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ABSTRACT
The number of people suffering from epilepsy in the world 
exceeds 50 million and around 20% of this group refers to 
patients who have psychogenic nonepileptic seizures (PNES). 
Unlike epilepsy, PNES requires psychological treatment. When 
not correctly diagnosed, these patients can be submitted to 
a treatment based on antiepileptic drugs besides specific pro-
cedures for epilepsy. In this work, we propose the identification 
of patients with PNES from those with epilepsy using electro-
encephalogram (EEG) signals. Discrete Wavelet Transform 
(DWT) decomposition and a Support-Vector Machine (SVM) 
classifier were employed. Common types of wavelet families 
and SVM kernels were combined and compared. The results 
obtained for accuracy, sensitivity, and specificity are equal to 
100% for the set of configuration parameters composed of 
windows encompassing whole seizures, wavelet Coiflet 1, and 
SVM kernel sigmoid or RBF. The proposed method is efficient 
and feasible to be applied to new patients admitted in a hospital 
center, even without having their previous EEG signals already 
collected. The main advantages of the proposed work are not 
requiring the use of accelerometer nor electromyographic sig-
nals, not being patient specific and outperforming other works 
results.
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Introduction

According to the World Health Organization, it is estimated that the number 
of people suffering from epilepsy in the world exceeds 50 million (World 
Health Organization 2020). Santos et al. (2014) affirm that around 20% of this 
group refers to patients who have the so-called psychogenic nonepileptic 
seizures (PNES). Unlike epilepsy, PNES is of psychogenic nature and requires 
psychological treatment. When not correctly diagnosed, these patients can be 
submitted to a common treatment based on antiepileptic drugs besides specific 
procedures for epilepsy.
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Based on the previously presented scenario and the negative impact caused 
to the PNES patient who receives a wrong diagnosis, there are many studies 
attempting to distinguish between epileptic seizures (ES) and PNES. Bolen, 
Koontz, and Pritchard (2016) tried to show the difference in Magnetic 
Resonance Imaging (MRI) images between epilepsy patients with temporal 
focal lesion and patients with PNES with multifocal lesions. This multifocal 
nature may explain the higher probability of psychiatric comorbidities in 
PNES patients. Kerr et al. (2017) used review-of-systems questionnaires 
(RoSQs) and multivariate logistic regression as an early screening tool to 
differentiate PNES from other seizure types. Although patients with PNES 
reported more than twice as many symptoms than the other studied groups, 
the accuracy of the method was not significantly high. Asadi-Pooya, Tinker, 
and Fletman (2017) classified PNES seizures based on the video-EEG mon-
itoring in order to investigate the seizure variability. Four classes were distin-
guished based mainly on the motor response of the patient, and some of them 
still presented seizures with more than one class. Since the variability increases 
with the number of classes the authors concluded that neither the stereotypy 
nor the variability of PNES can or should be used as a marker of the disease 
and to differentiate PNES from epilepsy.

In the previous examples, the accuracy of the methods was the main bottle-
neck in the differentiation of the groups. In order to improve these analyses 
and considering the advance of technology, machine learning has been applied 
as a more reliable tool (Obermeyer and Emanuel 2016). For example, when 
combined with EEG signal decomposition techniques, such as the Wavelet 
Transform (Mallat 1989), it is possible to detect or even predict epileptic 
seizures as can be observed in the works Rosado and Rosa (2016); Satapathy, 
Jagadev, and Dehuri (2017); Kitano et al. (2018); Qaraqe et al. (2016).

In the literature, there are several published works about detecting epileptic 
seizures in the EEG of a patient, as Tzallas, Tsipouras, and Fotiadis (2009), Guo 
et al. (2010), Yuan et al. (2012), Wang et al. (2015), Hassan and Haque (2015), 
Bhardwaj et al. (2016), Hassan, Siuly, and Zhang (2016), Upadhyay, Padhy, and 
Kankar (2016), Hassan and Subasi (2016), Kabir, Zhang, and Zhang (2016), 
Vidyaratne and Iftekharuddin (2017), Achilles et al. (2018), Subasi, Kevric, and 
Canbaz (2019), Tian et al. (2019), Hassan, Subasi, and Zhang (2020) and 
Siddiqui et al. (2020). It is worth noting that detecting an epileptic seizure is 
not the same problem as differentiating an epileptic seizure from a PNES. In 
Figure 1 about epileptic seizures detection, a hypothetical EEG signal from 
a patient is represented along the time. In it, time windows without seizures are 
represented in green and epileptic seizures windows in red. A detection system 
is trained using both types of windows (with and without seizures) and 
evaluated later, normally using other EEG windows from the same patient. 
Unlike that, differentiating epileptic seizures from PNES is as depicted in 
Figure 2 in which there is an EEG signal from an epileptic patient (at the 
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top) and an EEG signal from a PNES patient (at the bottom), who is another 
person. From both types of EEG signals, only seizures windows are extracted 
for training. Thus, contrary to the epileptic seizures detection system strategy, 
this differentiating system is trained using only seizures windows, but from 
different patients. Then the evaluation phase is performed on EEG signals from 
new patients not yet known in the training process. So we assume in this work 
that an epileptic seizures detection system results are not directly comparable to 
a system aimed to differentiate epileptic seizures from PNES.

In this sense, considering the focus on distinguishing PNES from ES, the 
number of works using machine learning combined with other techniques has 
grown in recent decades (Obermeyer and Emanuel 2016). Kusmakar et al. 

Figure 1. Epileptic seizure detection process in an EEG signal.

Figure 2. Learning model to the process aimed at differentiating epileptic seizures from PNES.
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(2015) collected the signals from 10 different upper muscles using an accel-
erometer during epilepsy seizures and PNES. Combining those measures and 
the electromyography (EMG) of the muscles, an algorithm to classify PNES 
was proposed. The variation coefficients obtained from Discrete Wavelet 
Transform (DWT) generated the vectors used by the SVM (Support Vector 
Machine) classifier. An accuracy of 88.57% was achieved. Gubbi et al. (2016) 
proposed a wearable device with accelerometers to detect and classify PNES. 
An algorithm based on k-means and SVM using dyadic scale features resulted 
in accuracies between 60% and 90%. Although Beniczky et al. (2016) affirm 
that there is a distinction in EMG signals of epileptic and psychogenic seizures, 
it is important to note that not all seizures present muscular contractions as 
observed by Asadi-Pooya, Tinker, and Fletman (2017). Therefore, atonic 
seizures are excluded from the evaluation when EMG signals are used.

Gasparini et al. (2018) classified PNES patients from healthy control sub-
jects by using a Deep Learning (DL) Stacked Auto Encoders (SAE) architec-
ture composed of two hidden layers of 50 and 20 neurons. Continuous 
Wavelet Transform was considered and a comparison with other techniques 
such as SVM, LDA (Linear Discriminant Analysis), and QDA (Quadratic 
Discriminant Analysis) was performed, resulting in an accuracy of 86%. 
Vasta et al. (2018) also compared PNES and healthy individuals through 
Random Forest (RF) algorithm and biomarkers based on video-EEG which 
resulted an accuracy of about 75%. Varone et al. (2020) developed a software 
pipeline using statistical features extracted from the power spectral density of 
the EEG signals. It should be noted that the purpose of these works was to 
differentiate PNES from control healthy cases having no seizures whereas our 
purpose was to differentiate PNES from epileptic cases.

Several papers concentrate on the identification of subclasses of PNES. 
Magaudda et al. (2016) aimed to the validation of a novel classification for 
the diagnosis of PNES, dividing the patients into four distinct groups: 
Hypermotor (H), Akinetic (A), Focal Motor (FM), and with Subjective 
Symptoms (SS). The classification was performed by epileptologists and psy-
chiatrist based on video-EEG recordings and the seizures were assigned to 
a given class in 83.6% of the cases. In contrast, the artificial neural network 
(ANN) classified PNES in 86.7%. Duwicquet et al. (2017) evaluated how 
reliable are the methods to classify PNES. Through the statistical method of 
Cohen’s Kappa the inter-rater reliability (IRR) of five existing clinical PNES 
classifications was determined. They concluded that IRR was only moderate 
and the difficulty was attributed to the analysis of motor signals.

Pippa et al. (2016) investigated the use of machine learning for automatic 
classification of ES and PNES based on multi-channel EEG signals. The signal 
patterns in the time domain and in the frequency domain were determined 
and then combined, generating the vectors used in the different machine 
learning techniques: BayesNet, Random Committee, Random Forest, 
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K-Nearest Neighbors, SMO (Sequential Minimal Optimization). The best 
result was achieved by BayesNet with accuracy of 96%. In a subsequent 
work, Pippa et al. (2017) focused on the dimensionality reduction of the 
EEG data to distinguish PNES from ES. They used three different fusion 
schemes to combine the information across the channels and concluded that 
late-integration (LI) scheme with global model was the best, presenting an 
accuracy of 97%. Ahmadi et al. (2018) studied the use of Imperialist 
Competitive Algorithm (ICA) to find the most important features extracted 
from the five sub-bands Wavelet Transform. Different classifiers have been 
tested and SVM with RBF kernel has achieved the best result with 95% of 
accuracy. Further on, Ahmadi et al. (2020) presented a work using short-term 
EEG data, the classification of epilepsy and PNES subjects based on signal, 
functional network, and EEG microstate features. They concluded that the 
beta-band and the coverage are the most important features for classification 
of epilepsy and PNES patients and achieved an accuracy of around 80% when 
the classification was computed based on the microstate features extracted 
from the beta-bands. It should be noted that one merit of that work was that it 
only used seizures free EEG temporal windows, which probably makes the 
classification problem more difficult than when using windows containing 
seizures.

It may be noticed that the possibilities for research in this field are vast. 
Much has been studied but there is still much to be improved. In this work, we 
propose the identification of patients with PNES from those with epilepsy 
using only EEG signal DWT decomposition and an SVM classifier. A system 
based on this strategy would be useful as a tool for a fast diagnosis between 
these two possibilities. Furthermore, it would be even better if there is no need 
to have previous known EEG signals of a newly admitted patient. Thus, this 
would contribute to the proper treatment for this patient.

Method

The experimental data consists of EEG signals in 18 channels, sampled at 
200 Hz, bandpass filtered from 0.3 to 35 Hz by the NeuroWorkbench software, 
collected as Video-EEG signals by an EEG-1200 Diagnostic and Monitoring 
Platform. The signals came from 12 PNES patients (3 males and 9 females) and 
21 epileptic patients (9 males and 12 females) aged from 6 to 57 years old. The 
number of PNES occurrences in the first group ranged from 1 to 17 per patient 
and the number of epileptic seizures in the second group ranged from 1 to 
29 per patient. All data were collected from spontaneous (not induced) events. 
These data are presented in detail in Tables 1 and Tables 2. In those tables, the 
term window refers to the EEG temporal fragmentation to be explained 
further in this section. Ethical approval for this study was obtained from 
Local and National Ethics Committee (CAAE:. 49495715.4.0000.0068).
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Figure 3 presents the classification process steps used in this work.
The EEG signals used in this work were encoded in European Data Format 

(EDF) files. They have been read using the function edfRead in Matlab soft-
ware. In the signals, seizures periods have been previously identified by 
a specialist analyzing Video-EEG records.

In the windows assembly step, two alternatives have been explored: win-
dows having fixed one second duration and windows encompassing whole 
seizures periods. The numbers of available windows in these alternatives are 

Table 1. PNES patients and data characteristics.

patient sex age

number of number of
PNES seizures 1 second

length windows

1 F 38 17 139
2 M 54 1 124
3 F 50 7 741
4 F 23 3 455
5 F 15 3 360
6 M 39 3 100
7 M 36 1 85
8 F 15 1 11
9 F 17 2 43
10 F 23 2 53
11 F 35 1 249
12 F 32 1 357

total 42 2717

Table 2. Epilepsy patients and data characteristics.

patient sex age

number of number of
epileptic seizures 1 second

length windows

1 F 28 3 431
2 F 20 29 1119
3 F 45 2 248
4 F 9 23 1377
5 F 49 1 70
6 F 43 13 1081
7 M 26 2 104
8 M 32 2 120
9 M 28 1 186
10 F 15 2 132
11 F 52 5 410
12 M 52 1 145
13 M 16 3 11
14 F 6 3 49
15 M 57 5 146
16 M 41 2 154
17 M 56 1 99
18 M 34 7 222
19 F 15 5 171
20 F 35 6 430
21 F 32 1 73

total 117 6778
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shown in the last two columns of Tables 1 and Tables 2. The one second 
duration in the first alternative has been chosen because in EEG epileptic 
signals, there are spike waves characterized by a pointed peak with a duration 
of 20–70 ms and sharp waves with a duration of 70–200 ms (Puspita et al. 
2017). One second windows are able to encompass them. All these windows 
were extracted from seizures periods.

The next step can be better understood from Figure 4. For the Wavelet 
vectors assembly, the wavelets families Coiflet 1 and Daubechies 4 have been 
alternatively employed when the Discrete Wavelet Transform (DWT) (Mallat 
1989) has been applied to each channel of each EEG time window assembled 
in the previous step. The same scheme is used for both one second windows 
and windows encompassing the whole seizures periods. The choice of these 
wavelets families is based on the works of Indiradevi et al. (2008) and Gandhi, 

Figure 3. Process steps used to differentiate between PNES and ES in EEG signals.

Figure 4. Vectors assembly step.
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Panigrahi, and Anand (2011), who have studied what are the most suitable 
wavelets families to extract EEG characteristics in this context. The DWT has 
been performed using Matlab software. For each time window, the corre-
sponding characteristic vector has been assembled receiving the average (μ), 
standard deviation (σ), maximum (max) and minimum (min) values of the 
coefficients at each DWT resolution level for all EEG channels. There were 
coefficients at five detail levels (D1 to D5) and the approximation coefficients 
(A5). Each of the parameters μ, σ, max, and min has been calculated from the 
set containing the coefficients at the same detail level for all channels. This 
resulted in 24 components for each vector, four components for each wavelet 
level. The resultant characteristic vectors have then been normalized to have 
values between � 1 and þ 1.

In the SVM classification step, three alternative kernels have been used: 
linear, sigmoid, and RBF. The SVM implementation used in this work has 
been the LIBSVM (Chang and Lin 2011) inside Matlab. Training an SVM 
consists in solving an optimization problem, in which data examples and their 
corresponding classes are provided as inputs and an optimal separator 
between the classes is found as the result (Cortes and Vapnik 1995). Details 
about the SVM training process as implemented in LIBSBM are explained in 
Chang and Lin (2011). When training examples are imbalanced (i.e. one class 
has more examples than the other), the success of the SVM may be compro-
mised (Akbani, Kwek, and Japkowicz 2004). In the present work, although the 
training data were imbalanced, very good results were obtained without taking 
any measures to cope with this.

To ensure that the method is not patient specific, test data always comes 
from patients other than that of the training data. Four groups of experiments 
were performed, each one partitioning the set of patients into patients for 
training and patients for test, as can be observed in column training patients in 
Table 3. All seizures and all 1-s windows of the test patients are used in each 
corresponding test. Their numbers are also indicated for each partition in the 
column training patients in Table 3.

Results

Table 3 presents the experimental results. The columns represent, in this 
order: the time windows duration, the patients used in the training (all the 
others were used in the test), the wavelet type, the SVM kernel employed, the 
classification accuracy, sensitivity, and specificity. For these last two mea-
sures, which require the specification of which samples are positive or 
negative, the epilepsy seizures and the PNES cases were considered, respec-
tively, as being the positive samples and the negative samples. As can be 
observed in boldface in Table 3, there is a set of parameters which 
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consistently achieved 100% accuracy for all the partitions. This set is com-
posed of windows encompassing whole seizures, wavelet Coiflet 1, and SVM 
kernel sigmoid or RBF.

In Table 4 the results obtained in the present work are compared to that of 
other works which aimed also to distinguish PNES from epileptic seizures. The 
columns represent, in this order: the research work, the techniques used there, 
the accuracy, the sensitivity, the specificity, the number of PNES examples, and 
the number of epilepsy examples.

Experiments have also been performed by assembling the vectors directly 
from the samples in the time domain, without using the Wavelet transform. In 
these experiments, the vectors features have been the samples averages, stan-
dard deviations, maximum and minimum values per channel per window. 
Their results have been inferior to that obtained using DWT and have not 
been explored further. The same happened with the experiments based on the 
SVM classifier with polynomial kernel.

Discussion

Machine learning techniques have been applied to different aspects of epilepsy 
treatment. These techniques are especially valuable for processing brain sig-
nals due to the ability of their computational algorithms to deal with noisy 
conditions (Acharya, Hagiwara, and Adeli 2018). Employing of machine 
learning to classify between PNES and ES can potentially improve the quality 
of life of PNES patients, since they are frequently treated with multiple drugs, 
causing delays in appropriate treatment (Bruni et al. 2017). The utilization of 
video-EEG (gold-standard diagnostic for PNES) is expensive, because it 
requires hospitalization, and moreover, it is unavailable in many hospital 
centers (Vasta et al. 2018). The use of machine learning can, thus, alleviate 
these issues, as well as help physicians to diagnose PNES.

Table 4. A best result from this work compared to results from other works whose objective was to 
distinguish PNES from epileptic seizures.

work technique accuracy sensitivity specificity
number 

test
number 

test
(%) (%) (%) examples examples

PNES epilepsy

present whole seizure, 100 100 100 31 78
Coiflet 1, SVM, RBF or sigmoid

Pippa et al. (2016) Bayesian network 96 96 100 123 19
Pippa et al. (2017) LI fusion and PCA 97 100 91 123 19
Ahmadi et al. (2018) SVM-RBF and ICA 95 – – 20 20
Kusmakar et al. 

(2015)
SVM-RBF, accelerometer 89 93 85 15 19

Ahmadi et al. (2020) EEG Microstate features and  
functional brain neural 
network

80 80 – 10 10
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In the present work, we applied a machine learning technique called SVM to 
differentiate patients with PNES from those with ES. To improve the differentia-
tion between both classes, three types of SVM kernels were studied: linear, RBF, 
and sigmoid. Polynomial kernel was also tried but with unsatisfactory results. 
Other published studies have also employed SVM for identifying PNES, how-
ever there are crucial differences concerning the input signals applied to the 
classifier. For example: Gubbi et al. (2016) used, as input, measures from 
accelerometers arrangement on patient muscles; Kusmakar et al. (2015) utilized 
similar accelerometer signals combined with EMG measures; Ahmadi et al. 
(2018) applied ICA to extract the features from EEG signals in sub-bands of 
its wavelet transform. Later, Ahmadi et al. (2020) studied the EEG microstates 
and the functional brain neural network in several classifiers. None of these 
studies reached an accuracy greater than 95% in the PNES identification. In this 
work, we employed DWT decomposition of the EEG signals with Coiflet 1 and 
Daubechies 4 families as inputs to the SVM classifier. Gasparini et al. (2018) also 
applied wavelet transform to extract features from EEG signals and reached an 
accuracy of 86% using Mexican hat as the mother wavelet. The literature survey 
performed shows that the best overall accuracy to differentiate PNES from ES 
was 97% (Pippa et al. 2017).

In Table 3, the results obtained for accuracy, sensitivity, and specificity are 
equal to 100% for the set of configuration parameters composed of windows 
encompassing whole seizures, wavelet Coiflet 1, and SVM kernel sigmoid or 
RBF. For the 1-sec windows group the results were also satisfactory, varying 
from 95% to 100%, depending on the wavelet type and SVM kernel.

In order to analyze the statistical reliability of the results presented, after 
having obtained them, their statistical relevance must be calculated. Normally, 
in binary classification problems, the results are presented also in the form of 
confusion matrices or in the form of ROC curves. But after comparing the 
different system configurations presented in Table 3, we concluded that the 
ideal configuration is that which uses windows encompassing whole seizures, 
Coiflet 1 wavelet in the extraction step and RBF or sigmoid kernel in the SVM. 
Therefore, for an ensuing practical application, this ideal configuration may be 
adopted and the others abandoned. And as indicated in Table 3 (lines in 
boldface), for this ideal configuration, the accuracy, the sensitivity, and the 
specificity are always equal to 100%. In this scenario, confusion matrices and 
ROC curves become trivial, not bringing any additional information. But 
according to the law of large numbers (Papoulis 1991), it is possible to 
calculate a margin to the accuracy results obtained here as a function of the 
number of test samples used in the experiments. That law states that 

P jxn � pj< εf g � 1 �
1

4nε2 � !n!1
1 (1) 
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where xn is an estimated parameter mean obtained from a sample containing n 
elements of a population, p is the true parameter mean (from the whole 
population) and ε is a margin to the estimation. In this work, we attempt to 
estimate the true classifier accuracy using a limited set of test examples. Thus, 
the parameter x whose mean is being estimated is the success (equal to 1) or 
the failure (equal to 0) of the classifier when trying to determine if a test sample 
corresponds to an epileptic seizure or to a PNES, so xn is here the reported 
accuracy for each experiment performed on n test examples.

Among the four partitions used in the experiments, the second one in 
Table 3 is that which used more seizures as test examples, n ¼ 31þ 78 ¼
109 seizures. So statistically the results for this partition are the most con-
clusive. Adopting ε ¼ 0:1 in (1), one obtains 

P jxn � pj< 0:1f g � 1 �
1

4� 109� 0:12 � 77%

which means that the probability that the estimated accuracy is within � 10%

from its true value is greater than 77%. Repeating this calculation using 
ε ¼ 0:07, one obtains the result that the probability that the estimated accuracy 
is within � 7% from its true value is greater than 53%.

Focusing attention now on the experiments using 1-s windows, still in 
the second partition, the number of test examples is n ¼ 1819þ 4868 ¼
6687 1-s windows. Now, for ε ¼ 0:1, one obtains the result that the 
probability that the estimated accuracy is within � 10% from its true 
value is greater than 99%. Narrowing ε to 0.01, one verifies that the 
probability that the estimated accuracy is within � 1% from its true 
value is greater than 62%. So although the results obtained using windows 
encompassing the whole seizures are apparently superior to that using 
1-s windows, the latter are statistically more reliable due to the availability 
of much more test examples.

In this sense, it is important to consider that, whatever system is imple-
mented, it is capable of being constantly updated with new data obtained from 
new patients, always improving its performance.

Unlike other studies related with epilepsy, our proposal is not patient 
specific. This means that our system may be applied to new patients admitted 
in a hospital center, even without having their previous EEG signals already 
collected. Thus, as can be seen, the present work has the advantages of not 
requiring the use of accelerometer nor electromyographic signals, not being 
patient specific, and also presenting very good results.
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