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Abstract
Quality monitoring for laser powder bed fusion (L-PBF), particularly in-process and real-time
monitoring, is of importance for part quality assurance and manufacturing cost reduction.
Measurement of layer surface topography is critical for quality monitoring, as any anomaly on
layer surfaces can result in defects in the final part. In this paper, we propose a surface
measurement method, based on the use of scattered light patterns and a convolutional
autoencoder-based unsupervised machine learning method, designed and trained using a large
set of scattering patterns simulated from reference surfaces using a scattering model. The
advantage of using an autoencoder is that the monitoring model can be trained using solely data
from acceptable surfaces, without the need to ensure the presence of representative observations
for all the types of possible surface defects. The advantage of using simulated data for training
is that we can obtain an effective monitoring solution without the need for a large collection of
experimental observations. Here we report the results of a preliminary investigation on the
performance of the proposed solution, where the trained autoencoder is tested on experimental
data obtained off-process, using a dedicated experimental apparatus for generating and
collecting light scattering patterns from manufactured L-PBF surfaces. Our results indicate that
the proposed monitoring solution is capable of detecting both acceptable and anomalous
surfaces. Although further validation is required to fully assess performance within an
on-machine and in-process setup, our preliminary results are encouraging and provide a glimpse
of the potential benefits of using our surface measurement solution for L-PBF in-process
monitoring.

Keywords: laser powder bed fusion, surface measurement, light scattering,
unsupervised machine learning
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1. Introduction

Laser powder bed fusion (L-PBF) with metal materials is play-
ing an important role within modern additive manufacturing
(AM) in numerous applications spanning various fields, such
as aerospace, automotive and biomedical [1]. L-PBF has been
showing excellent performance and capability for producing
highly complex geometries [1, 2]. To ensure the quality of L-
PBF built parts, as well as to reduce cost, defects and other
deviations of L-PBF layer surfaces, there is increased interest
in monitoring during the process, particularly for parts with
stringent quality requirements [3, 4]. Any anomaly generated
on a layer surface during the process may eventually lead to
quality issues or even functional/structural failure in the final
parts [5].

In-process measurement of L-PBF surfaces introduces
challenging requirements such as the need for high measure-
ment speed (to avoid slowing down the process, thus alter-
ing temperatures and other process conditions), long work-
ing distances (to avoid physical interference with the laser and
other components within the build chamber) and robustness
to harsh environments (due to the laser, presence of gases,
plasma and particles). Two-dimensional (2D) optical imaging
of the layer has been applied [6–10]; the primary advantage
being high measurement speed. The main issue with imaging
is the interpretational challenge, as the discernible image fea-
tures are influenced by illumination, shadows, varying contrast
and other sources of noise. Infrared imaging has also been
used to detect anomalies in layer surfaces [11, 12]. Optical,
three-dimensional (3D) areal topography measurement tech-
nologies capable of reaching high spatial sampling resolu-
tions (such as coherence scanning interferometry, focus vari-
ation microscopy and confocal imaging microscopy) have the
advantage of providing a 3D reconstruction of layer topo-
graphy, thus removing most of the disadvantages associated
with 2D image interpretation. However, such technologies are
difficult to apply on-machine or in-process, due to the harsh
operating environments, scarce robustness to noise and the
requirement for fast sampling rates [13, 14]. At larger spa-
tial scales, other optical technologies, such as fringe projec-
tion and photogrammetry are being investigated [15–17], but
have similar challenges and limitations to those for higher-
resolution technologies, and have the additional downside of
not being able to capture information related to the smaller
topographic features, for example the ripples present on the
weld tracks of L-PBF layers [18]. Methods based on com-
bining different sensors have also been developed to measure
layer surfaces. For example by combining a high-speed cam-
era and a two-colour pyrometer to investigate the laser con-
solidation process [10]; combining a high-speed camera and
a photodiode for quality control of the selective laser melt-
ing process [9]; using a visible light photodiode and infrared
light photodiode integrated into the laser module of the L-PBF
machine for fault detection [19, 20]; or using multiple sensors
of the same kind, such as the combination of two photodiodes
to capture scattered light from different locations in the build
chamber, together with the location of the laser spot position
to detect lack of fusion porosity in an L-PBF process [21, 22].

Currently, research on in-process monitoring for L-PBF layer
surfaces is still active and new techniques are being developed
to meet the stringent requirements, improve performance and
reduce costs [2].

We have previously developed a method to detect defects
on surfaces featuring regular topographic patterns (e.g. grat-
ings), based on using a light source to illuminate the sur-
face, collect the scattered reflection pattern by using a sensor
array, and finally analyse the pattern using machine learn-
ing to perform pattern classification and thus detect anom-
alies [23–25]. We have shown that using machine learning
can solve the complex inverse scattering problem efficiently
(compared to the traditional library search method [26]) and
our solution based on combining light scattering and machine
learning is relatively fast (compared to fringe projection meth-
ods [15, 16]), thus suitable for application to in-process mon-
itoring, and introduces minimal concerns in terms of pro-
cess disturbance or accessibility issues. In addition, we have
shown that the training for machine learning can be accom-
plished using numerical simulation to generate artificial scat-
tering patterns, which is more efficient than collecting a large
number of real ones [27, 28]. However, the previously pro-
posed solution could only rely on 2D scattering simulation for
training (i.e. training datasets would consist of light intens-
ities scattered on a 2D cross-sectional plane, and collected
onto an arc-shaped trajectory) and, therefore, could only pro-
cess topographies whose scattered reflection could be suitably
represented by 2D patterns, e.g. one-directional topographies
such as gratings. In this work, as complex and intrinsically
3D L-PBF surfaces are addressed, the introduction of a 3D
scattering model is required, which is far more computation-
ally intensive. Equivalently, the need to address a multitude
of diverse anomalies which could be featured by a fully 3D
topography, such as that typical of L-PBF, makes it inconveni-
ent to adopt machine learning strategies that require training
examples for all the possible classes of anomalies. Therefore,
an unsupervised machine learning model based on an autoen-
coder is selected, only requiring observations from acceptable
surface states for training, and designed to detect anomalous
states as departures from acceptable ones.

In summary, this paper proposes a measurement method
for L-PBF surfaces using light scattering and unsupervised
learning. The light scattering data for training of the machine
learning model is generated by 3D scattering simulations,
using reference geometric models of L-PBF surfaces which
are considered to have acceptable surface topography. The
simulation is based on the Kirchhoff approximation (see
section 2.2) which makes the 3D computations feasible as
opposed to running a more rigorous (and more computation-
ally intensive) model based on the boundary element method
(BEM) [29]. The machine learning model is based on a con-
volutional autoencoder. The autoencoder learns to efficiently
encode and decode the scattering patterns belonging to the ref-
erence surfaces. Using the trained autoencoder, an automated
detector of anomalies can be built by monitoring the recon-
struction error generated by the autoencoder, which is higher
when a non-reference pattern is processed instead. To assess
the performance of the proposed solution, the convolutional
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autoencoder, trained over simulated scattering patterns rep-
resentative of acceptable L-PBF surfaces, is tested using new
sets of simulated patterns belonging to acceptable and anom-
alous topographies, but also through an experimental cam-
paign where the trained autoencoder is fed with real scattering
patterns obtained by a special-purpose experimental appar-
atus, and generated from both acceptable and anomalous phys-
ical surface samples. The validation confirms the effective-
ness of the solution based on combining light scattering and
the convolutional autoencoder for detecting anomalous L-PBF
surfaces, and paves the way for future developments where
the solution will be tested in-process, using scattering pat-
terns generated and collected during operation within the build
chamber of a real L-PBF machine. To the best of our know-
ledge, this work is the first attempt to use light scattering com-
bined with machine learning to measure L-PBF surfaces.

2. Methods and materials

A schematic diagram of the proposed method is shown in
figure 1. Laser light (LS) is projected to the targeted L-PBF
surface, reflected by the surface, captured by a sensor and
recorded in the form of a light scattering pattern (an intens-
ity image), and finally fed into a pattern classifier powered
by machine learning (a convolutional autoencoder). As also
shown in figure 1, scattering patterns to be fed into the classi-
fier can be input from numerical simulation.

2.1. Design of the unsupervised machine learning model
(autoencoder)

The machine learning model is designed as a convolutional
autoencoder, which is an unsupervised machine learning
model. The structure of the autoencoder is shown in figure 2.
The input of the autoencoder is a large set of scattering
patterns simulated using geometric models of reference L-
PBF surfaces. These geometric models have been obtained
by firstly generating physical surface specimens using L-PBF
with optimal process parameters and in control conditions, and
secondly by acquiring the topography of such specimens by
using a coherence scanning interferometer (CSI) areal topo-
graphy measuring instrument [30]. Once the geometric mod-
els of topography are available, a 3D simulation can be used
to project a virtual laser beam onto the surface and reconstruct
its scattered reflection. Details of the simulation are provided
in section 2.2.

Each simulated scattering pattern is collected within an
image of 200× 200 pixels, and becomes an observation within
the set used to train the autoencoder. In the encoding part of the
convolutional autoencoder, the patterns are processed by three
convolutional layers, each followed by a downsampling step.
The first, second and third convolutional layers are designed
as 16, 12 and 8 filters, each with a kernel size of 3 × 3. As
a result, the shape of the data is changed from 200 × 200 to
100 × 100 × 16, 50 × 50 × 12 and 25 × 25 × 8, respect-
ively. A flatten layer is then used to reshape the data from
25 × 25 × 8 to 5000 × 1, which is essentially a 1D array,
densely connected with a layer of 1024 nodes, representing the

final result of the encoding process. In the decoding part of the
autoencoder, the 1024 node data is first connected to another
densely connected layer with 5000 nodes and then reshaped to
a grid of 25× 25× 8 pixels. The data is then further processed
by three transposed convolutional layers, each followed by an
upsampling process. The first, second and third convolutional
layers in the decoding process are designed as 8, 12 and 16
filters, each with a kernel size 3 × 3. The decoding process
is essentially the inverse of the encoding process and the size
of the data is changed from 25 × 25 × 8 to 50 × 50 × 12,
100× 100× 16 and eventually 200× 200, which corresponds
to the size of the original input data and represents the final
result of the decoding process.

The performance of an autoencoder is quantified by the
quality of reconstruction, i.e. how small the error (differ-
ence) is between the original and the reconstructed datasets.
The same error is used as the minimisation target for the
training function; more specifically through the loss func-
tion, defined as the mean squared error of the differences
between the original and reconstructed datasets. A trained
autoencoder is, therefore, capable of encoding the input data-
set into an optimal set of features (learned by training), and
decoding such features back into an output (the reconstruc-
ted dataset) that is as close as possible to the original data-
set. To train the model, we only use the data from refer-
ence surfaces representative of acceptable surface states; the
autoencoder is fitted to a condition of optimal performance
that applies only to surfaces similar to the reference. Anomal-
ous surfaces generating input data with large deviations with
respect to the reference are encoded and decoded poorly, res-
ulting in larger reconstruction errors. The observation of an
unexpected reconstruction error in the operation of the autoen-
coder can, therefore, be used as an indication that an anom-
alous surface has been encountered (or at least, a surface
with significant differences from the references). In this work,
the convolutional autoencoder was implemented in Tensor-
flow/Keras and the trainingwas performed on a supercomputer
(Augusta) with 2 Nvidia V100 GPUs, under the high perform-
ance computing (HPC) service provided by the University of
Nottingham.

2.2. Generation of training datasets

The datasets (light scattering patterns) used for training the
convolutional autoencoder were artificially generated by using
a 3D scattering simulation [31]. The simulation was based
on using digital, geometric models of surface topography,
obtained from areal topography data acquired by measuring
three real L-PBF surfaces, one of which was visually assessed
as acceptable and used as a reference, the other two being
representative of anomalous states. Areal topography meas-
urement was performed by CSI (Zygo Nexview NX2). The
method of generation of the training datasets is illustrated
in figure 3. A relatively large area (1400 × 1400) µm for
the originally selected reference L-PBF surfaces (representing
acceptable surface topography) was initially acquired. Then
smaller surface regions were extracted at different locations of
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Figure 1. Diagram of the proposed method.

Figure 2. Convolutional autoencoder, Conv: convolutional, ConvT: transpose convolutional, DS: downsampling, US: upsampling.

Figure 3. Generation of the training datasets.

each area, by shifting the extractionwindow in both x and y dir-
ections four times, leading to 16 extracted regions in total. All
the topography datasets were fed into a 3D scattering model
based on the Kirchhoff approximation [31], to generate the
scattering patterns. The resolution of the generated patterns
was 200 × 200 pixels. The simulations were repeated mul-
tiple times, by rotating each surface about its normal, 1◦ at
a time, so that the incidence direction of the projected LS

(virtual) would change, leading to 360 simulated scattering
patterns per surface. The resulting scattering patterns were
further multiplied by rotating five steps at 0.2◦ intervals on
the pattern plane. A circular mask was applied to make the
effective area rotationally symmetric (as the original scatter-
ing pattern was collected into a square detector). As a result,
we obtained 16× 360× 5= 28 800 training datasets. The sim-
ulated scattering patterns were then intensity-normalised to a
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Figure 4. Experiment setup, (a) actual setup, and (b) schema.

0 to 1 interval. The numerical simulation was implemented in
Matlab and executed using the parallel processing capabilities
provided by the HPC service, as detailed in section 2.1.

2.3. Verification of scattering simulation

The major limitation of the scattering model used in this study
is the validity regime of the Kirchhoff approximation. To
verify the accuracy of the scattering simulation model for the
target surface (L-PBF surfaces used in this work), we adopt
the method used in our previous work [32]—the criterion pro-
posed by Brekhovskikh (section 3.3 in [33]):

CR =
4πrC cosθ

λ
≫ 1 (1)

where rC is the radius of curvature at a surface point and θ is
the local angle of incidence. Furthermore, we compare the res-
ult from the Kirchhoff approximation-based scattering model
to the BEM [34], which is a rigorous model that can accurately
simulate rough surface scattering and has been verified in our
previous work [23] (the BEM, however, is more computation-
ally intensive, particularly the 3D version [29]).

2.4. Experimental setup

After having trained the autoencoder with simulated data, we
devised an experimental setup to collect real scattering pat-
terns from real L-PBF surfaces for the purpose of testing the
autoencoder. The experimental setup is shown in figure 4. It
should be noted that the setup does not allow us to obtain a per-
fect replica of the scattering patterns that would be obtained
when operating in-process within the build chamber of a L-
PBF machine for the following reasons:

(a) the surrounding atmosphere for the experimental setup is a
laboratory atmosphere, not the typical atmosphere of gases
and flying particles/spatter commonly found in L-PBF;

(b) the surfaces measured in the experimental setup belong to
physical L-PBF specimens and represent completed sur-
faces; on the contrary, in-process, a surface featuring a

mixture of laser-processed regions and surrounding unpro-
cessed powders would be targeted; and

(c) different to a laboratory environment, operating in the
build chamber would imply the presence of additional
sources of disturbance, e.g. vibration of the machine and
processing laser.

In figure 4(a) the experimental setup is shown and a schema
is shown in figure 4(b). The laser light (LS), with a wavelength
of approximately 633 nm and a diameter of approximately
0.8mm, is projected to amirror (MR) through a neutral density
filter (FL) and a polariser (PL) before reflecting onto the meas-
ured L-PBF sample (SP). The sample is mounted on a rota-
tional stage (RS), to investigate the effects of different surface
orientations on the reflection. The scattered light is collected
by a screen (SR, 150 mm × 150 mm) and captured by a cam-
era (CA). The RS is driven by a motion controller (MC). MC
and CA are controlled through a USB hub (UH) connected to a
PC. The angle of the incident light to the normal of the L-PBF
surface is 11.3◦. The range of angles of the scattered light cap-
tured by the screen varies from−9.5◦ to 39.8◦, with respect to
the x direction. In the y direction (normal to the figure plane),
the centre of the screen is aligned to the centre of the L-PBF
sample surface, so that scattered reflections can be captured
within the range −26.5◦ to +26.5◦ (not shown in the figure)
with respect to the y direction. The geometric arrangement of
the experimental setup corresponds to what was adopted in the
3D scattering simulation to generate datasets to train the con-
volutional autoencoder.

3. Results and discussion

Figure 5 shows the topographies of the three L-PBF surfaces
measured separately using CSI. Each measurement was per-
formed with a 50× objective resulted in (1 × 1) mm areal
topography data, cropped to (400 × 400) µm for better visu-
alisation. The manufacturing process parameters for the L-
PBF surfaces are shown in table 1. The AM1 surface was
manufactured using optimal manufacturing process paramet-
ers while AM2 and AM3 were manufactured using different
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Figure 5. L-PBF AM surfaces for experiment, (a) AM1, (b) AM2, and (c) AM3.

Table 1. Manufacturing process parameters for the L-PBF surfaces.

Laser
power (W)

Scan speed
(m s−1)

Energy density
(J mm−2)

AM1 170 1.1 2.1
AM2 170 1.7 1.3
AM3 120 1.1 1.5

scan speeds and laser powers. The topographies reported in
figure 4 clearly show that the AM1 surface, manufactured with
optimal parameters, has finer texture distributed all over the
surface, while AM2 and AM3 have unevenly distributed tex-
tures and larger hump-like features, which may be caused by
insufficient energy density applied on the powder bed (with
faster scan speed and/or lower laser power). As a result, the
AM1 surface was used as the reference surface, whilst AM2
and AM3 were used as representative of out-of-control states.

3.1. Verification results of the scattering simulation

The verification results for the scattering simulations are
presented in this section. Parameters for the scattering sim-
ulations, such as the wavelength of LS and incident angle, are
summarised in table 2 and the results are shown in figure 6.
Figure 6(a) is an extracted profile from the L-PBF surface
(AM1). Figure 6(b) is the power density distribution of the
local angle of incidence of the profile, which shows the
majority of the local angles of incidence are less than 40◦.
Figure 6(c) is the power density distribution of the coeffi-
cient CR, which shows that only a small number (less than
1%) of locations in the profile have CR values smaller than
10, indicating that the scattering model (Kirchhoff approxim-
ation) should be accurate for the L-PBF surfaces used in this
work. Figures 6(d) and (e) show the scattering patterns simu-
lated from the Kirchhoff approximation-based scattering and
BEM models, where the results are in good agreement, show-
ing the Kirchhoff approximation-based scattering model used
in this work can effectively simulate the scattering patterns for
these L-PBF surfaces. Due to the complexity of the L-PBF sur-
faces and the scattering patterns, the scattering patterns were
compared qualitatively as it was difficult to do a quantitative
comparison. A comparison has been done for the Kirchhoff
approximation and the BEM for relatively simple 2D profiles

Table 2. Simulation parameters.

Wavelength of incident light 633 nm
Incidence angle Normal
Length of profile 400 µm
Far field distance 100 mm

[35] and a comprehensive comparison study for the Kirchhoff
approximation and the BEM using simpler 3D surfaces will be
conducted in future work.

3.2. Simulation results

In figure 7, the simulated scattering patterns for surfaces AM1,
AM2, and AM3 are shown. The simulation was carried out
with an incidence angle of 11.3◦, the wavelength of incident
light was 633 nm, as consistent with the actual experimental
setup. The result for the AM1 surface shows a narrow, long
stride pattern while those for AM2 andAM3 showwider stride
patterns, which are consistent with the experimental results
presented in the following section.

After the machine learning model was trained, simulated
scattering patterns from surfaces AM1 and AM2 were used
to test the model (autoencoder). Figure 8 shows one set of
results of a scattering pattern simulated for surface AM1. In
figure 8(a) the original scattering pattern is shown. Figure 8(b)
shows the decoded scattering pattern, and figure 8(c) shows the
deviation from the decoded and original scattering patterns.
The decoded scattering pattern is a blurred version of the ori-
ginal scattering pattern. The results show that the deviations
are relatively small and evenly distributed in the image, par-
ticularly where the scattering signal is visible, indicating that
the machine learning model has learned the scattering patterns
and effectively encodes/decodes the pattern.

Figures 9 and 10 show the results for surface AM2 and
surface AM3. Figures 9(a) and 10(a), figures 9(b) and 10(b),
figures 9(c) and 10(c) are the original scattering patterns,
the decoded scattering patterns, and the deviations from the
decoded scattering patterns to the original scattering patterns
(i.e. reconstruction error), respectively. Compared to the res-
ults for surface AM1, the decoded scattering images are not
only blurred but also features a different pattern. As a result,
relatively large reconstruction errors can be observed, which
are due to the fact that these datasets were not used in the
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Figure 6. Validation result of the scattering model, (a) profile extracted from AM1 surface, (b) power density distribution of the slope angle
of the profile, (c) power density distribution of the coefficient CR, (d) scattering pattern simulated from the scattering model (Kirchhoff
approximation), and (e) scattering pattern simulated from a rigorous model (BEM). PD: power density distribution, NI: normalised intensity.

Figure 7. Simulated scattering patterns for (a) AM1, (b) AM2, and (c) AM3.

Figure 8. Testing result of a simulated scattering pattern for AM1 surface, (a) original scattering image, (b) decoded scattering image, and
(c) deviation map. All subfigures are (150 × 150) mm.

training process and hence the autoencoder could not effect-
ively encode/decode them.

All the reconstruction errors from the numerical simula-
tions (5760 sets) are summarised in a histogram of RMS val-
ues as well as their kernel density estimation (KDE, shown in
solid lines as fitting of the histogram data) [36], as shown in
figure 11. The results for surface AM1 have a smaller mean
RMS error distribution, while those of AM2 and AM3 are dis-
tributed with a larger mean value. Thresholding with the value
of the RMS errors for the data from surface AM1 provides a
likelihood to identify to which surface the scattering patterns
belong (except for the overlapping regions). For instance, by

setting a threshold as 0.053, i.e. if the RMS error is less than
0.053, the measured surface is classified as a non-defective
surface, otherwise, it is classified as a defective surface. As a
result, 5083 and 677 datasets from the reference surface were
classified as non-defective and defective, respectively. On the
other hand, 5655 and 105 datasets from the Defective1 sur-
faces were classified as defective and non-defective surfaces;
4690 and 1070 datasets from the Defective2 surfaces were
classified as defective and non-defective surfaces. A confusion
matrix can then be summarised as shown in table 3. The overall
accuracy of the classifier is 89.3%, indicating that the proposed
method has good performance for these simulation datasets.
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Figure 9. Testing results of simulated scattering patterns for AM2 surface, (a) original scattering image, (b) decoded scattering image, and
(c) deviation map. All subfigures are 150 × 150 mm.

Figure 10. Testing results of simulated scattering patterns for AM3 surface, (a) original scattering image, (b) decoded scattering image, and
(c) deviation map. All subfigures are 150 × 150 mm.

Figure 11. Testing results for the reference and target surfaces using
simulated datasets.

Note that the determination of the threshold was based on the
principle of maximisation of the accuracy using the simula-
tion data. In practice, the selection of the threshold should be

Table 3. Confusion matrix for the simulation data.

Predicted:
Non-defective Predicted: Defective

Actual: Non-defective 5083 677
Actual: Defective 105 + 1070 = 1175 5655 + 4690 = 10 345

determined using the testing data from the experiment, which
can be different from the simulation data due to the limited
accuracy of the simulation model (this will be discussed in
section 3.3).

3.3. Experimental results

Figures 12–14 show one set of testing results for surfaces
AM1, AM2 and AM3, respectively, using the scattering pat-
terns measured by the designed experimental apparatus. For
each figure, subfigures (a)–(c) are the images for the original
scattering pattern, decoded scattering pattern and reconstruc-
tion error, respectively. The results show that the reconstruc-
tion error for the reference surface—AM1 is smaller than those
for the surfaces AM2 and AM3. While the scattering patterns
for surface AM1 show long and narrow strides, those for AM2
and AM3 have wider patterns almost filling the whole image,
consistent with the simulation results.
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Figure 12. Testing surfaces AM1, (a) original scattering images, (b) decoded scattering images, and (c) deviation maps. All subfigures are
(150 × 150) mm.

Figure 13. Testing surfaces AM2, (a) original scattering images, (b) decoded scattering images, and (c) deviation maps. All subfigures are
(150 × 150) mm.

Figure 14. Testing surfaces AM3, (a) original scattering images, (b) decoded scattering images, and (c) deviation maps. All subfigures are
(150 × 150) mm.

The results for the experiments are also summarised in
the histogram shown in figure 15, as histograms and fitted
KDE. Those for the reference surface AM1 have the smallest
RMS error compared to those for AM2 and AM3. Threshold-
ing on the RMS error can be used to determine whether the
AM layer surfaces are being manufactured within the accept-
able range, and thus to monitor the quality of the AM pro-
cess. For example, by setting the threshold to 0.210, i.e. if
the RMS error is less than 0.210, the measured surface is
classified as a non-defective surface, otherwise, it is classi-
fied as a defective surface. As a result, 35 and 1 datasets
from the reference surface were classified as non-defective and
defective, respectively. On the other hand, 72 and 0 datasets

from the defective surface were classified as defective and
non-defective surfaces, respectively. The confusion matrix is
shown in table 4. The overall accuracy of the classifier is
99.1%, indicating that the proposedmethod has good perform-
ance for the measured scattering datasets in these experiments.
It should be noted that the accuracy is even better than the sim-
ulation datasets (89.3%), which may be due to the fact that
the actual scattering experiments have a limited number (36)
of datasets for each sample compared to those for simulation
(5760). Note that the threshold (0.210) was also determined
by maximising the accuracy. Compared to the results from
simulation (section 3.2), the threshold changed from 0.053
to 0.210, this is due to the fact that the scattering simulation
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Figure 15. Testing results for the AM surfaces using measured
scattering data.

Table 4. Confusion matrix for the experimental data.

Predicted:
Non-defective Predicted: Defective

Actual: Non-defective 35 1
Actual: Defective 0 72

had a limited accuracy which introduced a larger recon-
struction error during the encoding-decoding process. Nev-
ertheless, three datasets (one non-defective and two defect-
ive) in the experiments can still be discriminated with high
accuracy.

The proposed method is based on light scattering and a core
algorithm of a convolutional autoencoder, which has the com-
bined advantages of long working distance, and is fast and
accurate compared to traditional surface measurement meth-
ods such as fringe projection and scanning-based methods
(e.g. CSI and focus variation). Most commercial surface meas-
urement systems based on scanning-based methods and fringe
projection systems have the processing time in seconds. Some
methods can be faster with specific algorithms designed to
improve the speed [37]. The processing time of the proposed
method is about 60 ms (excluding the image acquisition time),
running on a PC with an Intel Xeon CPU (2.20 GHz), using
Python as the programming language. Whilst the speed can
be further improved by optimising the algorithm and using a
faster programming language and binary executable files, it
is still relatively fast. It is also faster than the perceptron-like
fully connected artificial neural networks developed in our pre-
vious work [38], which had processing times of about 100 ms.
The proposed method shows accuracies of 89.3% and 99.1%
for simulation data and real measurement data, which is prom-
ising as it is higher than most methods reported in [39]. The
light scattering method also has a working distance. Whist

the experimental setup had a working distance of 150 mm,
it can be easily extended to any practical distance according
to the application. This is not the case with scanning-based
methods.

4. Conclusions

This paper presents a novel method for quality monitoring
of L-PBF process layer surfaces based on using light scatter-
ing and unsupervised machine learning. The method has the
advantages of being fast, non-contact, operating with a long
working distance and without the need for prior knowledge of
topography defects. Both simulation and real scattering exper-
iments indicated that the method has high classification accur-
acy (89.3% and 99.1% accuracies in the confusion matrices,
respectively). The testing results obtained in the post-process
setup demonstrate the potential of the proposed method and
provide an initial promise for future successful implement-
ations in-process and on-machine. Implementation within a
commercial L-PBF machine is currently in progress.
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