, some PVC signals are sensitive to less
training data which means that lower scores must be expected in these cases.

The novelty of the presented PVC classifier is rooted in the use of solid and
robust feature designs in combination with an advanced regularization method.
The five features consist of three selected features in combination with two novel
features designed for detecting PVC beats only. These features work well for
most of the beat sequences in the MIT-BIH database; however, set 119 and 217
stand out. Set 119 is a sinus rhythm with some embedded PVC extra systoles. By
analyzing the behavior of the features on set 119 it has been found that they
provide clear clusters, and their mutual information show that all features
contribute, which means that this rhythm gets high scores. In contrast, sequence
217 is a paced rhythm where a pacemaker initiates the systoles. These systoles
have very similar characteristics andmorphologies to PVC patterns why they are
very difficult to classify. Nevertheless, it has been found that all features con-
tribute so a linear combination of these makes this rhythm detectable. An
improvement of this work could be to add an extra feature which detects the
pacemaker beats, which most likely would increase the scores for sequence 217.

Table 4. The PVC classifier scores compared with scores from similar works.
No. Author Sen. [%] Spe. [%] PPV [%] NPV [%]

1 This work (15N/15V) 96 99 93 99
2 Luz et al. (average over 5 authors) (Luz et al.

2016)
Not
provided

85 89 Not
provided

3 Christov et al. (average over 4 authors)
(Christov, Jekova, and Bortolan 2005)

96 98 Not provided Not
provided

4 Oster et al. (average over 6 authors) (Oster et al.
2015)

Not
provided

92 92 Not
provided

5 Louis et al. (Louis et al. 2017) Error percentage of 7% on the proprietary Toronto
database

6 Louis et al., Table 5, (average over 5 authors)
(Louis et al. 2017)

Error percentage of 13% on the proprietary
Toronto database
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Finally, the PVC classifier has been tested (5-fold) with a reduced amount of
training data where the set sizes is reduced to 20 (10N and 10V) and 10 (5N
and 5V) beats respectively. The average performance of the PVC classifier only
drops a few percents on these very sparse training sets; however, a tendency to
classifier instability is found with the smallest amount of training data (5N and
5V), why relaying on this very limited training data size is not recommended.
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