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bDepartment of Computer Engineering, İzmir Katip Çelebi University, İzmir, Turkey

ABSTRACT
As the cryptocurrency trading market has grown significantly 
in recent years, the number of comments related to crypto-
currency has increased tremendously in social media plat-
forms. Due to this, sentiment analysis of the cryptocurrency- 
related comments has become highly desirable to give 
a comprehensive picture of peoples’ opinions about the 
trend of the market. In this regard, we perform cryptocur-
rency-related text sentiment classification using tweets based 
on positive and negative sentiments. For increasing the effi-
cacy of the sentiment analysis, we introduce a novel deep 
neural network hybrid architecture which is composed of an 
embedding layer, a convolution layer, a group-wise enhance-
ment mechanism, a bidirectional layer, an attention mechan-
ism, and a fully connected layer. Local features are derived 
using a convolution layer, and weight values associated with 
intuitive features are developed using the group-wise 
enhancement mechanism. After feeding the improved context 
vector to the bidirectional layer to grab global features, the 
attention mechanism and the fully connected layer have been 
employed. The experimental findings indicate that the pro-
posed architecture outperforms the state-of-the-art architec-
tures with an accuracy value of 93.77%.
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Introduction

The popularity of trading cryptocurrency coins in trading platforms has 
increased exponentially in recent years. Cryptocurrency is a blockchain- 
based digital asset which is used as peer to peer digital exchange units in 
online payments. This digital currency is basically based on two encryption 
algorithms, which are elliptic curve encryption and public-private key pairs. 
Besides, in order to secure online payments, hashing functions are used to 
provide legitimate and unique transactions (Aslam et al. 2022). Bitcoin is the 
first cryptocurrency coin which is introduced in 2009. It is designed to be an 
independent digital asset against the currency tracking systems of 

CONTACT Mansur Alp Toçoğlu mansuralp.tocoglu@ikc.edu.tr Department of Computer Engineering, İzmir 
Katip Çelebi University, İzmir, Turkey

APPLIED ARTIFICIAL INTELLIGENCE                    
2022, VOL. 36, NO. 1, e2145641 (3472 pages) 
https://doi.org/10.1080/08839514.2022.2145641

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ 
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 
cited.

http://orcid.org/0000-0003-1784-9003
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2022.2145641&domain=pdf&date_stamp=2022-11-12


governments and banks by hiding the information of the sender and the 
receiver in a payment process (Di Pierro 2017). There are well-known crypto-
currencies in the market. Ethereum is one of them which was introduced in 
2015 by Vitalik Buterin (Tikhomirov et al. 2018). Ethereum enables its users to 
create smart contracts of their own (Wöhrer and Zdun 2018).

In today’s world, there are no more physical boundaries for sharing infor-
mation. As the usage rates of communication technologies evolve very rapidly, 
people communicate with each other using social media platforms and micro-
blogging sites such as Twitter, Facebook, Instagram. Here, such platforms play 
an important role for people to share their comments, feedback, and observa-
tions about any kind of topic with a much larger audience. As a result of the 
popularity of the cryptocurrencies, increasing number of people have started 
to write articles on trading point view, where the feelings and the thoughts are 
instantly shared on online platforms with short sentences consisting of a few 
words rather than long texts. Therefore, sentiment analysis of the comments 
on cryptocurrency emerges as an important field of study.

The cryptocurrency market is considered to be volatile where the prices 
of the cryptocurrencies move up and down frequently. These fluctuations 
in the market provide investors the opportunity to earn money. For this 
purpose, investors use many tools to forecast the direction of the market. 
On the other hand, governmental policies and general public opinions 
have efficacy on the market. In this regard, sentiment analysis can be an 
effective approach to determine rise and fall of the market since it is 
considered as a valuable feedback information for cryptocurrency invest-
ment these days (Abraham et al. 2018; Colianni, Rosales, and Signorotti  
2015). According to the studies (Lamon, Nielsen, and Redondo 2017; 
Wołk 2020), tweets containing sentiments play an important role for 
influencing investor demands. As a result, analyzing peoples’ sentiments 
to predict the directions of the cryptocurrency markets has become an 
important classification task (Chuen, Guo, and Wang 2017).

The aim of this study is to contribute Turkish text sentiment analysis studies 
related to cryptocurrency in the literature by providing a novel supervised 
learning model which increases the performance of identification of senti-
ments related to cryptocurrency coins in social media platforms. To do this, 
a new Turkish cryptocurrency-related dataset is created which is composed of 
9,548 tweets in total where 5,907 tweets are labeled as positive and the rest 
3,641 tweets are labeled as negative. After that, a new hybrid deep neural 
network architecture is presented which is based on Convolutional Neural 
Network (CNN), group-wise enhancement mechanism, Recurrent Neural 
Network (RNN) and attention mechanism. Local features have been derived 
using a convolution layer in this scheme. Then, using the group-wise enhance-
ment mechanism, an enhanced context vector was obtained by assigning 
a higher weight to informative features and a lower weight to uninformative 
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features. The enhanced context vector was then fed into bidirectional Long 
Short-term Memory (LSTM) architecture to capture global features. Then, the 
attention mechanism has been employed so that the different weight values 
can be assigned to global features to reflect the importance regarding the 
contextual information. Finally, the fully connected layer has been utilized to 
identify sentiment orientation of text documents. We examined the predictive 
performance of three different versions of the proposed model. In addition, 
the prediction performances of the three word embedding schemes were 
evaluated together with the four basic deep neural networks and the proposed 
model. The comprehensive empirical analysis on two sentiment classification 
datasets with the state-of-the-art architectures indicates that the proposed 
scheme can yield promising results on sentiment analysis tasks. The contribu-
tions of the paper can be summarized as follows:

● Motivated by the encouraging findings obtained by the hybrid architec-
tures based on CNNs and RNNs on NLP tasks, we introduce 
a bidirectional CNN-RNN architecture for text sentiment classification, 
along with the group-wise enhancement and the attention mechanisms.

● To the best of our knowledge, this study is the first comprehensive 
analysis of the state-of-art deep neural architectures for sentiment analysis 
on cryptocurrency.

● In addition to the analysis on fourteen architectures, we also present 
a hybrid deep neural architecture with high predictive performance. To 
the best of our knowledge, this is the first hybrid architecture in which 
group-wise enhancement mechanism in conjunction with attention 
mechanism.

The remaining sections are arranged as follows: The existing works are 
presented in the Related Works Section. The Theoretical Foundations Section 
includes a brief overview of the proposed model’s fundamental components. 
The next section addresses the proposed model for sentiment analysis. The 
empirical findings are discussed in the Experiments and Results Section. In the 
last part, the study is concluded.

Related Works

As the usage rates of social media platforms have grown very rapidly, identi-
fications of sentiments and emotions in text data have become an important 
research area in the literature (Calefato, Lanubile, and Novielli 2017; Haryadi 
and Kusuma 2019; Hasan, Rundensteiner, and Agu 2019; Onan 2021, 2022; 
Salam and Gupta 2018; Shah et al. 2019; Tocoglu, Ozturkmenoglu, and 
Alpkocak 2019; Zhang et al. 2020). However, identification of sentiments 
about cryptocurrency trading has not evolved at the same pace since it is 
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a new concept. In the literature, the studies related to cryptocurrency market 
are generally focused on price prediction problems by examining correlations 
between price and sentiment values of cryptocurrency coins using machine 
learning techniques.

In the study, the authors (Mehta et al. 2020) used sentiment analysis 
techniques to make price prediction for Bitcoin cryptocurrency price in real- 
time using Twitter and news data. To accomplish this goal, they trained their 
LSTM model with a dataset composed of 1559 tuples where each tuple has 
date, sentiment values and Bitcoin price data. The suggested model is live on 
a server where it makes predictions of Bitcoin price continuously. In another 
study (Raju and Tarif 2020), the authors focused on providing informative 
predictions about future Bitcoin market price by examining the correlation 
between Bitcoin price and the sentiments of tweets about it. They used LSTM 
architecture to construct their prediction model.

Şaşmaz and Tek (2021) focused on sentiment analysis of NEO cryptocur-
rency coin and the correlation of daily sentiment of tweets with the market 
price of NEO. For this, they first gathered a dataset composed of last five years 
of daily tweets regarding NEO. Next, the raw dataset was labeled manually for 
three sentiment categories which are positive, negative and neutral. Sentiment 
analysis experiments were performed by constructing models using Random 
Forest and BERT classifiers where the former algorithm outperformed the 
other. In the study’s second phase, the daily sentiment of tweets was compared 
to the market price of NEO.

Valencia, Gómez-Espinosa, and Valdés-Aguirre (2019) sought to anticipate 
the price fluctuations of the cryptocurrencies Bitcoin, Litecoin, Ethereum, and 
Ripple. To begin, they gathered a dataset of tweets and market price caps for 
four cryptocurrencies. Then, they compared the predictive performances of 
several classifiers. In general, the model constructed using multi-layer percep-
tron algorithm performed the highest result among others.

Pant et al. (2018) concentrated on forecasting the Bitcoin price in the 
market using sentiment analysis methods. Firstly, they gathered tweets from 
different news accounts and categorized them manually as positive and nega-
tive. Next, they trained a voting classifier model, consists of five algorithms, 
using the categorized dataset to make daily sentiment percentage predictions. 
The accuracy value for the voting classifier was achieved as 81.39%. Further, 
the authors combined the output of the voting classifier with the historical 
price of Bitcoin and used them to feed the RNN model which predicts Bitcoin 
price with an accuracy rate of 77.62%.

Köksal et al. (2021) conducted a sentiment analysis using Naïve Bayes and 
Logistic Regression classifiers with 3,737 tweets related to Bitcoin in the first 
phase of their study. They labeled the tweets in the dataset for three sentiments 
which are positive, negative and neutral. As a result, Logistic Regression classi-
fier performed the highest accuracy value. In the second phase of the study, the 
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authors estimated the market closing price of Bitcoin by using opening price of 
Bitcoin and the rate of daily positive tweets containing the keyword Bitcoin. To 
do so, they used Linear and Random Forest Regression algorithms.

Çılgın et al. (2020) evaluated the correlation between tweets and Bitcoin 
price. They first gathered 2,819,784 tweets in English containing the keyword 
Bitcoin. Then, 1,500 tweets were chosen and labeled as positive, negative and 
neutral to be used as the training dataset. The authors used several conven-
tional classifiers to construct the sentiment analysis model. In the next step, 
the rest of the raw dataset was classified by using the trained model. Then, the 
authors conducted a correlation analysis using the rates of the positive tweets 
sent for each day and the Bitcoin daily closing prices.

Huang et al. (2021) focused on analyzing the correlation between price 
movements in the market and sentiments in Chinese social media platform 
Sina-Weibo for cryptocurrency price prediction. The authors created crypto- 
based sentiment dictionary and proposed a machine learning approach using 
LSTM architecture for the prediction of price trend of the cryptocurrency 
market. The proposed method outperformed the state of the art models in 
precision and recall by 18.5% and 15.4%, respectively.

The primary goal of the studies discussed above is to predict cryptocurrency 
market prices rather than conducting sentiment analysis itself. As a result, 
studies focusing on increasing the performances of sentiment analysis models 
for cryptocurrencies are limited. For this reason, this study proposes a novel 
hybrid deep neural network architecture for sentiment analysis on cryptocur-
rency-related tweets. In the literature, there are few studies which are mainly 
concentrated on sentiment analysis for cryptocurrency market. For example, 
Aslam et al. (2022) proposed a stacked deep learning ensemble architecture 
using LSTM followed by GRU. They used TextBlob and Text2Emotion 
libraries to categorize the raw tweet dataset. Considering the overall results 
in the study, the proposed architecture outperformed the compared models. 
On the other hand, in this study, we focused on enhancing the classification 
performance of the proposed model by using group-wise enhancement and 
attention mechanisms to reveal the informative features more precisely.

Theoretical Foundations

The basic elements are briefly described in this section. We summarized 
Word2vec word embedding scheme, and covered the deep neural network 
architectures in the following subsections.

Word2vec Model

The Vector Space Model (VSM) is not capable of capturing the semantic 
relationships between features of the dataset. VSM suffers in performance 
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due to problems of high dimensionality and sparsity. To handle such pro-
blems, neural language models have become popular in text mining tasks. In 
these models, a real-valued vector is generated for each word by encoding 
words with similar meanings in the vector space. Such representation is called 
dense vector representation which provides low dimensionality and text 
documents with semantic properties.

The Word2vec is a neural language model which builds word embeddings 
using a layered structure in sequence (Mikolov et al. 2013; Onan and Toçoğlu  
2021). By requiring less manual preprocessing of texts with semantic and 
syntactic features, neural language models provide robust representation. 
The dense vector representation yields promising results for natural language 
tasks. The word2vec model is composed of three layers: an input layer, an 
output layer, and a hidden layer. It is an artificial neural network-based 
scheme for word embedding (Mikolov et al. 2013). It attempts to learn to 
embed words by calculating the probability that a given word is rooted in other 
words. The model is composed of two fundamental architectures: the skip- 
gram (SG) and the continuous bag of words (CBOW). The CBOW architec-
ture defines the target word by using the content of each word as an input; on 
the other hand, the SG architecture anticipates the words surrounding the 
target word by using the objective words as an input. The CBOW architecture 
can function well with a small amount of data (Rasool et al. 2021). The SG 
architecture performs admirably on large datasets. Let we denote a sequence of 
training words w1;w2; . . . ;wT with length T, the objective of skip-gram model 
is determined based on Equation (1) (Mikolov et al. 2013): 

arg maxθ
1
T

XT

t¼1

X

� C�j�C;j�0
logPθ wtþjjwt

� �
(1) 

where C represent the size of training context, P wtþjjwt
� �

represents a neural 
network with a set of parameters denoted by θ.

Deep Neural Network Architectures

In this section, we shared brief overviews of the four well-known deep learning 
architectures.

Convolutional Neural Networks
The convolutional neural network (CNN) is a specialized deep learning 
architecture that uses a mathematical operation named convolution to process 
input data. In text mining techniques, CNN is a well-known multi-layer 
network employed for identifying local features (Gutiérrez et al. 2018; Li and 
Wu 2015).
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Recurrent Neural Networks
A recurrent neural network (RNN) is a deep learning architecture which trains 
on sequential and time-series data (Hochreiter and Schmidhuber 1997). In 
contrast to conventional feedforward neural networks, RNN architecture 
processes sequences using feedback loops to retain memory over time. 
Recurrent units in the architecture have generic configurations with no mem-
ory units or extra gates. The input length of the RNN architecture was used to 
calculate the time step size.

Long Short-Term Memory
The LSTM architecture is based on RNN architecture which has feedback 
connections, unlike conventional RNN (Rojas-barahona 2016). To cope with 
the vanishing gradient problem of RNN architecture, the LSTM algorithm 
employs a recurrent unit that contains a cell and input gate, output gate, and 
forget gate in total. These gates provide LSTM architectures to have the ability 
to retain long-term memory. Based on the cell structure, the information to be 
kept has been identified (Chung et al. 2014).

Gated Recurrent Unit
The gated recurrent unit (GRU) is a class of RNN architecture that also utilizes 
a gating mechanism similar to the LSTM model (Cho et al. 2014). However, 
because it only has two gates and requires fewer training parameters than 
LSTM design, GRU is less complicated.

Proposed Bi-Directional CNN-RNN Architecture (CGWELSTM)

To classify text sentiment, we introduce a new deep neural network architec-
ture (CGWELSTM) in this study. Convolutional layers and large short-term 
memory are used in the CGWELSTM architecture to extract local and global 
properties from text sources. Figure 1 shows the outline of the CGWELSTM. 
The suggested technique is made up of seven main modules: an input layer, an 
embedding layer, a convolution layer, a group-wise enhancement mechanism, 
a bidirectional layer, an attention mechanism, and a fully connected layer.

The dense vector representation of text documents was first created by the 
embedding layer using deep neural language models. To extract useful local 
characteristics, the proposed technique uses a convolutional layer. The local 
features acquired by the convolutional layer were subjected to the group-wise 
enhancement technique to improve the relevant features. In this way, impor-
tant features have been given greater importance coefficients while decreasing 
the coefficients associated with the other features. Local features have been 
split up into several categories in this approach. Bidirectional LSTM has been 
used to analyze the augmented context feature vector further to extract 
comprehensive features.
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Then, the attention method has been applied to the features, allowing for 
the assignment of various weights that affect a text’s sentiment. The sentiment 
orientation of text documents was lastly determined utilizing a fully linked 
layer and an aggregated context feature set. Details on the CGWELSTM 
architecture’s parts are presented in the remaining paragraphs of this section.

The Embedding Layer

The embedding layer module generates word embeddings from text using 
a pre-trained word2vec embedding matrix. We begin by transforming each 
word in an n-dimensional text document into its corresponding 
V-dimensional word vector and obtaining the word embedding matrix. In 
this way, the word embedding matrix X ¼ x1; x2; . . . ; xn½ � 2 Rn�V has been 
obtained.

The Convolutional Layer

We apply convolutions on the word embedding matrix in the convolution 
layer module to extract local features. CNN obtains the local context features 
on the text documents at this phase. Let Fj 2 Rw�V corresponds to the filter, 
with w denoting the size of the sliding window. Concatenating the initial 
dimensions of the associated vectors yields the following equation, which 
has been used to derive the local context characteristics for w words: 

mj ¼ mj
1; . . . ;mj

i; . . . ;mj
L� wþ1

h i
(2) 

mj
i ¼ f xi:iþw� 1 � Fj þ b0

� �
(3) 

Figure 1. The proposed model.
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where f corresponds to the RELU and � corresponds to the convolution. 
Using a succession of identical-sized filters, local CNN architectural features 
were retrieved from the text file. On enhanced context, the convolution 
operation was repeated to produce the local feature matrix.

The Group-Wise Enhancement Mechanism

Utilizing feature weighting algorithms on the local features obtained by the 
convolutional layer in the group-wise enhancement mechanism, informative 
features were recovered. The spatial group-wise enhancement technique, 
which was first created for picture classification problems, is a variation of 
the module that we’re talking about today (Li, Hu, and Yang 2019; Onan  
2022). The mechanism is intended to make weight values for informative 
features stronger and weaker relative to uninformative feature weight values. 
Finding suitably distributed feature sets for developing deep neural architec-
ture-based learning models is typically challenging due to the amount of 
uninformative information. Utilizing all the semantic data in important 
areas is the goal of the group-wise enhancement process. In this way, semantic 
vector has been obtained.

The word embedding matrix X ¼ x1; x2; . . . ; xn½ � 2 Rn�V has V dimensions. 
Here, n denotes the size of the text. Initially, we divide the representation 
scheme into M groups, obtaining Mk ¼ xk

1; xk
2; . . . ; xk

n
� �

, where xi 2 Rn=M, 
n=V, and k corresponds to the number of groups. The group’s semantic vector 
has been obtained by using the following equation: 

gk ¼
1
n

Xn

i¼1
xk

i (4) 

We can then determine the significance of each feature. The following 
equation determines the significance of features based on the similarity with 
the global semantic feature gk and the local feature xk

i using a dot product: 

ci
k ¼ gk:xk

i (5) 

We normalize c over space ci
k using the following equations to prevent 

biased values for samples: 

ci
�k
¼

ci
k � μc

k

σck þ ε
(6) 

μc
k ¼

1
n

Xn

j
ck

j (7) 

σc
k� �2
¼

1
n

Xn

j
ðck

j � μc
kÞ

2 (8) 
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where ε is a constant (assigned to 1e-5) that has been added for regulariza-
tion. Moreover, γ; β have been added for each coefficient ci

�k: 

ai
k ¼ γci

�k
þ β (9) 

where the parameter values γ; β have been determined empirically (Liu and 
Guo 2019). At the end, the improved vector xi

�k was constructed by using the 
following equation: 

xi
�k

¼ xk
i :σ ai

k� �
(10) 

The final features M�k ¼ x1
�k; x2

�k; . . . ; xn
�k� �

, where xi
k 2 Rn=M have been 

obtained.

The Bidirectional Layer

In this layer, we have employed a bidirectional LSTM. Bidirectional RNN- 
based designs can also help in the capture of top-notch features by processing 
data in two directions. The following equations demonstrate that the context 
therefore includes both the past and the future: 

ct
!; htLSTM

! ¼ LSTM! ct
!; ht� 1LSTM

!; xt
!ð Þ (11) 

ct
 ; htLSTM

 ¼ LSTM ct
 ; ht� 1LSTM

 ; xt
 ð Þ (12) 

htLSTM ¼ htLSTM
!; htLSTM

 ½ � (13) 

where htLSTM denotes the hidden state vector and ct denotes the cell state 
vector.

The Attention Mechanism

A distribution over the input representations can be produced by combining 
the attention mechanism with deep neural network topologies in a few natural 
language processing applications. Using the attention mechanism, one can 
assign different weights to features. The equations below demonstrate how 
attention mechanisms can be employed to assign weights to features:  

αt ¼
exp vT:ut
� �

P
t expðv:utÞ

(14) 

SAw ¼
X

t
αtht (15) 

where ut and ht stand for vectors of the LSTM units and v is a trainable 
parameter.
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The Fully Connected Layer

The first two layers of the fully connected layer employs RELU function and 
the last layer employs the softmax activation function. In this layer, L2-norm 
regularization has been employed. Here, the regularization coefficient is equal 
to 0.1 and the dropout parameter is equal to 0.30. The binary cross entropy 
function has been employed as the loss function.

Experiments and Results

This section contains information about the dataset used in the empirical 
analysis, the experimental procedure, and the experimental results obtained 
using deep neural network architectures.

Dataset

In this paper, we collected a raw dataset consists of 25,000 Turkish 
cryptocurrency-related tweets by using a social networking service scra-
per named SNScrape library. The tweets are gathered from April 20, 
2021 to March 20, 2022. To do so, we fetched the tweets which are 
tagged to fourteen specific hashtags which are #avax, #avalanche, #bitci, 
#btc, #bitcoin, #chz, #chiliz, #eth, #ethereum, #solana, #xrp, #crypto, 
#nft, #defi. In the annotation process of the raw data, each tweet is 
labeled as positive, negative, neutral and not crypto-related by two 
annotators. After the annotation process, the size of the dataset declined 
to 9,548 tweets in total because we eliminated the tweets categorized as 
neutral and not crypto-related and the tweets which are no consensus on 
the labeling results of the annotators. As a result, 5,907 tweets are 
labeled as positive and the rest 3,641 tweets are labeled as negative. 
Next, we preprocessed the dataset for empirical research. Firstly, we 
removed tags, usernames and links, which are ineffective and mean-
ingless data for training machine learning models, from each tweet. 
After that, we converted all letters to lowercase and eliminated numeric 
characters, extra spaces, and punctuation marks. In the next step, we 
performed Porter stemmer to normalize the dataset (Pedregosa et al.  
2011). Lastly, a pre-defined NLTK Turkish stopword list was used to 
extract stopwords in the dataset. In addition, we assessed the predictive 
performance of the proposed architecture on a well-known sentiment 
classification benchmark (i.e., Sentiment140 dataset) in this study. It 
contains 1,600,000 tweets that have been automatically classified as 
positive or negative (Go, Bhayani, and Huang 2009).
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Experimental Procedure

The deep neural network architectures utilized in the empirical investigation 
have been implemented and trained using Tensorflow and the Keras frame-
work. To improve the predictive effectiveness of each model, we employ 
hyperparameter optimization. Hyperparameters were optimized using the 
Gaussian approach, which is based on Bayesian optimization, to achieve 
this. To ensure exact comparison, the same parameters have been utilized 
for ABCDM (Basiri et al. 2021). The RELU activation function was utilized for 
the first two layers of the fully connected layer, and the soft-max activation 
function was employed for the third and final layer of the fully connected layer. 
The convolution filters’ sizes were set at 4 and 5. The CNN’s hidden layer has 
a 100 × 100 dimension. For the mini batch, the sample size is 50, and the 
dropout coefficient is 0.30. To represent text documents, we looked into the 
word2vec approach with 300 dimensions. In Table 1, the hyper parameters for 
the proposed scheme has been summarized.

Baseline Models

In this study, we assessed the predictive performance of fourteen cutting-edge 
deep neural network designs against the architecture. The results were 
encouraging. The material below condenses the specifics of the underlying 
models utilized in the empirical analysis:

● ABCDM architecture: A bidirectional layer follows an embedding layer in 
the model’s first stage. Parallel applications of bidirectional LSTMs and 
bidirectional GRUs were utilized to extract global features from text 

Table 1. The hyperparameters for the proposed scheme.
Hyperparameter Value

Number of epochs [1–50]
Batch size 50
Embedding padding size [40–200]
Number of CNN layers 4
Window size l of Convolutional kernel [2,3]
Convolutional kernel bias 64
Number of Pooling 4
Pooling size 2
BiGRU layer output size [49,256]
BiLSTM layer output size [49,256]
Number of Dropout 3
Dropout rate 0.30
Number of batch normalization 2
Number of attention mechanisms 2
Attention with context w = (256 × 256), b = 256, u = 245
Number of dense layer 3
Learning rate 0.0001
Optimizer Gaussian approach
Activation function type ReLu
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documents in the bidirectional layer. Convolution and pooling layers are 
utilized next, and then the attention mechanism (Basiri et al. 2021).

● AC-BiLSTM architecture: A hybrid deep neural network with an atten-
tion mechanism is placed after a one-dimensional convolutional layer 
made up of varied filter sizes. Finally, the sentiment of review documents 
was ascertained using the fully connected layer (Liu and Guo 2019).

● AGCNN architecture: The attention-gated layer followed the convolutional 
layer in the model’s progression. Maximum pooling was then employed, 
and then a fully connected layer (Liu et al. 2019) came after that.

● ARC architecture: The model is made up of five modules: a bidirectional 
GRU, an attention mechanism, a convolutional layer, a pooling layer, and 
a fully connected layer (Wen and Li 2018).

● ATTPooling architecture: An RNN with an attention mechanism based 
on CNNs makes up the model. The first thing CNN does is describe what 
makes the area unique. The attention mechanism was then used to weigh 
the features. Finally, a fully linked layer has been used, followed by an 
RNN with CNN-based attention (Usama et al. 2020).

● CAT-BiGRU architecture: Bidirectional GRUs are used in the model to 
include convolution and attention. Two attention layers and 
a convolutional input-embedding bidirectional GRU make up this system 
(Kamal and Abulaish 2022).

● CNN-GRU architecture: The model consists of a GRU recurrent unit, 
a max-pooling layer, and an embedding layer that made use of pre-trained 
vectors from word2vec (Wang et al. 2016).

● CRNN architecture: The input word vectors are subjected to regional 
CNN in this model, which treats each phrase as a region. Then, local 
attributes are diminished via max pooling. Finally, a linear decoder is 
utilized to determine future valence and excitement while an LSTM layer 
is employed to identify longer-term dependencies (Yang et al. 2016).

● HAN architecture: A sequence encoder, a word-based attention mechan-
ism, a sentence-based attention mechanism, and a sentence-based atten-
tion mechanism make up the model’s four modules. This technique uses 
bidirectional GRUs in the sequence encoder and phrase encoder modules 
(Yang et al. 2016).

● Improved word vectors (IWV) architecture: Pre-trained sentiment ana-
lysis word embedding techniques are more accurate with the help of this 
model. The model consists of a fully connected layer that is followed by 
three convolutional layers with maximum pooling (Rezaeinia et al. 2019).

● SS-BED architecture: This model seeks to extract semantic information 
from text sources using two simultaneous LSTM layers. To categorize the 
sentiment of review materials, a fully connected neural network with 
a single hidden layer was deployed (Chatterjee et al. 2019).
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● Tree bi-LSTM architecture: For text classification, the model used a tree- 
based bidirectional LSTM architecture (Li et al. 2015).

● Tree LSTM architecture: The model uses a recursive tree-based archi-
tecture in place of the composition layers included in traditional 
LSTM blocks to understand text documents (Zhu, Sobhani, and 
Guo 2015).

● The weighted embedding layer, dropout layer, N-gram convolution layer 
(with 1-gram, 2-gram, and 3-gram convolutions), max-pooling layer, 
LSTM layer, and fully connected layer make up the WCNNLSTM archi-
tecture (Onan 2021).

Model Variations

In addition to the proposed scheme and the fourteen state-of-the-art archi-
tectures mentioned in advance, we have also considered three model variants. 
The following summarizes the details of the model variations used in the 
empirical analysis:

● CGWELSTM-v1 architecture: All the elements of the proposed schemes 
have been used in this model, except for the group-wise enhancement 
mechanism. In this manner, the bidirectional layer has been provided 
directly with the local information that the convolutional layer 
extracted. The remainder of the plan is identical to the proposed 
scheme.

● CGWELSTM-v2 architecture: All the elements of the proposed scheme 
have been used in this model, except for the attention mechanism. In this 
manner, the bidirectional layer’s global feature extractions have been 
combined, and the fully connected layer has continued processing the 
combined context vector (without the attention method).

● CGWELSTM-v3 architecture: All of the elements of the suggested scheme 
have been used in this model, with the exception of the bidirectional layer. 
We have used bi-GRU in the bidirectional layer rather than bi-LSTM. The 
recommended methodology has been applied to the remaining modules 
in the same manner.

Experimental Results

In the empirical analysis, the prediction performance, classification accuracy, 
precision, recall, of the three-word embedding schemes were evaluated in 
relation to the five deep neural network architectures (i.e. CNN, GRU, 
LSTM, RNN, and CGWELSTM) and F-measure. In Tables 2–5, accuracies, 
precision, recall, and F-measure values received with the aid of using com-
parative schemes are presented, respectively. As may be visible from the 

APPLIED ARTIFICIAL INTELLIGENCE e2145641-3461



empirical outcomes indexed in Table 2, the proposed scheme (ie, 
CGWELSTM) outperforms conventional deep neural architectures based on 
accuracy. Among the deep neural architectures compared, CNN offers the 
lowest prediction overall performance even as GRU offers the best prediction 
overall performance. Regarding the overall performance of word embedding 
methods, GloVe offers the lowest prediction overall performance and the 
word2vec (skip-gram) version offers the best prediction overall performance. 
For the 2 vector sizes taken into consideration with inside the evaluation and 
the 3 dimensions of the projection layer, the vector length three hundred offers 
better prediction overall performance, and the excellent overall performance is 
carried out while the projection layer length is set to three hundred. For other 
metrics used for predictive overall performance, particularly CGWELSTM, 
outperform conventional deep neural networks in terms of precision, recall, 
and F-measure.

Figures 2–5 display the summary figures for deep neural architectures. The 
CGWELSTM architecture achieved the highest average predictive performance.

The proposed scheme (specifically, CGWELSTM) is compared with four-
teen basic deep neural network architectures and three model variants for 
classification accuracy, precision, recall, and F-measure values. Table 5 sum-
marizes the classification accuracy values obtained using the compared archi-
tectures. The results show that the proposed scheme (i.e, the CGWELSTM 
architecture) outperforms the most advanced architectures. The CGWELSTM 

Table 2. Classification accuracy values of the conventional architectures and the proposed scheme.

Word Embedding
Vector 

size
Dimension of projection 

layer CNN RNN LSTM GRU CGWELSTM

word2vec (Skip- 
gram)

200 100 84,9062 86,1300 86,5193 87,2704 92,3317

word2vec (Skip- 
gram)

200 200 85,3091 86,1505 86,9681 87,2791 92,5790

word2vec (Skip- 
gram)

300 100 85,5395 86,8367 87,0924 87,7042 92,6569

word2vec (Skip- 
gram)

300 300 85,8715 87,3834 88,5862 87,9131 93,7737

word2vec (CBOW) 200 100 84,1355 84,6919 86,3301 86,5933 91,3796
word2vec (CBOW) 200 200 84,3848 84,8301 86,3321 86,7954 91,5729
word2vec (CBOW) 300 100 84,4691 85,2159 86,4670 87,2066 91,8501
word2vec (CBOW) 300 300 84,6564 85,8096 86,4886 87,2103 92,0511
fastText (Skip-gram) 200 100 83,0755 83,9260 85,9995 86,0562 90,8553
fastText (Skip-gram) 200 200 83,4248 84,1585 86,1311 86,2161 90,9434
fastText (Skip-gram) 300 100 83,9981 84,1790 86,2756 86,2965 91,0908
fastText (Skip-gram) 300 300 84,1152 84,4471 86,2942 86,4113 91,2866
fastText (CBOW) 200 100 82,7116 83,5779 84,1253 85,0902 90,2029
fastText (CBOW) 200 200 82,7349 83,6589 85,1541 85,3837 90,5247
fastText (CBOW) 300 100 82,8614 83,8124 85,2146 85,4376 90,7180
fastText (CBOW) 300 300 82,9599 83,8509 85,6648 85,5584 90,7982
GloVe 200 100 81,4875 82,6678 82,8163 83,2925 88,0650
GloVe 200 200 81,5490 82,7000 83,0422 84,1660 88,9275
GloVe 300 100 82,2485 82,9684 83,5552 84,5301 89,5525
GloVe 300 300 82,4531 83,1941 83,9329 84,7005 90,0796
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architecture achieved the best prediction performance on the dataset, with 
a predictive performance of 93.7777%. The empirical results show that 
the second highest prediction performance is achieved by the CGWELSTM- 
v3 architecture with a classification accuracy of 90.9731%. In the 
CGWELSTM-v3 architecture, a bidirectional gated repetitive unit (bi-GRU) 

Table 3. Precision values of the conventional architectures and the proposed scheme.
Word Embedding Vector size Dimension of projection layer CNN RNN LSTM GRU CGWELSTM

word2vec (Skip- 
gram)

200 100 0,8576 0,8700 0,8739 0,8815 0,9326

word2vec (Skip- 
gram)

200 200 0,8617 0,8702 0,8785 0,8816 0,9351

word2vec (Skip- 
gram)

300 100 0,8640 0,8771 0,8797 0,8859 0,9359

word2vec (Skip- 
gram)

300 300 0,8674 0,8827 0,8948 0,8880 0,9472

word2vec (CBOW) 200 100 0,8499 0,8555 0,8720 0,8747 0,9230
word2vec (CBOW) 200 200 0,8524 0,8569 0,8720 0,8767 0,9250
word2vec (CBOW) 300 100 0,8532 0,8608 0,8734 0,8809 0,9278
word2vec (CBOW) 300 300 0,8551 0,8668 0,8736 0,8809 0,9298
fastText (Skip-gram) 200 100 0,8391 0,8477 0,8687 0,8693 0,9177
fastText (Skip-gram) 200 200 0,8427 0,8501 0,8700 0,8709 0,9186
fastText (Skip-gram) 300 100 0,8485 0,8503 0,8715 0,8717 0,9201
fastText (Skip-gram) 300 300 0,8496 0,8530 0,8717 0,8728 0,9221
fastText (CBOW) 200 100 0,8355 0,8442 0,8498 0,8595 0,9111
fastText (CBOW) 200 200 0,8357 0,8450 0,8601 0,8625 0,9144
fastText (CBOW) 300 100 0,8370 0,8466 0,8608 0,8630 0,9163
fastText (CBOW) 300 300 0,8380 0,8470 0,8653 0,8642 0,9172
GloVe 200 100 0,8231 0,8350 0,8365 0,8413 0,8895
GloVe 200 200 0,8237 0,8354 0,8388 0,8502 0,8983
GloVe 300 100 0,8308 0,8381 0,8440 0,8538 0,9046
GloVe 300 300 0,8329 0,8403 0,8478 0,8556 0,9099

Table 4. Recall values of the conventional architectures and the proposed scheme.
Word Embedding Vector size Dimension of projection layer CNN RNN LSTM GRU CGWELSTM

word2vec (Skip- 
gram)

200 100 0,8664 0,8789 0,8828 0,8905 0,9422

word2vec (Skip- 
gram)

200 200 0,8705 0,8791 0,8874 0,8906 0,9447

word2vec (Skip- 
gram)

300 100 0,8729 0,8861 0,8887 0,8949 0,9455

word2vec (Skip- 
gram)

300 300 0,8762 0,8917 0,9039 0,8971 0,9569

word2vec (CBOW) 200 100 0,8585 0,8642 0,8809 0,8836 0,9324
word2vec (CBOW) 200 200 0,8611 0,8656 0,8809 0,8857 0,9344
word2vec (CBOW) 300 100 0,8619 0,8695 0,8823 0,8899 0,9372
word2vec (CBOW) 300 300 0,8638 0,8756 0,8825 0,8899 0,9393
fastText (Skip-gram) 200 100 0,8477 0,8564 0,8775 0,8781 0,9271
fastText (Skip-gram) 200 200 0,8513 0,8588 0,8789 0,8798 0,9280
fastText (Skip-gram) 300 100 0,8571 0,8590 0,8804 0,8806 0,9295
fastText (Skip-gram) 300 300 0,8583 0,8617 0,8806 0,8817 0,9315
fastText (CBOW) 200 100 0,8440 0,8528 0,8584 0,8683 0,9204
fastText (CBOW) 200 200 0,8442 0,8537 0,8689 0,8713 0,9237
fastText (CBOW) 300 100 0,8455 0,8552 0,8695 0,8718 0,9257
fastText (CBOW) 300 300 0,8465 0,8556 0,8741 0,8730 0,9265
GloVe 200 100 0,8315 0,8435 0,8451 0,8499 0,8986
GloVe 200 200 0,8321 0,8439 0,8474 0,8588 0,9074
GloVe 300 100 0,8393 0,8466 0,8526 0,8626 0,9138
GloVe 300 300 0,8414 0,8489 0,8565 0,8643 0,9192
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Table 5. F-measure of the conventional architectures and the proposed scheme.
Word Embedding Vector size Dimension of projection layer CNN RNN LSTM GRU CGWELSTM

word2vec (Skip- 
gram)

200 100 0,8620 0,8744 0,8784 0,8860 0,9374

word2vec (Skip- 
gram)

200 200 0,8661 0,8746 0,8829 0,8861 0,9399

word2vec (Skip- 
gram)

300 100 0,8684 0,8816 0,8842 0,8904 0,9407

word2vec (Skip- 
gram)

300 300 0,8718 0,8871 0,8994 0,8925 0,9520

word2vec (CBOW) 200 100 0,8542 0,8598 0,8764 0,8791 0,9277
word2vec (CBOW) 200 200 0,8567 0,8612 0,8765 0,8812 0,9297
word2vec (CBOW) 300 100 0,8576 0,8651 0,8778 0,8853 0,9325
word2vec (CBOW) 300 300 0,8595 0,8712 0,8781 0,8854 0,9345
fastText (Skip-gram) 200 100 0,8434 0,8520 0,8731 0,8737 0,9224
fastText (Skip-gram) 200 200 0,8470 0,8544 0,8744 0,8753 0,9233
fastText (Skip-gram) 300 100 0,8528 0,8546 0,8759 0,8761 0,9248
fastText (Skip-gram) 300 300 0,8540 0,8573 0,8761 0,8773 0,9268
fastText (CBOW) 200 100 0,8397 0,8485 0,8541 0,8639 0,9158
fastText (CBOW) 200 200 0,8399 0,8493 0,8645 0,8668 0,9190
fastText (CBOW) 300 100 0,8412 0,8509 0,8651 0,8674 0,9210
fastText (CBOW) 300 300 0,8422 0,8513 0,8697 0,8686 0,9218
GloVe 200 100 0,8273 0,8393 0,8408 0,8456 0,8941
GloVe 200 200 0,8279 0,8396 0,8431 0,8545 0,9028
GloVe 300 100 0,8350 0,8423 0,8483 0,8582 0,9092
GloVe 300 300 0,8371 0,8446 0,8521 0,8599 0,9145

Figure 2. The summary figure for accuracy.
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Figure 3. The summary figure for precision.

Figure 4. The summary figure for recall.
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is used in the bidirectional layer instead of bidirectional long short-term 
memory (bi-LSTM). Therefore, the empirical results show that bi-LSTM out-
performs bi-GRU for text classification tasks in benchmarks. The third highest 
predictive performance was achieved by the ABCDM architecture, followed by 
the CAT-BiGRU architecture. For the results listed in Table 6, tree-LSTM, 
tree-bi-LSTM and SS-BED architectures give lower prediction performances 
on the dataset. According to the classification accuracies listed in Table 5, the 
use of CNN with RNN generally outperforms traditional deep neural network 
architectures. In addition, bidirectional architectures often achieve promising 
results.

The precision, recall, and F-measure metrics from the deep neural network 
models are also shown in Table 6. For the dataset employed in the empirical 
investigation, CGWELSTM outperformed the other architectures in terms of 
precision, recall, and F-measures. With a precision of 0.9472, recall of 0.9569, 
and F-measurement value of 0.9520, CGWELSTM achieved the best predic-
tion performance in the dataset.

Three model variations were taken to evaluate the performance of the 
CGWELSTM. As can be seen from the results in Table 6, the use of group- 
wise improvement can yield better performance. In addition, bi-LSTM out-
performs bi-GRU and the utilization of attention mechanisms can yield better 
predictive performance.

Figure 5. The summary figure for F-measure.
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In Table 7, the predictive performance values obtained by the deep neural 
learning models on Sentiment-140 dataset has been presented. The empirical 
results indicate that the proposed scheme (i.e., CGWELSTM architecture) 
outperforms the state-of-the-art architectures on Sentiment-140 dataset. 
CGWELSTM architecture achieved the best predictive performance on the 
dataset, with a classification accuracy of 85.4001%. The empirical results 
indicate that the second highest predictive performance has been achieved 
by CGWELSTM-v3 architecture, with a classification accuracy of 83.9217%. In 
the CGWELSTM-v3 architecture, bidirectional gated recurrent unit (bi-GRU) 
has been employed in the bidirectional layer, instead of bidirectional long 

Table 6. Predictive performances by the deep learning models.
Architecture Accuracy Precision Recall F-measure

Tree-LSTM 82,8389 0,8359 0,8376 0,8368
Tree bi-LSTM 83,3402 0,8410 0,8427 0,8418
SS-BED 83,5993 0,8436 0,8453 0,8444
HAN 85,7452 0,8652 0,8670 0,8661
AGCNN 85,9673 0,8675 0,8692 0,8684
CNN-GRU 86,1370 0,8692 0,8709 0,8701
AC-BiLSTM 86,1814 0,8696 0,8714 0,8705
WCNNLSTM 86,1943 0,8698 0,8715 0,8706
IWV 86,5722 0,8736 0,8754 0,8745
ARC 87,6503 0,8845 0,8863 0,8854
ATTPooling 88,4448 0,8925 0,8943 0,8934
CGWELSTM-v2 88,5043 0,8930 0,8948 0,8939
CRNN 88,5258 0,8933 0,8951 0,8942
CGWELSTM-v1 88,8956 0,8979 0,9021 0,9000
CAT-BiGRU 89,3312 0,9014 0,9032 0,9023
ABCDM 90,1395 0,9096 0,9114 0,9105
CGWELSTM-v3 90,9731 0,9189 0,9283 0,9236
CGWELSTM 93,7737 0,9472 0,9569 0,9520

Table 7. Predictive performances by the deep learning models on Sentiment-140 
dataset.

Architecture Accuracy Precision Recall F-measure

Tree-LSTM 77,1687 0,7803 0,7779 0,7791
Tree bi-LSTM 77,1807 0,7804 0,7780 0,7792
SS-BED 77,2500 0,7811 0,7787 0,7799
HAN 77,5033 0,7837 0,7813 0,7825
AGCNN 78,1518 0,7902 0,7878 0,7890
CNN-GRU 78,7938 0,7967 0,7943 0,7955
AC-BiLSTM 79,2335 0,8011 0,7987 0,7999
WCNNLSTM 79,5461 0,8043 0,8019 0,8031
IWV 80,1607 0,8105 0,8081 0,8093
ARC 80,8119 0,8171 0,8146 0,8159
ATTPooling 81,2609 0,8216 0,8192 0,8204
CGWELSTM-v2 81,3622 0,8218 0,8202 0,8210
CRNN 81,4044 0,8231 0,8206 0,8219
CGWELSTM-v1 78,946 0,8274 0,8256 0,8265
CAT-BiGRU 81,9217 0,8283 0,8258 0,8271
ABCDM 82,4631 0,8338 0,8313 0,8325
CGWELSTM-v3 83,1905 0,8403 0,8489 0,8446
CGWELSTM 85,4001 0,8626 0,8714 0,8670
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short-term memory (bi-LSTM). Hence, the empirical results indicate that bi- 
LSTM outperforms bi-GRU for the text classification tasks on the dataset. The 
third highest predictive performance has been achieved by the ABCDM 
architecture, which is followed by CAT-BiGRU architecture. As it can be 
observed from the results listed in Table 7, the tree-LSTM, tree-bi-LSTM, 
and SS-BED architectures yield lower predictive performances on the datasets. 
According to the classification accuracy values listed in Table 6, the utilization 
of CNN in conjunction with RNN generally outperforms the conventional 
deep neural network architectures. In addition, the bidirectional architectures 
generally obtain promising results.

In Figure 6, the bar-chart for the models based on the classification accuracy 
values has been presented. As illustrated in Figure 6, the utilization of group-
wise enhancement mechanism improves the predictive performance of the 
deep neural network architectures. Similarly, by utilizing the attention 
mechanism, the predictive performance of deep neural network architectures 
is enhanced. Regarding the predictive performance of RNN-based architec-
tures utilized in the bidirectional layer, the proposed scheme in which bi- 
LSTM has been utilized outperforms the scheme with bi-GRU (referred as, 
CGWELSTM-v3 architecture).

Conclusion

Sentiment analysis (SA) is a rapidly growing branch of natural language 
processing research. Deep architectures have been widely used in SA due to 
their high predictive efficiency. RNNs are particularly adept at simulating 
long-term dependencies and extracting global features. Convolutional neural 
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Figure 6. The bar-chart for the models based on classification accuracy.
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networks (CNNs) are capable of successfully extracting local features. Hybrid 
architectures combining RNN, and CNN have been shown to outperform 
traditional deep neural network architectures. We present a bidirectional 
CNN-RNN architecture for text sentiment classification in this article, as 
well as group-wise enhancement and attention mechanisms. Local features 
are derived using a convolution layer, and the weight values associated with 
insightful features are enhanced by the proposed scheme. The attention 
mechanism and the fully connected layer were used after feeding the improved 
context vector to the bidirectional layer to capture global features. The experi-
mental results indicate that when performing SA tasks, the proposed scheme 
outperforms state-of-the-art architectures. The empirical results indicate that 
the proposed scheme (i.e., CGWELSTM architecture) outperforms the state-of 
-the-art architectures on the dataset taken into consideration in the empirical 
analysis. CGWELSTM architecture achieved the best predictive performance 
on the dataset, with a classification accuracy of 93.7737%.
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