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ABSTRACT

Stiff Ordinary Differential Equations (SODEs) are present in engineering, mathematics,
and sciences. Identifying them for effective simulation (or prediction) and perhaps
hardware implementation in aerospace control systems is imperative. This paper
considers only linear Initial Value Problems (IVPs) and brings to light the fact that stiffness
ratio or coefficient of a suspected stiff dynamic system can be elusive as regards the
phenomenon of stiffness. Though, it gives the insight suggesting stiffness when the value
is up to 1000 but is not necessarily so in all ODEs. Neither does a value less than 1000
imply non-stiffness. MATLAB/Simulink® and MAPLE® were selected as the Problem
Solving Environment (PSE) largely due to the peculiar attribute of Model Based Software
Engineering (MBSE) and analytical computational superiority of each PSEs, respectively.
This creates the base for comparing results from both numerical and analytical
standpoint. In Simulink, two methods of modelling ODEs are presented. Experimenting
with all the variable-step solvers in MATLAB® ODE Suit for selected examples was
carried out. Results point to the fact that stiffness coefficient of about 1000does not
always suggest that an ODE is stiff nor does a value less than 1000 suggest non-stiff.
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1. INTRODUCTION

An ordinary linear differential equation is known to model any linear system, relating the
output response of the system to the input, whether electrical, mechanical, hydraulic, or
thermal. The analogies between these several engineering disciplines have been developed
over time [1]. ODE problem has been divided into stiff and non-stiff problems.
In mathematics, a stiff equation is a differential equation for which certain numerical
methods for solving the equation are numerically unstable, unless the step size is taken to be
extremely small. It has proved difficult to formulate a precise definition of stiffness, but the
main idea is that the equation includes some terms that can lead to rapid variation in the
solution. Stiffness is a subtle, difficult and important concept in the numerical solution of
ordinary differential equations. It depends on the differential equation, the initial conditions,
and the numerical method.

The best way to detect stiffness is to try one of the solvers intended for non-stiff systems. If it
is unsatisfactory, the problem maybe stiff. If the problem is stiff, there are effective solvers
available [2].

The phenomenon of stiffness is not precisely defined in literature. Some attempts at
describing a stiff problem are:

 A differential equation of the form y’= f(t,y(t)) is said to be stiff if its exact solution y(t)
includes a term that decays exponentially to zero as t increases, but whose
derivatives are much greater in magnitude than the term itself. An example of such a
term is e-λt, where λ is a large, positive constant, because its kth derivative is cke-λt.
Because of the factor of ck, this derivative decays to zero much more slowly than e-λt

as t increases. Because the error includes a term of this form, evaluated at a time
less than t, the error can be quite large if h which is the step size is not chosen
sufficiently small to offset this large derivative. Furthermore, the larger λ is, the
smaller h must be to maintain accuracy.

 A problem is stiff if it contains widely varying time scales, i.e., some components of
the solution decay much more rapidly than others,

 A problem is stiff if the step size is dictated by stability requirements rather than by
accuracy requirements.

 A problem is stiff if explicit methods don’t work, or work only extremely slowly.
 A linear problem is stiff if all of its eigenvalues have negative real part, and the

stiffness ratio (the ratio of the magnitudes of the real parts of the largest and smallest
eigenvalues) is large.

It is pertinent to note that in this research we are concerned with the computational aspect of
the properties that define stiffness. If we weren't concerned with how many computational
steps an algorithm takes to converge to a solution which implies more storage space on a
microcontroller for control system hardware implementation, we wouldn't be concerned about
stiffness. Non-stiff methods can solve stiff problems; they just take a long time to do it. Also,
more computational steps translate into longer time for an algorithm to converge to a
solution. Both issues are crux in control system design.



Aliyu et al.; JSRR, Article no. JSRR.2014.11.002

1432

2. STIFFNESS RATIO OR COEFFICIENT

The following definitions are popular as regards a numerical factor attributed to the degree of
stiffness:

Definition 1.1 considering a higher order system defined as

y Ay   0 0 ,y t y (1)

with an n× n matrix A having eigenvalues λi(i=1,…,n) which all have a negative real part. If
these real parts differ considerably, the initial value problem is called stiff. A measure for the
stiffness is the so called stiffness coefficient, expressed as

1

max ( )
:
min ( )

i i

i i

S







(2)

Note that both λmax and λmin must be greater than zero for stiffness to occur. If the coefficients
of the ODE (i.e., the matrix elements) comprise several orders of magnitude, S can reach
values of ϑ(106) or even more.

Definition 1.2 generally, a dimensionless index of stiffness for every system is given as

 2 ,S b a  (3)

Where [a, b] is the integration interval of interest,  Re ,i  and λi is the eigenvalue of the

largest negative real part. Actually τ varies along the solution.

While the intuitive meaning of stiff is clear to all specialists, much controversy is going on
about its correct mathematical definition. The most pragmatic opinion is also historically the
first one which states that Stiff equations are equations where certain implicit methods, in
particular backward differentiation methods, perform much better than explicit ones. Stiff
ODEs defeat the explicit Runge-Kutta and Adams-Bashforth methods. In fact, for such
problems, the higher order methods perform even more poorly than the low order methods
[3].

2.1 Stiffness

The common approach to understanding stiffness is motivated by the behaviour of fixed step
size solutions for systems of linear ODEs with constant coefficients. The eigenvalues of the
coefficient matrix completely characterize the solution of the system and they determine the
behaviour of numerical methods applied to the system. Generally, stiffness is considered
tobe important for systems in which all of the eigenvalues λi of the coefficient matrix have
negative real parts, that is, to systems that are mathematically stable.

When explicit methods such as those in ode45are used, stiffness imposes restrictions on the
step size required to obtain a stable numerical approximation. It is easy to see how such
restrictions arise by considering what happens when the Forward Euler method given in (4),
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with h as the step size and tn+1=tn+ h is a sequence of time at which the approximate solution
yn+1is desired

 1 ,n n ny y hf t y   , (4)

is applied to the linear test equation given in (5).A simple calculation shows that the
numerical solution is given by (6)

    ,iy t y t   0 1.y  (5)

 1 .nn iy h  (6)

The numerical solution decays to 0 as tn increases only if |(1 + hλi) |<1.The complex values
for which this is the case form the interior of a unit circle cantered at the point (-1,0). Since
this restriction must hold for each of the eigenvalues, it imposes a severe restriction on the
step size when Sis large. Any explicit method has a finite stability region determined by the
above condition.

By way of contrast, some implicit methods have infinite stability regions. A first example is
the Backward Euler method given in (7) which generates the approximations given by (8).

 1 1,n n ny y hf t y   . (7)

 
1 .

1
n n

i

y
h




(8)

These approximations decay to 0 for points exterior to the unit circle centred at the point
(1,0). In particular, the resulting stability region contains the entire left half-plane. If the ODE
system is stable, no numerical stability restriction is thus placed on the step size which is
then controlled by keeping local errors sufficiently small. The MATLAB stiff ODE solver
ode15s implements this method and similar higher order ‘stiffly stable’ methods whose
stability regions contain a significant portion of the left half-plane. Imagine that an explicit
method such as ode45 is being used. Step sizes will be used for which hS is near the
stability boundary for the method and for some step sizes hS will fall outside the stability
region. Thereupon is where the stability of the ODE system comes into play.

In the event a system is stable, we can obtain an indication of stiffness by the size of S(b-a).
An excessive amount of work may be required even if S is of moderate size if b-a is large
enough. Similarly, even if S is very large, an excessive amount of work is not necessarily
required if b-a is small enough. In fact, the size of S (b-a) is what determines the amount of
work required and is therefore the commonly accepted indicator of stiffness [4].

This paper examines 6 simple examples with different values of stiffness ratio; all solutions to
the selected problems will require the solution of a differential equation; a method using the
symbolic processing capabilities of MAPLE®to quickly code a differential equation to obtainits
closed-form solution and the numerical solution will stern from a MATLAB/Simulink® model.
Both PSEs are most equipped for such task .The analytical solution serves as the
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benchmark for comparison of results. Also, all MATLAB® ODE variable-step solvers will be
experimented on each problem.

3. PROBLEM SOLVING ENVIRONMENTS (PSEs)

The Problem Solving Environments (PSEs) Maple® and MATLAB® are in very wide use.
Although they have much in common, they are clearly distinguished by the emphasis in
Maple on algebraic or symbolic computation and MATLAB on numerical computation [5].

4. SIMULATIONS

It is worth mentioning here that MATLAB® 2012b and MAPLE® 16 were used for all the
computations in this research on a computer with the following configuration: Processor-
Intel(R) Core(TM) i5-2430M CPU @ 2.40GHz, RAM- 4.00GB. For all the simulations in
Simulink®, RelTol=0.001 and AbsTol=10-6. In Simulink, Model I is built base on the traditional
method of modelling using pre-defined blocks while Model II uses the special block of
MATLAB Function with additions from pre-defined blocks to complete each model.

Example I. We consider the system given in (9), a first order ODE [6]. In Simulink, (9) can be
modelled firstly, as shown in Fig. 1.

1000 3000 2000 tdy y e
dt

    ,  0 0.y  (9)

Stiffness for (9) can be considered as S2=5000.  After simulating in MATLAB/Simulink, using
two different methods of building such models (Figs. 1 and 2 ), Table 1 below gives the result
of the number of steps various solvers took to converge to a solution.

Fig. 1. Model I, Simulink model for example I

Alternatively, the MATLAB embedded function block for automatic code generation could be
used to model the same system. This model is built also in the Simulink environment and is
as shown in Fig. 2.
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Fig. 2. Mode l I, Simulink model for example I

Experimenting with all the variable step solvers in the MATLAB ODE suit gave the results in
Table 1.

Its exact solution was computed with the help of the following MAPLE® code:

restart;
with (DEtools):
sys:= diff(y(t),t)=-1000*y(t)+3000-2000*exp(-t);
dsolve({sys,y(0)=0,y(t)});

and its closed-form solution as given in (10). Fig. 3, gives the graphical solution.

  10003 2.002 0.998 ,t ty t e e    (10)

Fig. 3. Simulation result for example I

Example II. For the following system which has been considered by Lambert [7]:

y Ay     0 1 0 1 ,Ty  

where

0 1 2 3 4 5
0

1

2

3

Time(sec)

y
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21 19 20
19 21 20
40 40 40

A
  
  
   

(11)

With S1=20 and S2=60. In Simulink, (11) is first modelled as shown in Fig. 4.

An alternative to modelling Fig. 4 is as given in Fig. 5.

Experimenting with solvers, Table 2 gives the resulting number of computational steps for
solution to converge.

The following MAPLE code were used to realize the analytical solution to (11):

restart;
PDEtools[declear]((x,y,z,f,g)(t),prime=t);
sys:=[diff(x(t),t)=-21∗x(t) + 19∗y(t)-20∗z(t),
diff(y(t),t)=19∗x(t)-21∗y(t)+20∗z(t),
diff(z(t),t)=40∗x(t)-40∗y(t)-40∗z(t), x(0)=1, y(0)=0, z(0)=-1];
sol:=dsolve(sys);
odetest(sol,sys);

Fig. 4. Model I, Simulink model for example II



Aliyu et al.; JSRR, Article no. JSRR.2014.11.002

1437

Fig. 5. Model II, Simulink model for Example II

The solutions obtained are as given in (12). Note that the state variables were changed in the
MAPLE®syntax. This is necessary for easy recognition and evaluation by the software.
Graphically the results are depictedin Fig. 6.

    
    

    

2 40
1

2 40
2

40
3

0.5 0.5 cos 40 sin 40 ,

0.5 0.5 cos 40 sin 40 ,

cos 40 sin 40 .

t t

t t

t

y e e t t

y e e t t

y e t t

 

 



  

  

  

(12)

Fig. 6. Result of simulating example II

Example III. The system of equations in (13), again from Stephen C Chapra 2012 is
considered.

0 0.5 1 1.5
-1

-0.5

0

0.5

1

Time(sec)

y
1,y
2,y
3

y1
y2
y3
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1
1 2

2
1 2,

5 3 ,

100 301

dy y y
dt
dy y y
dt

  

 
   0 0 52.29 83.82 .Ty  (13)

This has S1= 101 and for t= [0 1], S2=302.Simulink model for (13) is as shown in Fig. 7.

Fig. 7. Model I, Simulink model of example III

Using MATLAB Function block, the Simulink model for Example III is as shown in Fig. 7.

Fig. 7. Model II, Simulink model for Example III

Also experimenting with solvers, Table 3 gives the resulting steps each solver took to
converge to a solution.

The MAPLE code used to obtain the closed form solution to (13)is:
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restart;
PDEtools[declear]((x,y,z,f,g)(t),prime=t);
sys:=[diff(x(t),t)=-5∗x(t) + 3∗y(t), diff(y(t),t)=100∗x(t)-301∗y(t),
x(0)=52.29, y(0)=83.82];
sol:=dsolve(sys);
odetest(sol,sys);

The exact solution is given in (14) and the graphical result is shown in Fig. 8.

3.989 302.0101
1

3.989 302.0101
2

52.96 0.67

17.83 65 .

t t

t t

y e e
y e e

 

 

 

 
(14)

Fig. 8. Simulation result for example III

Example IV. For a system given as [8]:

1 1

2 2

3 3

4 4

0.5 0,
0,

100 0,
90 0.

y y
y y
y y
y y

  
  
  
  

 0 1 1 1 1 Ty 
(15)

Stiffness   for (15) is given asS1=200, and S2=1200 for t= [0 12]. Its Simulink model is shown
in Fig. 9.

Alternative to Fig. 9 is shown in Fig. 10. Using the MATLAB Function block as the primary
block and directly writing the equations into the block before adding the integrator blocks
outside it.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Time(sec)

y1
,y
2

y1
y2
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Fig. 9. Model I, Simulink mode for example IV

Fig. 10. Model II, Simulink model for example IV

After experimenting with different solvers, Table 4 gives the resulting number of step taken
by each for solution to converge. Graphical results are shown in Fig. 11 for all the state
variables.

In MAPLE® the following codes were used for the closed form solution with result in (16):

restart;
PDEtools[declear]((x,y,z,f,g)(t),prime=t);
sys:=[diff(x(t),t)=-0.5∗x(t),diff(y(t),t)=-y(t),
diff(z(t),t)=-100∗z,diff(z(t),t)=-90∗f(t), x(0)=1, y(0)=1, z(0)=1, f(0)=1];
sol:=dsolve(sys);
odetest(sol,sys);
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0.5
1

2
100

3
90

4

,

,

,

.

t

t

t

t

y e
y e
y e
y e

















(16)

Fig. 11. Simulation result for example IV

Example V.  The system described by (8), is considered [9].

1 1 2

2 2

3 2 3

0.1 49.9 0,
50 0,
70 120 0,

y y y
y y
y y y

   
  
   

   0 2 1 2 .Toy  (17)

In Simulink (17) is    first modelled as shown in Fig. 12.

For (18), S1=1200 and S2 =24 for t=[0, 0.2]. Numerical simulation results presented in Table
7 were obtained after experimenting with different solvers. Also, alternative model to Fig. 12
is presented in Fig. 13.

Fig. 12. Model I, Simulink model for example V

In MAPLE, the following code gave the analytical result:

restart;
PDEtools[declear]((x,y,z,f,g)(t),prime=t);
sys:=[diff(x(t),t)=-0.1∗x(t)-49.9∗y(t),diff(y(t),t)=-50∗y(t),

0 5 10 15
0

0.5

1

Time(sec)

y1
y2

0 0.02 0.04 0.06 0.08
0

0.5

1

Time(sec)

y3
y4
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diff(z(t),t)=70∗y(t)-120∗z(t), x(0)=2, y(0)=1, z(0)=2];
sol:=dsolve(sys);
odetest(sol,sys);

Fig. 13. Model II, Simulink model for example V

Thus, its closed-form solution is as given in (18) while the graphical solution is depicted in
Fig. 14.

Fig. 14. Graphical Simulation result for example V

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

Time(sec)

y

y1
y2
y3
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50 0.1
1

50
2

50 120
3

,

,

.

t t

t

t t

y e e
y e
y e e

 



 

 



 

(18)

Example VI. The system given by (19) is considered [10].

1 1 2

2 1 2

500000.5 499999.5 ,
499999.5 500000.5 ,

y y y
y y y
   
  

 1 0 0,y  2(0) 2y  (19)

In Simulink [11] and [12], (19) is modelled as given in Figs. 15 and 16.

Fig. 15. Model I, Simulink model for Example VI

Fig. 16. Model II, Simulink model for Example VI
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Equipt with our definitions for stiffness, S1=106 and for t=[0, 7],S2=7.0×106, hence numerical
simulation gave the results in Table 8.

In MAPLE [13] the closed-form solution is obtained with the following:

restart;
PDEtools[declear]((x,y,z,f,g)(t),prime=t);
sys:=[diff(x(t),t)=-500000.5∗x(t)-499999.5∗y(t),
diff(y(t),t)=-499999.5∗x(t)-500000.5∗y(t),x(0)=0,y(0)=2];
sol:=dsolve(sys);
odetest(sol,sys);

The above gave the closed form solution in (20) and the graphical result is shown in Fig. 17.

1000000
1

1000000
2

,

.

t t

t t

y e e
y e e



 

 

 
(20)

Fig. 17. Simulation result for Example VI
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5. DISCUSSION OF RESULTS

For all the examples considered, it is worth noting that there exists no disparity, first between
the graphical results of the two methods of simulation in Simulink. Secondly, graphical
comparison between the numerical simulation in MATLAB and the symbolic simulation in
MAPLE, agree.

From Example I, S2=5000 suggests a stiff ODE, this was confirmed by numerical simulation
result in Table 1. All the non-stiff solvers performed poorly with ode113 having the largest
number of steps-3793 (ode45 gave 1819 steps). While the stiff solvers [14] with relative
ease, converged to a solution with ode23tb having the smallest number of steps-75.

Table 1. Computation steps for example I

Solvers ode45 ode23 ode113 ode15s ode23s ode23t ode23tb
Steps - Model I 1819 2403 3793 89 88 88 75
Steps - Model II 1819 2403 3785 89 88 88 75

In Example II, S1=20 and S2=60, both suggest non-stiff. Simulation result is Table 2 concurs,
with ode45 having the minimum effort for solution to converge with just 57 steps. While the
stiff solvers performed poorly with ode23tb having the largest number of steps-99.

Table 2. Computational steps for example II

Solvers ode45 ode23 ode113 ode15s ode23s ode23t ode23tb
Steps-Model I 57 72 91 90 77 99 84
Steps- Model II 57 72 91 90 77 99 84

For Example III, S1=101 and S2=302. Both suggest non-stiff, meaning a non-stiff solver
should just be the best to approximate the solution of the ODE. On the contrary, simulation
results in Table 3 shows that the system will best be suited with a stiff solver for simulation,
with ode23tb having 66 steps and ode113 having 194 steps for solution to converge (ode45
converged with 97 steps).

Table 3. Computational Steps for Example III

Solvers ode45 ode23 ode113 ode15s ode23s ode23t ode23tb
Steps-Model I 97 128 194 74 64 76 66
Steps-Model II 97 128 197 74 64 76 66

With Example IV, we decided to do a kind of fragmented analysis based on the states of the
system and their various integration times for solution to converge to a steady state solution.
For y3 and y4, S2=8.4 which suggest non-stiff and the result in Table 4 agrees with it, with
ode45 having the minimum number of steps-51. Considering y1, S2=1440 which suggests
stiffness and is confirmed with the result in Table 5; with ode113 having 783 step, ode45with
368 steps and ode23swith 67 steps. Finally for this Example to be analysed is the state
variable y2, S2=840, this suggests non-stiff but Table 6 contradicts it, here we have all the
non-stiff solvers performing badly compared to their stiff counterparts. Hence it will be best
simulated with ode23s which gave 66steps while the worst is ode113 with 461 (ode45 gave
218 steps).
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Table 4. Consideringy3 and y4, S2=8.4

Solvers ode45 ode23 ode113 ode15s ode23s ode23t ode23tb
Steps-Model I 51 52 55 54 52 54 52
Steps- Model II 51 52 55 54 52 54 52

Table 5. Considering y1, S2=1440

Solvers ode45 ode23 ode113 ode15s ode23s ode23t ode23tb
Steps-Model I 368 486 783 81 67 89 75
Steps- Model II 368 486 783 81 67 89 75

Table 6. Consideringy2with S2=840

Solvers ode45 ode23 ode113 ode15s ode23s ode23t ode23tb
Steps-Model I 218 287 461 79 66 81 69
Steps- Model II 218 287 461 79 66 81 69

With Example V, the two definitions for stiffness index are already at conflict with each other,
with S1=1200 and S2=24. Simulation result in Table 7 gives us the accepted nature of the
system, which is non-stiff, with ode45 having 52 steps for solution to converge.

Table 7. Computational steps for example V

Solvers ode45 ode23 ode113 ode15s ode23s ode23t ode23tb
Steps - Model I 52 53 57 57 53 68 63
Steps - Model II 52 53 57 57 53 68 63

Finally Example VI, with S1=106 and S2=7.0×106. Both values suggest stiffness of the
dynamic system. Simulation result in Table 8 agrees with it, with ode113 having 4363823
steps (ode45 has 2109151 steps) and ode23s having just 77 steps for solution to converge.
Note, for Model II in Simulink for this particular example, all the non-stiff solvers gave a
random-noise like pattern as the graphical result.

Table 8. Computational steps for example VI

Solvers ode45 ode23 ode113 ode15s ode23s ode23t ode23tb
Steps - Model I 2109151 2785813 4363823 98 77 93 80
Steps - Model II 2109151 2785813 4363823 98 77 93 80

6. CONCLUSION

The most pragmatic opinion about stiffness is that stiff ODEs are ODEs where certain implicit
methods, in particular backward differentiation methods, perform much better than explicit
ones. On that base, we conclude that Stiffness coefficient of 1000 does not translate to the
fact that a linear ODE is stiff in all cases. As we have shown with Examples V. Neither does
stiffness coefficient less than 1000 always suggest non-stiffness, as we have shown with
Example III and Example IV (considering the state y2).
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It is imperative that a suspected stiff ODE in the neighbourhood of stiffness coefficient of
1000 be subjected to an experimental simulation with different solvers in the categories of
both stiff and non-stiff, only after then can one conclude on the true nature of the ODE.
Conclusions drawn here are based on the solver that requires the minimum number of steps
(less work) to converge to a solution for the ODE.

From Example VI, a stiffness coefficient of the magnitude 106predicts stiffness in a linear
ODE without ambiguity. Also, the non-stiff solvers gave no distinctive graphical trajectory of
the state.

Numerical results of the most appropriate solver in each example were compared with its
analytical ones graphically, no noticeable disparity was observed. Also, the second option of
modelling ODEs using MATLAB Function block proves to be a viable alternative to the
traditional block method.

Results of simulation in MATLAB/Simulink (Models I and II) gave the same result as that of
MAPLE without any graphical disparity for all examples.

FUTURE WORK

More examples need to be explored to further support the position in this research and
simulation time for each solver to converge to a solution needs to be included in the tabular
results.
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