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Abstract
Positioning integrity monitoring (IM) is essential for liability- and safety-critical land
applications such as road transport. IM methods such as solution separation apply multiple
filters, which necessitates the use of computationally efficient algorithms in real-time
applications. In this contribution, a new approach that significantly improves the computation
time of the measurement update of the Kalman filter is presented, where only one matrix
inversion is applied for all filters with measurement subsets. The fault detection and
identification method and computation of the protection levels (PLs) are discussed. The
computational improvement comes at the expense of a small increase in the PL. Test results for
precise point positioning (PPP) with float ambiguities in an open-sky and suburban environment
demonstrate the reduced computation time using the proposed approach compared to the
traditional method, with 23%–42% improvement. The availability of IM for PPP, i.e. when the
PL is less than a selected alert limit of 1.625 m, ranged between 92% and 99%, depending on
the allowable integrity risk, tested at 10−5 and 10−6, and the observation environment.

Keywords: GNSS, precise point positioning, integrity monitoring

(Some figures may appear in colour only in the online journal)

1. Introduction

In the past decades, accuracy has been the primary key per-
formance indicator (KPI) for positioning using Global Navig-
ation Satellite Systems (GNSS) for land applications. With the
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advent of multiple constellations, such as GLONASS, Galileo
and BeiDou, positioning availability has come into focus as
another KPI. In addition, to ensure positioning reliability,
methods such as receiver autonomous integrity monitoring
(RAIM) (Powe and Owen 1997, Parkinson and Axelrad 1998)
were developed to allow the receiver to autonomously detect
and isolate faulty observations without the need to use external
integrity information provided by services such as satellite-
based augmentation systems (SBAS). In the last decade, there
has been a growing interest in using GNSS for precise posi-
tioning of unmanned aerial vehicles and land real-time applic-
ations, such as autonomous driving. For such applications,
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safety is paramount, which brings into focus the integrity of
the navigation system as an essential KPI that defines the level
of trust of the positioning information.

Integrity monitoring (IM) can be divided into two main
tasks. The first task is screening the observations for outliers,
a process known as fault detection and identification (FDI).
For example, in the solution separation (SS) approach, the dif-
ference between the solution based on all observations, and
the solution unaffected by the suspected faulty observations,
obtained from a subset of the observations by removing the
suspected observations, is checked. If this difference is statist-
ically significant, exclusion can be attempted. All observations
are screened for the possibility of having faults.

In the second task, and to ensure positioning integrity, pos-
itioning errors (PEs) should be confined within a region with
a boundary known as the alert limit (AL), selected according
to the application and its considered integrity risk. IM aims
to monitor that the PEs lie inside this region with a probabil-
ity equal to at least (1−PMI), where PMI is an application-
dependent maximum allowable probability of misleading
information (MI). At the same time, integrity aims to sat-
isfy the continuity requirement by ensuring that the maximum
probability of raising an alert leading to interruption of oper-
ation, without a valid reason, is PFA, the probability of false
alarm (FA) (Hassan et al 2021). This probability is a sub-
allocation of the continuity requirement Co (presented as a
probability), i.e. PFA < 1−Co, where Co should also account
for the probability of justified alerts in case of the error exceed-
ing the AL (Blanch et al 2015). Since in practice PEs, defined
as the difference between the estimated position and the true
position, are not estimable in the kinematic mode since the true
position is unknown, they can be conservatively replaced by a
statistical upper bound of the absolute error defined according
to the set PMI, known as the protection level (PL). To com-
pute the PL, one should consider several factors, including
defining the nominal error model, possible threats identified
by investigating GNSSmeasurement vulnerabilities (Imparato
et al 2018, Du et al 2021) from which the alternative hypo-
theses (presence of fault modes) are considered, the position-
ing method used, the work environment, and the probability
of occurrence of each fault mode. The PL is monitored not to
exceed the threshold AL to declare the availability of IM of
the navigation solution.

In the last three decades, IM was developed for avi-
ation, which requires the use of certified signals and meth-
ods. Thus, positioning in aviation is typically performed
using single-point positioning (SPP) based on a snapshot
least-squares adjustment and employing undifferenced obser-
vations, supported by SBAS or ground-based augmentation
systems (Walter 2017). In the past decade, methods such
as advanced RAIM (ARAIM) (Blanch et al 2012, Working
Group C, EU-US 2016) were developed when SBAS was not
available. ARAIM can deal with multi-frequency data and the
probability of experiencingmultiple faults using GPS only or a
combination of constellations (El-Mowafy 2016, 2017). These
methods form the basis for IM for land applications where

sub-m or better positioning accuracy is needed for liability- or
safety-critical applications. Achieving such accuracy requires
the use of GNSS differential approaches, such as real-time kin-
ematic (RTK) or network RTK, to cancel or reduce the spa-
tially correlated measurement errors. Similarly, precise point
positioning (PPP) can be considered when all errors, includ-
ing those that are typically ignored in differential position-
ing, are dealt with. Therefore, ARAIM approaches need to be
adapted to the methodology of these techniques and the land-
based work environment, where recursive approaches such as
the extended Kalman filter (EKF) are used.

The widely used ARAIM methods, such as the SS method
(Jöerger et al 2014, Blanch et al 2015) require running mul-
tiple of these filters using fault-tolerant subsets of observa-
tions, i.e. formed by removing suspected faulty observations.
Hence, the practical implementation of IM in real time would
depend on the use of computationally efficient approaches.
One of the most time-consuming processes is matrix inver-
sion. Blanch et al (2019) discussed two methods to reduce the
computational burden using EKF. The first method computed
Kalman gain from all-in-view satellites and does not require
a full matrix inversion, and the second applies fault group-
ing. The computation reduction using these two methods var-
ied between 10% and 70%, but came with the drawback of
being suboptimal and introducing large PL, leading to a reduc-
tion in the availability of IM. Another approach to improve
the computation speed is to apply a rank-one downdating of
the state estimates and covariance matrices of the all-in-view
set of observations for processing observation subsets formed
by removing a single observation from the all-in-view set as
shown in Blanch et al (2012), Tanil et al (2018). The former
study applies least squares in a snapshot approach, which is not
suitable for PPP. However, using rank-one downdate in both
of these studies depends on using the states estimated from the
all-in-view satellites, which does not make the solution free
from faults in the removed observation in the previous epochs.

In this article, we focus on PPP for road transport to benefit
from its use of a single receiver without the need for refer-
ence stations, and where sub-m positioning accuracy is suf-
ficient, which can be achieved after reaching PPP initializ-
ation and solution convergence. Positioning is considered in
open-sky and low-density-structure suburban areas, where the
number of GNSS satellites that have a reasonable geometry
enabling positioning is assumed available, and frequent ini-
tialization of PPP is not experienced. IM for PPP has been
recently discussed to some extent in (Gunning et al 2018).
This article contributes to this effort with a focus on reducing
the IM computation in EKF to support its implementation in
real-time positioning.

After the introduction, a brief overview of IM and the EKF
equations is given, followed by the presentation of a new
approach that can reduce the computational load of EKF with
ARAIM in PPP. Next, the fault detection method and compu-
tation of the PL are discussed. Testing of the proposedmethods
is then presented, and a summary of the proposed approach and
its results conclude the paper.
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2. Data processing using EKF

In traditional PPP, dual-frequency observations are con-
sidered, which give two ionosphere-free (IF) observations per
satellite (code pseudorange and carrier-phase observations).
Their observation equations and processingmethodology have
been extensively addressed in the literature (Zumberge et al
1997, Kouba and Héroux 2001, El-Mowafy et al 2016, Kouba
et al 2017). In this contribution, the proposed method is
presented for PPP using a traditional EKF. Although its
equations are well known, it is useful to briefly overview them
here as they will be visited frequently when discussing reduc-
tion of the computational load of IM in the following sections.
The GNSS code and carrier-phase ionosphere-free combina-
tion observation equation in the fault-free mode at time (t) can
be expressed as

yt = Atxt+ et (1)

where (yt) denotes the observation vector, taken as the
observed-minus-computed observations based on the approx-
imate user location and satellite position, (At) is the geometric
Jacobian matrix since the observation equations are nonlinear,
(xt) is the state vector of the unknowns (also known as the error
states), defined as the increment from the approximate loca-
tion, receiver clock offset, the wet troposphere and float ambi-
guities. (et) is the random observation error vector ∼N(0, Ry),
where Ry is the covariance matrix of the observations. The
undifferenced observations are weighted as a function of the
satellite elevation angle (θ) and the carrier-to-noise dens-
ity power ratio (C/No) with the objective of de-weighting
the observations that experience significant multipaths and
accordingly reduce their contribution to the solution. The
model can be expressed as (El-Mowafy 2019)

σ2 = σ2
z ×

m × 10−0.1×C/No

sin2 (θ)
, (2)

where σ2 is the slant-observation variance, and σ2
z is the vari-

ance in the zenith direction in the open sky computed using the
method described in El-Mowafy (2015), where the interested
reader may refer to this reference for their values. m is a mul-
tiplier for model calibration, which depends on the receiver
type and environment (El-Mowafy 2019, Wang et al 2020).
The covariance matrix of the IF observation combination is
formed by error propagation. After filter initialization, where
the initial states are computed from SPP processing using least
squares, the time update (prediction) is applied as

xt =Φt,t−1 xt−1 + ut−1 such that x̂−t =Φt,t−1 x̂t−1,
(3)

P−
t =Φt,t−1Pt−1Φ

T
t, t−1 +Θut−1 , (4)

where the superscript (–) denotes the time update, x̂−t is the
predicted state vector and P−

t is its covariance matrix, Φt,t−1

is the transition matrix, Θut−1 is the covariance matrix of the
process noise (ut−1), which represents the uncertainty in the
state vector prediction with ∼N(0, Θut−1).

The measurement update starts by computing the gain mat-
rix (Kt), followed by updating the predicted state vector and
its covariance matrix:

Kt = P−
t A

T
t M

−1, (5)

x̂t = x̂−t + Kt
(
yt−At x̂

−
t

)
, (6)

Pt = (I−KtAt) P
−
t , (7)

where x̂t is the measurement-updated state vector, Pt is its
covariance matrix, and M=

(
AtP

−
t A

T
t + Ry

)
is the variance–

covariance matrix of the predicted residuals
(
yt−At x̂

−
t

)
,also

known as the vector of innovations. The EKF is sub-optimal
since only the linear terms of Taylor’s series are used in the
Jacobian matrix, and thus, an iterative procedure is usually
applied, and the assumed observation precisions might not be
very accurate.

3. Proposed method for reduction of the
computational load

In this study, the fault modes considered include single faulty
observations and dual faulty observations, as will be discussed
in the following section, and a constellation-wide mode in
addition to monitoring a fault-free mode, which are two spe-
cial cases. The dual faulty observations can be considered from
the same satellite or from different satellites, based on study-
ing GNSS observation vulnerabilities (Imparato et al 2018, Du
et al 2021), where one may have a code outlier or phase outlier
(e.g. undetected cycle slip), separately or together.

When running multiple parallel filters, where one filter is
required for each of the above test modes, the inversion of the
matrix M can result in a significant computation time. For n
observations and u unknowns, the size of M is n. Firstly, let
us consider the case of suspecting one faulty observation and
form subsets by removing one observation in turn and comput-
ing the estimable unknowns and the difference between each
of these solutions and the all-observation solution to check
their consistency. In this case, M will be reduced to Mi=1 ton

for the n subsets with n filters, where i refers to the matrix
identifier with observation i removed. In this case, n matrix
inversions would be needed in equation (5). The following
approach can be applied such that only one inversion is com-
puted for all filters. Let the subscript i refer to the case of
the ith observation removed, for i = 1 to n, and ci be the ith
column of the identity matrix corresponding to the ith observa-
tion, such that ci = [ . . . 01i 0 . . .]T of size n× 1. A complement
matrix Ci of size n-1× n is formed such that CTi together with
ci forms the identity matrix In of size n, such that Ci ci =0,
and CiCTi = In−1×n−1. The observation and dynamic models
can be expressed as:

yti = Ci (At xti + et) with yti = Ci yt;

and x̂−ti = (Φt,t−1)i (x̂t−1)i, (8)
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where yt refers to the full set of observations. When
the ith observation is removed, M is reduced to Mi =(
CiAtP

−
ti A

T
t C

T
i + CiRyCTi

)
, and replacing the initial value of

the state covariance matrix P−
ti by P−

t , as the only approxima-
tion used in this method, i.e.

Mi
∼=
(
CiAtP

−
t A

T
t C

T
i + CiRyC

T
i

)
, gives

Mi =
(
CiMC

T
i

)
. (9)

It is worth noting that the approximation of using P−
t instead

of P−
ti is commonly applied in practice when, for instance, one

observation is lost in one epoch due to losing track of one satel-
lite (thus one should use P−

ti ) whereas the predicted value of
the state covariance matrix (P−

t ) from the previous epoch with
that observation included is used instead as the only available
one. The use of P−

t instead of P−
ti is only applied for the com-

putation of M and the correct P−
ti is applied elsewhere, i.e. in

equations (5), (7) and (4). Note here that both P−
t and P−

ti are
independent of the values of the observations or their possible
actual faults. In practice, this approximation has a minor effect
on the results after solution convergence, as will be shown in
section 7, since the impact of removing one observation on
the estimation of P−

t is limited (but dependent on the number
and geometry of satellites) and this initial value will be later
adjusted (equation (7)). This effect may also be considered, for
example, by adjustingΘut−1 for the case considering all obser-
vations, leading to a more conservative P−

t , to compensate for
the relatively weaker model when excluding one observation.

Ignoring the time index t in Ci, ci and M for brevity, the
gain matrix is expressed as

Kti = P−
ti (CiAt)

TM−1
i , (10)

Here we use P−
ti computed from past epochs, i.e. from the

adjusted value Pt−1i , by applying equation (4) (or one may
apply P−

t for consistency of the approximation), with

KtiCi = P−
ti (CiAt)

TM−1
i Ci

= P−
ti A

T
t {CTi

(
CiMC

T
i

)−1
Ci}. (11)

From appendix we have

Mi
−1 = Ci

(
M−1 − 1

(cTi M
−1ci)

M−1ci c
T
iM

−1

)
CTi , (12)

which has a size n-1, and by pre- and post-multiplying it by
CTi and Ci, respectively, and from (9) we have

CTi
(
CiMC

T
i

)−1
Ci = M−1 − 1

(cTi M
−1ci)

M−1ci c
T
iM

−1, (13)

which gives

KtiCi = P−
ti A

T
t

{
M−1 − 1

(cTi M
−1ci)

M−1ci c
T
iM

−1

}
, (14)

and the time-updated state vector is expressed as

x̂ti = x̂−ti + KtiCi (yt)− KtiCi At
(
x̂−ti

)
, (15)

which is equivalent to x̂ti = x̂−ti + KtiCi
(
yt−At x̂

−
ti

)
.

Note here the role of Ci in reducing yt to yti and similarly
for At, as shown in equation (8). Thus, for all parallel filters,
when removing one observation in each, we only need to apply
equations (13) and (14) with Pti = (I−{KtiCi}At) P−

ti where
only one inversion (M−1) is required for all subsets.

Another expression of equation (14) is

x̂ti = x̂−ti + Kti
(
yti−Ati x̂

−
ti

)
, (16)

where Kti is computed from equation (10), and Ati = CiAt.
In the proposed method, x̂−ti is used as the initial value for
x̂ti , making it independent of the values of the observation i
or its faults in all epochs, thus outperforming the rank-one
downdating method (e.g. in Tanil et al 2018) that is similarly
used to reduce the processing speed. The rank-one downdating
method is typically performed using the states estimated from
the all-in-view satellites, i.e. x̂t, to compute x̂ti , and thus does
not make the solution free from undetected faults in observa-
tion i in the previous epochs.

Similarly, when considering the case of suspecting two
observations, e.g. i and j, the observation subsets are formed
by removing the two observations. For each case, one can
make use ofCi defined above and introduce the matrixCj (size
n− 2× n− 1) by removing the row and column of Ci corres-
ponding to observation j, and taking cj to be the jth column of
the identity matrix of size n-1 corresponding to the jth obser-
vation, i.e. cj = [ . . . 01j 0 . . . .]T of size n− 1× 1 and not con-
sidering the duplicates. Let Cji = CjCi; ytji = Cji yt such that
the observation and dynamic models read

ytji = Cji (At xtji + et); and

x̂−tji = (Φt,t−1)ji (x̂t−1)ji, (17)

where the size of Cji is n− 2× n, with Ktji =

P−
tji (CjiAt)

T
(
CjiMCTji

)−1
, which gives

KtjiCji = P−
tji A

T
t C

T
ji

(
CjiMC

T
ji

)−1
Cji or

KtjiCji = P−
tji A

T
t C

T
i C

T
j

(
CjMiC

T
j

)−1
CjCi. (18)

One can make use ofMi, computed from equation (12), when
considering the exclusion of one observation first, where no
inversion is needed other than M−1, for j= 1 to n-2, and
employing the above approximation, we have

CTj
(
CjMiC

T
j

)−1
Cj = M−1

i − 1(
cTj M

−1
i cj

)M−1
i cj c

T
jM

−1
i ,

(19)

which gives

KtjiCji = P−
tji A

T
t C

T
i

M−1
i − 1(

cTj M
−1
i cj

)M−1
i cj c

T
jM

−1
i

 Ci,

(20)
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and

x̂tji = x̂−tji + KtjiCji (yt)−KtjiCji At
(
x̂−tji

)
, (21)

which is equivalent to

x̂tji = x̂−tji + KtjiCji
(
yt− At x̂

−
tji

)
. (22)

Thus, for all cases when removing i and j observations from the
full set, the measurement update is carried out using equations
(20) and (21) with Ptji =

(
I−{KtjiCji}At

)
P−
tji . It should be

noted that x̂i and x̂tji are tolerant to faults in measurements i
and ij that could be extended over time (by the inclusion of
x̂−ti and x̂−tji in their estimation), as the EKF is applied for the
time and observation updates without the inclusion of the sus-
pected faulty observations from the start of the filter. When a
satellite appears or drops, the filtering system is updated.

In summary, one can see that for all parallel filters using
observation subsets formed by removing one or two observa-
tions, and the approximation of replacing the initial value of
the covariance matrix P−

ti by P−
t in computing Mi and like-

wise when computing Mji, only one inversion, i.e. M−1, is
performed and the rest is matrix addition or multiplication,
which is computationally cheap. The gain can be seen, for
example, when observing 16 satellites, assuming the use of a
dual-constellation system, e.g. GPS and Galileo, with IF code
and phase observations, we have n = 32 when testing remov-
ing one observation at a time, in addition to the possibility that
all observations are unfaulty but have small errors with a com-
bined effect that leads to a position fault. In the case of elim-
inating two observations, the number of test modes would be
496, computed as ( n!

2!×(n−2)! ). Therefore, for these cases, com-
puting only one matrix inverse will make a significant saving
in computation time.

The same concept can be applied when computing the
observation weight matrix for the different subsets, estimated
as the inverse of the observation covariance matrix when con-
sidering a non-diagonal matrix (e.g. for correlated observa-
tions). An example of this fully populated observation covari-
ance matrix is when using double-difference observations in
the RTK method. Note also that when running parallel filters,
the PPP modeled parameters, which are insensitive to posi-
tional changes between filters including the phase wind-up,
phase center offset and variations, relativistic clocks, dry tro-
posphere estimate, solid earth tide, and ocean loading etc, are
computed only once using the all-in-view position.

4. The threat model

In this paper, we test the horizontal probability of MI (PhMI)
of 10−5 and 10−6 (note here the use of the term hMI for
horizontal MI, such that it is not confused with HMI—the
widely used term for hazardouslyMI). For fault rates, the prior
probability of single faults P(Hi)1 of 10−4 is used for both
code and phase observation faults. This probability is taken as
the sum of probabilities of different observation error sources
(related to satellites, the receiver and its environment), assum-
ing a worst-case scenario where all errors are independent and

taking place together. This probability comprises 10−5 due
to satellite faults (US. Department of Defense 2020) in addi-
tion to other possible faults, such as that owing to multipaths,
which accounts for the remaining 10−4. It is worth mention-
ing that what is relevant here is not the probability of occur-
rence of a multipath, which is high, but rather the probability
of its outliers that can cause a positioning fault. Cycle slips
are detected early in the observations before they are intro-
duced in positioning, and undetected cycle slips are considered
within the budget of observation faults. The prior probabil-
ity of two simultaneous faulty observations P(Hi)2, if they
belong to the same satellite, is taken to be the same as the
P(Hi)1 of 10−4, assuming that they are taking place for the
same reasons. If the two simultaneous faults belong to differ-
ent satellites, it is assumed that they are independent, and thus
P(Hi)2 = 10−4 × 10−4 = 10−8. The probability of three sim-
ultaneous faulty observations is not examined as this will have
an overall extremely low probability that lies outside the sig-
nificant risk allocation budget. The prior probability of a con-
stellation fault P(Hi)const is assumed 10−8 (US. Department of
Defense 2020), where the same probabilities are assumed for
all constellations, and the probability of unmonitored faults
Punmonitored is assumed to be 10−8. All probabilities are for
faults assumed to occur without the control center of the
constellation notifying the users, e.g. through the navigation
message, for one hour from the fault commencement. Again,
note that these values, other than the referenced ones, are
arbitrary and are assumed only to facilitate the demonstra-
tion of the presented algorithm, since currently there are no
standards set for the above probabilities for land applications.
Therefore, further refinements based on extensive testing and
analysis of threats is needed, which is outside the scope of
this paper.

The total allowable PhMI requirement, for m fault modes,
ignoring the unmonitored modes, is thus allocated to the fol-
lowing four cases:

• A fault-free case (PhMIfault−free), assumed as 10−8, related
to the causes of hMI due to large random errors that can
occur with a small probability in the normal operation of
the system, such as those caused by receiver noise, mul-
tipaths and inaccurate tropospheric delay estimation along
with an unfortunate combination of bias errors (El-Mowafy
et al 2015).

• The individual satellite fault probability (PhMI1), of size n,

which is the sum

(
n∑

k=1

)
of the product of the assumed

P(Hi)1, the prior probability of occurrence of a single obser-
vation fault, and the conditional probability that it is not
detected by the FDI process leading to hMI.

• The dual-observation fault probability (PhMI2), which is the

sum

(
m−n−2∑
k=1

)
of the product of the assumed prior prob-

ability of occurrence of two misdetected observation faults
(P(Hi)2). The number of cases is m-n-2 (2 here refers to the
next case of a constellation-wide fault in a dual-constellation
system).
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• The integrity risk of a constellation-wide fault (PhMIconst),
which is the sum of two cases considered for a dual-
constellation system of observations.
From the above, we have

PhMIfault−free+PhMI1 + PhMI2 + PhMIconst
= PhMI−Punmonitored−PwFDE, (22a)

where PwFDE is a small probability (e.g. 10−8) assumed
to account for incorrect observation exclusion in the FDI,
which can lead to MI when exclusion is performed.

Concerning the fault duration that needs to be considered,
with a focus on aviation, Walter et al (2019) considered this
duration within the mean time to notify (MTTN), and men-
tioned that the yearly average MTTN obtained from the con-
stellation service provider can be from ∼1 h (e.g. for GPS)
down to 15 min. In PPP, the MTTN can be much less than
1 h (e.g. 15 min) as the system generating the orbit and clock
corrections can also notify users of whether the satellite can
be used or not. In safety-critical road transport, when consid-
ering the impact of fault duration, this period should ideally
be less than the time period of the stopping distance. This
time period is a combination of the reaction time and the brak-
ing time (which is a function of the vehicle speed); hence, it
should be less than 2–3 s. Therefore, the issue of setting rep-
resentative fault durations and studying their impact on vari-
ous land applications is still open and needs further research.
In our work, once a fault is detected in an observation and the
associated satellite continues to be tracked, the observation is
excluded for 15 min (arbitrary period until further refinement)
before being re-introduced again in the filtering system as a
new observation. In this case, a new fault-free subset will be
formed with associated estimate, FDI and PL monitoring pro-
cesses, as will be explained next.

5. FDI

Utilizing the redundancy of the observations, FDI checks the
consistency of all possible combinations of the measurements
to recognize faulty observations (outliers) that are inconsist-
ent with the rest of the observations. Therefore, increasing
the redundancy of measurements enhances the power of FDI.
In FDI statistical hypothesis testing, the null hypothesis (Ho)
refers to fault-free observations, and the alternative hypo-
theses, e.g. Hi, refers to all possible fault modes considered,
tested against Ho to detect any anomalies in the observations.
If anomalies are identified, the corresponding observations can
be considered for exclusion. Let us ignore the time index (t) in
the sequel of the equations to simplify our presentation. Next,
we present the method for the case i only for brevity, which is
applicable to suspecting dual faults in ij. Applying FDI in the
position domain, the SS test statistic ∆x̂i is expressed as

∆x̂i = |x̂i− x̂0| , (23)

computed from the two solutions

x̂o = x̂−o + Ko
(
y−Ax̂−o

)
, (24)

x̂i = x̂−i + KiCi
(
y−Ax̂−i

)
, (25)

where x̂o denotes the solution using all observations, and
x̂i is the solution obtained from a subset of observations,
formed by removing the observations suspected to be faulty
(the alternative hypothesis i). The SS standard deviation σ∆x̂iq
for the position component (q) is taken from the SS covari-
ance matrix. This covariance matrix is computed as follows.
Starting from

∆x̂ = x̂i− x̂o =
(
x̂−i − x̂−o

)
+ KiCi

(
y−Ax̂−i

)
− Ko

(
y−Ax̂−o

)
, (26)

=
(
x̂−i − x̂−o

)
+(KiCi−Ko)y −KiCiA

(
x̂−i

)
+ KoA

(
x̂−o

)
, (27)

∆x̂ = (KiCi−Ko)y+(I−KiCiA) x̂
−
i − (I− KoA) x̂

−
o ,
(28)

Letting Di = (KiCi−Ko), Bi = (I−KiCiA), and Bo =
(I−KoA),
we have

∆x̂i = {Di y+Bi x̂
−
i }+Bo x̂

−
o , (29)

and thus

Q∆x̂i =
{
DiRyD

T
i + BiP

−
i B

T
i

}
+BoP

−
o B

T
o , (30)

where the part on the right-hand side between braces changes
for each subset, and (BoP−

o B
T
o) is the same for all subsets.

Recall that forKi = P−
i (CiAt)

TM−1
i andKo = P−

o A
TM−1, no

matrix inversion is needed other than M−1, as shown in the
previous section.

In the horizontal 2D space, which is of interest for land
applications including road transport, one can apply only a
single FDI test for the joint Easting and Northing compon-
ents instead of the two tests traditionally performed for the two
directions (El-Mowafy 2019). By extracting σ∆x̂iE

and σ∆x̂iN
,

which represent the standard deviations of ∆x̂i in the Easting
and Northing directions and their covariance (σ∆x̂iE ,∆x̂iN

) from
the 2D matrix Q∆x̂i , a fault is suspected when{

(∆x̂TiE)
2
+ (∆x̂TiN)

2
}
⩾ Ti, (31)

where

Ti = χ2
αi
(df, 0) ×

(
σ2
∆x̂iE

+σ2
∆x̂iN

+ 2σ∆x̂iE ,∆x̂iN

)
+∆bi,

(32)
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Ti is the outlier detection test threshold; χ2
αi

is a central Chi-
square value related to the distribution of the test statistic
of the joint (∆x̂iE , ∆x̂iN) with df degrees of freedom, and
αi is the probability of FA allocated to fault mode i. For
example, if fault modes are assumed with the same FA prob-
ability, αi =

PFAhorz
m , where PFAhorz is the horizontal alloca-

tion of PFA (assumed here 10−4) and m is the total num-
ber of the considered fault modes, which is taken as the sum
of the single- and dual-observation faults and constellation-
wide faults. While the same probability of FA can be allocated
to single-observation faults and likewise for dual-observation
faults, it can be different for the two cases, as will be discussed
in the next section. The case of forming subsets by excluding
two observations, e.g. i and j, is performed in the same way as
above but replacing x̂i by x̂ij, and KtiCi by KtjiCji.

The term ∆bi is computed from the residual observation
nominal biases, denoted as by, such that

∆bi = |bo− bi| , (33)

bo =

√
{|So|E (ζo by)}

2
+ {|So|N (ζo by)}2 , (34)

bi =
√
{|Si|E (ζi by)}

2
+ {|Si|N (ζi by)}2 (35)

where bo and bi are the projection of the vectors of the max-
imum nominal bias vector by onto the space of the unknowns
in x̂o and x̂i respectively. It is assumed here that by is a step bias,
whereas the impact of possible differential temporal nominal
observation biases on the solution is considered in the pre-
dicted x̂−o and x̂−i since FDI is applied in the position domain.
In our test, empirical values of by for each observation type
are taken as the mean (m) of the overbounding distribution,
which is discussed in the next section for demonstration of the
method. These approximate values require future comprehens-
ive study that should take into consideration various possible
work conditions. Note also here that∆bi is small since the PPP
solution is driven by phase observations, and the same satel-
lites are shared in the two solutions x̂o and x̂i except for one
or two satellites according to the test mode i. We only con-
sider here ∆bi for the observations that have satellite eleva-
tion angles below 40 degrees where the effect of the multipath
could be significant (Zhang and Schwarz 1996). Thus, ζo is
a reformed identity matrix of size n by replacing its diagonal
elements corresponding to the satellites above 40 degrees with
zeros. ζi is structured in a similar way for ni, which is the num-
ber of observations considered in fault mode i. So and Si are
pseudoinverse matrices that project the observations onto the
space of the unknowns. Using the least-squares concept as the

basis of KF, So =
(
ATR−1

yo A
)−1

ATR−1
yo , where |So|E and |So|N

denote its components along the East and North. Similarly,

Si =
(
ATi R

−1
yi Ai

)−1
ATi R

−1
yi , with |Si|E and |Si|N whereAi = CiA.

It should be noted that since the FDI is applied in the posi-
tion domain, it is a detector of faults extended over time, since
the test statistic (∆x̂i) involves the error state time updates

(x̂−i and x̂−o , see equations (24) and (25)), which are suc-
cessively computed from past epochs and using past observa-
tions, and x̂−i is fault-tolerant over time to the suspected faulty
measurement (i).

If a fault is detected, a separability check is applied by
computing the correlation between faults to avoid incorrect
identification when masking one fault by another correlated
fault. For the observations k and j, the correlation coeffi-
cient between their corresponding errors denoted as ξk,j reads
(El-Mowafy 2019)

ξk,j =
cTkM

−1cj√
cTkM

−1ck
√
cTjM

−1cj
, (36)

where ck and cj as stated earlier are zero column vectors except
for the elements corresponding to the observations k and j,
respectively, which equal 1. For a suspected observation error,
if a high correlation coefficient is present between it and other
observation errors, we consider exclusion of these correlated
observations. They are ranked, and the one with the highest
test statistic in (31) with a significant difference from the other
correlated errors (e.g. empirically twice the test statistic value)
will be excluded first. If the test statistic is close for both correl-
ated observation errors and one or both fail, both observations
are excluded.

An alternative fault detection test, sometimes called the
Chi-square test, uses a test statistic comprising the sum of
squaredweighted (normalized) observation residuals or innov-
ations. It can be applied over a pre-set time window, by accu-
mulating the test statistic over this period, for the detection of
slowly accumulating observation errors (such as ramp errors).
To reduce the computer memory used, the test statistic is
typically time updated using a recursive formula (Teunissen
and Kleusberg 1998, Gunning et al 2018). The relationship
between this detection method and the SS test is discussed
in El-Mowafy et al (2019). However, the Chi-square test has
the drawback that the detection threshold, which is the inverse
Chi-square cumulative distribution function (CDF), increases
with time due to the increased degrees of freedom with the
accumulation of observations over time and the increase in
their number, and accordingly the test statistic. Consequently,
the PL that uses this threshold increases with time, unlike the
PL using SS, which typically has smaller values (i.e. better IM
availability, due to comparing the increased values of PL with
the constant pre-set value of AL) and lower computational
load (Gunning et al 2018). Therefore, the Chi-square method
is not used here as the main fault detection method or in the
computation of PLs.

To check for ramp observation errors, we apply a relative
order testing method using Kendall’s Tau correlation coeffi-
cient, which is a non-parametric test to check whether the
time series of each observation innovation has a trend, whereas
they should be temporally uncorrelated random variables.
The observation innovations of different subsets are stored
for a sliding time window K (e.g. 15 epochs, application-
dependent). For each observation innovation time series, we
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compute the Kendall’s Tau coefficient (T) and the Z-score (Z)
as follows:

Z=
3×T

√
k(k− 1)√

2(2k+ 5)
, (37)

and compare the p-value of the Z-score against the selected
significance level (β), e.g. 0.3% for 3σ, and check whether
the p-value > β. If the test fails, a trend is suspected. This
can be confirmed by checking that these innovations exceed a
small selected threshold. It can further be verified by applying
the Chi-square test (only for confirmation), if the computation
power allows. This approach is used for the detection of small
ramp errors, whereas outliers can be detected using the SS test.

6. Computation of the PL

Following the fault detection process in the previous step, the
PL is computed based on bounding different errors involved
in GNSS positioning. The computation of the convolution of
all error sources, in case of using empirical distributions for
the different error sources, will be complicated to calculate
the exact probability of errors. Therefore, the process neces-
sitates replacing the probability distribution of the combined
error sources, i.e. their empirical distribution, by one distri-
bution, the so-called overbounding distribution, which bounds
errors in both the position and observation domains. For safety
reasons, the threat probability computed based on this over-
bounding distribution should always exceed the threat prob-
ability that is computed using the empirical distribution of the
combined errors.

In this article, we apply the two-step CDF overbounding
methodwith excess mass described in (Blanch et al 2016). The
method first determines an intermediate overbounding distri-
bution in the sense of paired overbounding (Rife et al 2006)
that is symmetrical and unimodal, and next overbound the
intermediate distribution by a Gaussian distribution, such that

xˆ

−∞

fa (t)dt⩽ (1+ ε)

xˆ

−∞

fsu (t)dt for anyx

xˆ

−∞

fsu (t)dt⩽ (1+ ε)

xˆ

−∞

fob (t)dt, (38)

with fob (t) =
1√
2πσ

e−
(t−m)2

2σ2 , (39)

where fa is the PDF distribution of actual data, fsu is the distri-
bution of the unimodal and symmetric distribution, and fob is
the final Gaussian overbound distribution, and ε is the excess-
mass increment.

In this work, following Wang et al (2020), ε is set to 0.01,
and to satisfy equations (38) and (39), the overbounding stand-
ard deviation and mean N(σ,m) are searched for each obser-
vation type (code and phase). A nested half-interval search is

performed. For code residuals, the search is conducted from
0.05 m to 1 m with a step of 0.01 m, and for phase residuals
from 0.001 m to 0.03 m with a step of 0.001 m. The search
stops when equations (38) and (39) are fulfilled. The search
is performed for the left-side overbound for (σleft,mleft) and
the right-side overbound for (σright,mright), and the final (σ,m)
are taken as the maximum values from the left and right over-
bounds. Next, the IF σIFob is computed, which refers to the
zenith direction, and then it is weighted for each satellite along
its line of sight using (2).

We assume here that in open-sky and low-density suburban
environments the measurement noise is uncorrelated in time
andwith randomization of themultipath in the kinematicmode
due to the constant change of signal geometry between the
vehicle and surrounding reflecting sources. In future work, we
will study methods that consider temporally correlated meas-
urement noise (Blanch et al 2020, Langel et al 2020).

Different approaches can be considered for the computa-
tion of PLs; for example, the exact, the upper-bound and the
approximate upper-bound PL (Blanch et al 2015). In practice,
results from these approaches are very close to each other as
shown in (Gunning et al 2018); therefore, and since the com-
putation load is of focus here, we consider the approximate
upper-bound of PL expressed as

PL= max{PLo, PLi|mi=1} , (40)

for

PLi = Ti+ Kmd,i×σi+mi and

PLo = Kmd,o×σo+mo, (41)

where σi =
√
σi2E+σi2N, σo =

√
σo2E+σo2N, which are com-

puted from the mapped overbound σIFob weighted using
equation (2). PLo refers to using the all-observations case. The
misdetection inflation factors Kmd,i and Kmd,o for the above
four cases are computed as

Kmd,i|ni=1 = Q−1

(
PhMIn

n×P(Hi)1 ×ωi

)
, (42)

Kmd,i|m−2
i=n+1 = Q−1

(
PhMI2

(m− n− 1)×P(Hi)2 ×ωi

)
, (43)

Kmd,i|mm−1(const) = Q−1

(
PhMIconst

P(Hi)const×ωi

)
, (44)

and for the fault-free case

Kmd,o = Q−1

(
PhMIfault−free

2×ωo

)
, (45)

where Kmd,i|ni=1, Kmd,i|
m−2
i=n+1, Kmd,i|mm−1(const) are the misdetec-

tion inflation factors for single faults, dual-observation faults
and constellation faults, respectively, with their cases given.
Q−1 is the positive value of the inverse of the CDF, with
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ωo = (1+ ε)no and ωi = (1+ ε)ni , where no and ni are n for
the fault-free and fault mode i. Since the PL is computed from
the solution separation detection threshold (applied in the pos-
ition domain) and standard deviations of the covariance matrix
of the all-in-view and fault-tolerant estimates that are propag-
ated in time, it takes into consideration the history of the filter
and prior observations.

Here, one has to consider how PhMI1 and PhMI2
are allocated from the linear relationship in equation
(22), where PhMI1 + PhMI2 = PhMI−Punmonitored−PwFDE−
PhMIfault−free− PhMIconst. This allocation has to consider the
relationship between the significance levels of the FDI test,
i.e. the associated probability of FA αi, and that of the misde-
tection of any of the four cases above — let us denote it as βi.
It is also well known that αi and βi are inversely proportional.
The latter probability will affect the inflation factor (Kmd) for
the considered cases. Therefore, the allocation of PhMI1 and
PhMI2, and that of PFAhorz for the single-observation faults
and dual-observation faults, are performed such that the Kmd,i
and Ti values for the two cases do not vary significantly. This
was performed iteratively in this study until this condition is
approximately reached.

The PLs are statistical bounds mainly computed from the
threat and nominal error models, permissible level of integrity
risk, the satellite geometry and assumed precision of the obser-
vations, but not from the observations themselves and their
actual residuals corresponding to the final solution. Therefore,
a test is given (El-Mowafy 2019) to quantify the impact of the
residuals of the observations passing the FDI and the PL tests
on the position solution, also known as the external reliability.
In this test, we checkwhether the resulting positioning discrep-
ancy (δx̂i) is less than an allowable value, selected according to
the application at hand. The position change can be expressed
for the case i as

δx̂i = {KiCi (CTiM−1
i Ci)

−1CTiM
−1
i } Ci

(
y−Ax̂−i

)
, (46)

such that i varies between 0 andm, where i= 0 refers to the use
of all observations, and the size of Ci is the number of accep-
ted observations passing the FDI and PL tests, where M−1

i is
computed previously based on M−1. The horizontal discrep-
ancy δx̂Hi is computed as the Euclidean norm of the Easting
and Northing horizontal components of the vector δx̂i. To con-
sider the validity of the solution, the following condition must
be met:

δx̂Hi < TH, (47)

where TH is the allowable horizontal error. For example, in
transportation applications that require lane identification, the
allowable value of TH can be 1 m, whereas for more precise
applications, such as collision alerts, the allowable TH can be
set as 0.5 m or less. If the test fails, this position cannot be val-
idated, and an alternative positioning system should be used.
Figure 1 illustrates a flowchart of the IM approach.

Figure 1. Flow chart of IM approach. Equation numbers are given
inside the parenthesis.

7. Testing

The presented method was applied for a kinematic test car-
ried out in Sydney, Australia, in April 2018. The test tra-
jectory includes suburban and open-sky areas, and an area
of tall buildings and large trees in the median with signal
blockage experienced in low-density urban areas. The data
span approximately 2.50 h at a one-second sampling rate.
Figure 2 illustrates the test trajectory shown on a Google
map, and figure 3 shows the test vehicle, viewing the sub-
urban environment where part of the test was conducted. GPS
and Galileo dual-frequency data (L1 and L2 for GPS, and
E1 and E5a for Galileo) were processed by PPP with the
float-ambiguities solution. The satellite orbit and clock cor-
rections were received in real time, where the test was carried
out during a testbed campaign for the new-generation dual-
frequency multi-constellation SBAS currently under devel-
opment in Australia. This new SBAS broadcasts traditional
SBAS corrections for GPS L1 signals in addition to dual-
frequency GPS andGalileo SBAS data, as well as dual-
frequency PPP corrections for the two systems. The data were
collected using a Septentrio AsteRx-U receiver with Leica
AR10 antenna, and an RF front-end and Linux tablets were
used to capture real-time orbit and clock corrections for PPP.
These corrections have an accuracy at a sub-decimeter level
(Barrios et al 2018, El-Mowafy et al 2020).

For a demonstration of the computational load reduction
in the measurement update step of EKF, we consider first the
case when suspecting one observation, testing all observable
satellites, and forming fault-tolerant subsets without the sus-
pected observations, and next the case when suspecting two
observations, and similarly forming subsets by excluding these
two observations. A variable number of satellites from 10 to
16 satellites was included in this analysis, noting that at some
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Figure 2. Test trajectory in Sydney, Australia (Google Earth)
showing the different test environments.

Figure 3. The test vehicle and surrounding suburban environment.

periods of the test, and due to signal blockage due to buildings,
trees, etc, positioning had a poor performance or was not
available. As explained earlier, for 16 satellites, we have 32
ionosphere-free code and phase observations, and hence 32
subsets for the first case and 496 subsets for the second case,
computed from ( n!

2!×(n−2)! ). For 10 satellites, the number of
subsets in the first case is 20 and 190 for the second case. The
software code used was developed in Matlab (MathWorks),
noting that the authors are not professional programmers. The
data were processed using an Intel® Core™ i7 processor with
a CPU clock speed of 3.2 GHz with 16 GB RAM. The ratio
of the processing time of the measurement update using the
proposed method (equations (13) & (14) and (20) & (21)) to
the processing time of the measurement update using the tra-
ditional method (equations (5) and (6)), i.e. time(proposed)

time(traditonal) , is
illustrated in figure 4, showing the average ratio for different
numbers of observations over the test period. Since the time
update step is the same in both approaches, it was not con-
sidered here. The top subplot of figure 3 shows the case of sus-
pecting one observation, and the bottom subplot illustrates the
case of suspecting two observations. The figure shows that this

Figure 4. Ratio of processing time of the measurement update step
between the proposed method and the traditional KF for (top)
subsets formed with one observation removed, and (bottom) subsets
with two observations removed.

ratio was on average 0.77 for case 1 (subsets with one observa-
tion excluded) and 0.58 for case 2 (subsets with two observa-
tions excluded). In the latter case, the reduction in processing
time is further evident when the number of observations, and
consequently the number of tested subsets, increases.

Compared with the overall results shown in Blanch et al
(2019), where Kalman gain is derived from the all-in-view
observations and does not require a full matrix inversion, the
proposed method gives a better reduction in the processing
time for case 1 (23% improvement using the proposed method
in the computational time vs. 10% improvement in Blanch
et al 2019), and slightly less improvement for case 2 (42%
vs. 50%). The approximation made by replacing the initial
value of the state covariance matrix P−

ti by P−
t in computing

Mi has a slight impact on the results, where after solution con-
vergence the PLs increased only within 1–4 cm with a max-
imum 8 cm from their values when the traditional approach
is applied. Similarly, the differences between the computed
positions with those when using the traditional KF after con-
vergence were within 5 mm. The proposed method thus has
a slight practical impact on the solution results. The pro-
posed method was also compared with the rank-one method
that downdates the full-in-view state solution by reducing the
effect of removing a single observation without performing
a full matrix inversion. For the case of removing two obser-
vations, the method needs to be applied sequentially, where
stored data from the filters when removing one observation
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Table 1. All-satellite average overbounding standard deviations and means of GPS and Galileo signals obtained from data comprising ten
kinematic tests and one-month static data.

GPS Galileo

σ (m) m (m) σ (m) m (m)

Code (L1) 0.593 0.158 Code (E1) 0.508 0.145
Code (L2) 0.570 0.150 Code (E5a) 0.483 0.138
Phase (L1) 0.006 0.008 Phase (E1) 0.005 0.007
Phase (L2) 0.006 0.010 Phase (E5a) 0.005 0.010

(e.g. x̂i, Pi, etc) are used for the case of removing two obser-
vations. Comparing this method with the proposed method in
the measurement update step of EKF shows that they have
marginal difference in terms of the computational time, where
for the case of removing one observation the method of rank-
one downdating was faster by∼5% than the proposed method,
but for the case of removing two satellites, which is the
majority of cases, the proposed method was faster by ∼3%.
Therefore, they are practically comparable in terms of the
processing time.

However, while this comparison only considers the pro-
cessing time. As noted earlier the rank-one downdating
method uses states estimated from the all-in-view satellites,
i.e. compute x̂ti from x̂t, and thus does not make the solution
free from undetected faults in observation i in the previous
epochs. In contrast, the proposed method uses x̂ti and x̂

−
ti and

thus considers faults in previous epochs.
Next, the presented method was applied for the test data

processed in kinematic mode in post-mission, mimicking real-
time positioning. The overbounding standard deviation and
mean (σ,m) of the distribution of the observation errors were
estimated from the data of ten kinematic tests (carried out
through 2018) combined with the static data of one month
(October 2018), all with a 1 Hz sampling rate. The kinematic
tests were performed in the cities of Perth, Wollongong and
Sydney, Australia, where the rover antenna was mounted on
the roof of a vehicle (see figure 3). The static data were collec-
ted at a known reference point on the roof of the Spatial Sci-
ences building at Curtin University, Australia, which has a low
multipath level. The observation errors, which were filtered
from outliers, were computed as the difference between the
collected observations and their ‘assumed-true’ values that
were computed from the final precise orbits obtained from
the Center for Orbit Determination in Europe (CODE) and
the known receiver location. The rover receiver positions in
the kinematic tests were determined by RTK-like positioning
in post-mission, where the collected data were referenced to a
nearby reference station.

The average estimated overbounding parameters (σ,m) for
the different code and phase signals from these data are given
in table 1. Again, these values should be considered as approx-
imate only, and are utilized here as a representative sample for
demonstration of the method. Naturally, practical implement-
ation would require collecting much longer periods of data,
in particular from kinematic testing and under various condi-
tions, which is beyond the scope of this study.

The PL results of the example kinematic test described
above (shown in figure 2) after PPP initialization and solu-
tion convergence are illustrated in figure 5, with a data length
of 6614 s. Two values for PhMI were tested (10−5 and 10−6),
where for road transport, these values are not set yet. The PEs
are computed as the difference between the rover-computed
PPP-float solution and the rover positions computed in RTK
mode. The RTK solution was obtained by processing the rover
GNSS data referenced to observations from a station loc-
ated close to the test area, and the RTK positions were based
on ambiguity-fixed solutions with a precision generally bet-
ter than 3 cm. The detection of observation outliers is per-
formed using the SS test. The relative order testing using
Kendall’s Tau correlation coefficient of the observation innov-
ations, and testing suspected observation innovations against a
small threshold, was successful in catching small ramp injec-
ted artificial errors in a pre-test data set, in which we injec-
ted 54 ramping errors in a static 1 Hz GPS data of one hour
collected at Curtin University at different satellites and differ-
ent epochs with an initial value of 0.5 m and a time slope of
2%. All these artificial errors were captured by the proposed
method. In the real test of the shown results, we did not inject
any artificial errors, and testing did not show the presence of
ramp errors. This is not surprising, given that slowly accumu-
lating measurement errors mostly take place due to GPS satel-
lite clock anomalies and incorrect orbit ephemeris parameters
broadcast by the satellites, which is not problematic in PPP,
since the orbit and clock corrections used are provided by a
service that applies a quality control process to prevent such
ramp errors.

The test results show that, as illustrated in figure 5, the com-
puted PL bounds the absolute values of PE during all epochs
in the test. On average, the PL was 0.98 m for a PhMI of 10−5,
increasing to 1.07 m for a PhMI of 10−6. During the period
of poor satellite visibility in some suburban/low-density urban
areas with taller buildings and trees at the side of the road,
between epochs 3860 and 4360, both the PL and PE had large
values. By inspecting and comparing the results at each epoch,
the PL was larger than the PE (at some epochs this may not be
clear in the figure), noting that during that period the RTK also
showed a poor performance.

For road transport applications, an AL of 1.625 m is used
here, set as half of the average lane width, which typically
ranges between 3.0 and 3.5 m. The availability of IM is
assessed by checking that PL < AL, and is expressed as a per-
centage of the number of epochs when IM is available to the
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Figure 5. PL, PE and AL (top) using PhMI of 10
−5 and (bottom)

using PhMI of 10
−6.

Table 2. Percentage of IM availability.

Environment AL (m) PhMI = 10−5 PhMI = 10−6

Overall (open
sky and suburban)

1.625 91.206% 89.007%

Open-sky
environment

1.625 99.095% 97.548%

total number of epochs. As shown in figure 5 and summarized
in table 2, when PhMI is 10−5, the overall IM availability var-
ies from more than 99% inan open-sky environment to 91%
when including the suburban environment. This is mainly due
to signal blockage and a reduced number of observations and
accordingly reduced PPP positioning availability and accur-
acy in the latter environment. The IM availability was also
reduced by about 2% when using a PhMI of 10−6. This is an
expected result and reflects the impact of setting this value for
each application, which should be carefully set according to
its requirements. To improve the IM availability results, one
may apply a positioning method with better performance than
the traditional PPP with float ambiguities, such as PPP-AR
(PPPwith ambiguity resolution), which typically provides bet-
ter precision and reduced solution convergence time, or RTK.

8. Summary and conclusions

A method for IM using EKF is presented with a reduced
computational load to facilitate real-time processing when

applying solution separation ARAIM in PPP, which requires
running multiple parallel filters. In the proposed approach,
only one matrix inversion is computed for these filters, avoid-
ing the need to invert hundreds of large-size matrices. One
approximation is made by replacing the initial value of the
state covariance matrix P−

ti by P−
t in the covariance matrix of

the innovation vector in the sub-filters. Thus, the huge gain
in processing speed came at the slight expense of increas-
ing the PL by a few centimeters. The Kalman gain mat-
rix is computed in a simple process presented in equations
(13) and (14) computed for testing the single-fault case, and
equations (20) and (21) for testing the two-fault case. In the
horizontal 2D space, which is of interest for land applica-
tions including road transport, the FDI can be applied using
only one test for the joint Easting and Northing position com-
ponents instead of the two tests traditionally performed for
the two directions. Furthermore, the upper-bound of PL is
applied using the computationally fast formula. The integ-
rity risk is allocated to four modes; namely, a fault-free
mode, single-observation faults, dual-observation faults and
constellation-wide faults.

The presented method was demonstrated for a kinematic
test in suburban and open-sky environments. PPP with float
ambiguities was performed, processing GPS and Galileo dual-
frequency data with real-time satellite orbit and clock cor-
rections received from the testbed new-generation Australian
SBAS service. An improvement in the measurement update
of EKF was demonstrated, where the ratio of the processing
time using the proposed method to the processing time using
the traditional method was on average 0.77 for the case of
subsets with one suspected faulty observation, and 0.58 for
subsets with two suspected faulty observations. The compu-
tational time gain increased with the increase in the number of
observations.

The PL results of the test after PPP initialization and
solution convergence are presented with an assumed AL of
1.625 m, tested with a PhMI of 10−5 and 10−6 and assumed
prior probabilities (for fault-free, single-fault, dual-fault and
constellation fault cases). For a PhMI of 10−5, the percentage
of IM availability (when PL < AL) varies from approximately
99% in the open-sky environment to 91% when including the
suburban environment, mainly due to signal blockage and a
reduced number of observations at some epochs. The IM avail-
ability was reduced by about 2% when the PhMI was reduced
to 10−6. To improve the IM availability, the use of PPP-AR
is recommended. Future work will investigate refinement of
the assumed probabilities and biases and include methods
that bound temporally correlated non-Gaussian measurement
noise that may be present, particularly in urban environments.
It will also investigate the impact of the method approximation
on various satellite geometries.

Data availability statement

The data that support the findings of this study are available
upon reasonable request from the authors.

12



Meas. Sci. Technol. 33 (2022) 085004 A El-Mowafy and K Wang

Acknowledgments

This study benefited from discussions with Dr Amir
Khodabandeh. Fronter SI, GeoScience Australia, GMV
(Spain) and Transport for New SouthWales are acknowledged
for their support and assistance in obtaining the data used,
which were collected during the new-generation Australi-
a/New Zealand SBAS testbed campaign. The precise orbits
used for computation of the observation errors for estima-
tion of the overbounding parameters were obtained from the
Center for Orbit Determination in Europe (CODE).

Funding

This research was funded by the Australian Research Coun-
cil, discovery Project No. DP 190102444, the National Time
Service Center, Chinese Academy of Sciences (CAS) (No.
E167SC14) and the CAS ‘Light of West China’ Program (No.
XAB2018YDYL01).

Conflict of interest

The authors declare no conflict of interest.

Appendix

Proof of equation (12), i.e.

Mi
−1 = Ci

(
M−1 − 1

(cTi M
−1ci)

M−1ci c
T
iM

−1

)
CTi . (12)

For brevity let us replace the symmetric matrixM−1 by B, and
its elements will be defined as b, such that (12) reads

Mi
−1 = Ci

(
B− 1

(cTi Bci)
Bci c

T
i B

)
CTi . (48)

Recall that ci = [ . . . 01i 0 . . .]T is of size n× 1 and Ci is of size
n-1 × n, which is formed such that CTi together with ci forms
the identity matrix In of size n. When eliminating the obser-
vation i, the denominator term

(
cTi Bci

)
in (48) becomes the

element (bii), where the subscripts here refer to the row and
column numbers, respectively.

In (48), Bci gives the column i of B, and cTi B gives the row i
of B. When they are multiplied, i.e. the numerator (Bci cTi B)
in (48), and for illustration let us arrange its elements as
i, j, k, n in this order, we have the symmetric matrix

1
(cTi Bci)

Bci c
T
i B

=
1
bii


b2ii biibji biibki
. b2ji bjibki
. . b2ki

· · ·
biibni
bjibni
bkibni

...
. . .

...
. · · · b2ni

 . (49)

Again, note here that the subscripts of the matrix elements on
the right-hand side refer to the row and column numbers. By
substituting into the part between parentheses in (48), we get

B− 1
(cTi Bci)

Bci c
T
i B)

=



0 0 0 0

0 bjj−
b2ji
bii

bjk− bjibki
bii

· · · bjn− bjibni
bii

0 . bkk− b2ki
bii

bkn− bkibni
bii

...
. . .

...

0 . · · · bnn− b2ni
bii


(50)

Note the symmetry of the matrix, i.e. bij = bji, etc, and that
the zero column and row refer to the location of observation
i, which were the first row and column in this example. Pre-
multiplying (50) by Ci and post-multiplying by CTi removes
these zero row and column of i, and reduces the size of the
matrix to n-1 (the size of Mi

−1), i.e.

Ci

(
B− 1

(cTi Bci)
Bci c

T
i B

)
CTi

=


bjj−

b2ji
bii

bjk− bjibki
bii

. bkk− b2ki
bii

· · ·
bjn− bjibni

bii

bkn− bkibni
bii

...
. . .

...

. · · · bnn− b2ni
bii

 (51)

which is simply Mi
−1, where from linear algebra

bjj−
b2ji
bii

bjk− bjibki
bii

. bkk− b2ki
bii

· · ·
bjn− bjibni

bii

bkn− bkibni
bii

...
. . .

...

. · · · bnn− b2ni
bii

= Mi
−1

(52)

which proves (12).
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