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An Evolutionary Multi-objective Optimization Technique to 
Deploy the IoT Services in Fog-enabled Networks: An 
Autonomous Approach
Mahboubeh Salimian, Mostafa Ghobaei-Arani , and Ali Shahidinejad

Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran

ABSTRACT
The Internet of Things (IoT) generates countless amounts of 
data, much of which is processed in cloud data centers. When 
data is transferred to the cloud over longer distances, there is 
a long latency in IoT services. Therefore, in order to increase 
the speed of service provision, resources should be placed 
close to the user (i.e., at the edge of the network). To address 
this challenge, a new paradigm called Fog Computing was 
introduced and added as a layer in the IoT architecture. Fog 
computing is a decentralized computing infrastructure in 
which provides storage and computing in the vicinity of IoT 
devices instead of sending to the cloud. Hence, fog computing 
can provide less latency and better Quality of Service (QoS) for 
real-time applications than cloud computing. In general, the 
theoretical foundations of fog computing have already been 
presented, but the problem of IoT services placement to fog 
nodes is still challenging and has attracted much attention 
from researchers. In this paper, a conceptual computing frame
work based on fog-cloud control middleware is proposed to 
optimally IoT services placement. Here, this problem is formu
lated as an automated planning model for managing service 
requests due to some limitations that take into account the 
heterogeneity of applications and resources. To solve the pro
blem of IoT services placement, an automated evolutionary 
approach based on Particle Swarm Optimization (PSO) has 
been proposed with the aim of making maximize the utiliza
tion of fog resources and improving QoS. Experimental studies 
on a synthetic environment have been evaluated based on 
various metrics including services performed, waiting time, 
failed services, services cost, services remaining, and runtime. 
The results of the comparisons showed that the proposed 
framework based on PSO performs better than the state-of- 
the-art methods.
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Introduction

The Internet of Things (IoT) is a network of devices that have the ability to 
sense the environment, process, communicate, and perform specific actions 
(Taneja and Davy 2016). IoT has many applications, including environmental 
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monitoring, traffic management, smart homes, and smart cities (Rezaeipanah, 
Nazari, and Ahmadi 2019). Cloud computing is one of the main technologies 
for realizing IoT. Due to the large amount of data generated by IoT devices, 
cloud data centers are the best place to store this data. The cloud theoretically 
has unlimited and scalable resources and can meet the basic requirements of 
IoT applications (Dastjerdi and Buyya 2016). However, there are more than 
50 billion networked devices by 2020, and Cisco predicts that by 2030, more 
than 500 billion IoT devices will be connected to the Internet (Mohan et al. 
2017). Therefore, it is clear that the current cloud infrastructure will not be 
able to support all the data generated by these devices. In addition, the geo- 
centralization of the cloud leads to its inability to meet the needs of real-time 
IoT applications (Rezaeipanah, Mojarad, and Fakhari 2020). Despite this 
distance, cloud-connected IoT devices suffer from the problem of response 
time, latency, bandwidth, and network congestion. Therefore, the relatively 
centralized structure of the cloud does not conform to the decentralized nature 
of IoT, and a new computing model was needed to overcome these limitations 
(Goswami et al. 2021; Karatas and Korpeoglu 2019).

Fog or edge computing has been introduced as a new computing model for 
hosting IoT applications in order to overcome the limitations of using cloud 
data centers (Souza et al. 2018). Society has not yet converged on clear 
definitions of these terms (Chen et al. 2020; Forouzandeh, Rostami, and 
Berahmand 2021; Skarlat et al. 2017; Souza et al. 2018). Fog computing 
involves a large number of heterogeneous nodes that allow IoT services to 
execute in the vicinity of resources without involving the cloud. This technol
ogy extends services to the network edge in a distributed manner and brings 
storage, analysis and processing closer to where data are created and end users. 
Fog computing is considered as an intermediate layer between cloud servers 
and IoT devices, and turns the network into an edge network (Khosroabadi, 
Fotouhi-Ghazvini, and Fotouhi 2021). In this layer, fog and cloud resources 
work together to provide services. Significant advantages of fog calculations 
include the reduction of latency and computational costs, as well as its ability 
to meet the response time required in applications sensitive to latency and 
real-time (Taneja and Davy 2016). Currently, resources management is one of 
the main challenges in research based on fog computing (Puliafito et al. 2019; 
Xavier et al. 2020). There are many issues related to resources management in 
fog and cloud computing, such as resources forecasting, resources provision
ing, services provisioning, scheduling, dispatching, and services migration 
(Khosroabadi, Fotouhi-Ghazvini, and Fotouhi 2021).

One of the main obstacles to accepting fog computing is “how to efficiently 
deploy services on available fog nodes” (Karatas and Korpeoglu 2019). 
Because, unlike cloud data centers, dynamic fog devices are resource-limited 
and distributed and this makes resources management challenging. Therefore, 
one of the most important problems in fog and cloud resources management 

APPLIED ARTIFICIAL INTELLIGENCE e2008149-565



is the decision-making to services provision or services placement autono
mously. The purpose of solving this problem is to deploy distributed compo
nents of IoT applications (i.e., services) in fog and cloud resources, which 
causes mapping between fog nodes and IoT applications to use resources 
(Yang et al. 2018). The benefits of provisioning dynamic services include 
reduced bandwidth utilization, optimal resources management, reduced com
putational costs, availability, reduced latency, increased reliability, reduced 
energy consumption, improved QoS, and meeting the response time required 
for real-time applications (Santoyo-González and Cervelló-Pastor 2018).

International Business Machines (IBM) corporation has introduced the 
MADE-k autonomous model to implement fog computing (Jacob et al. 
2004). This model consists of four phases of monitoring, analysis, decision- 
making and execution that are shared with a knowledge-base (Salimian, 
Ghobaei-Arani, and Shahidinejad 2021). IoT services and fog resources are 
controlled during the monitoring phase. The analysis phase is responsible for 
prioritizing the execution of services based on the deadline. In the decision- 
making phase, planning is done for the proper deployment of services, and 
finally, in the execution phase, the planned placement is applied. According to 
this model, we present an autonomous conceptual computing framework 
based on fog-cloud control middleware for optimal fog and cloud resources 
management. This middleware is centrally responsible for applying the 
MADE-k model to the entire fog landscape.

There are many studies in the literature to improve the decision-making 
and optimal deployment of IoT services on fog nodes (Brogi et al. 2018; 
Murtaza et al. 2020; Salimian, Ghobaei-Arani, and Shahidinejad 2021; 
Yousefpour et al. 2019). The purpose of most of these studies is to optimize 
an objective function (e.g., energy consumption, response time, latency, cost, 
and utilization of fog resources); however, some studies also perform opti
mization based on several objectives. Multi-objective problem solving can 
provide a better decision for mapping fog nodes to IoT services applications 
(Salimian, Ghobaei-Arani, and Shahidinejad 2021). Hance, in this paper, 
a multi-objective algorithm for the problem of IoT services placement in 
the fog landscape is proposed, which aims to reconcile the factors of cost, 
latency and utilization of fog resources. Because of their simplicity and 
flexibility, evolutionary approaches focus on solving a wide range of optimi
zation problems. Therefore, we use an evolutionary approach to solve the 
problem of IoT services placement. Here, the decision-making phase of the 
MADE-k model is performed using PSO as an evolutionary approach that 
aims to optimally plan the deployment of services on fog nodes. PSO is 
a population-based optimization algorithm that performs the evolutionary 
process based on the motion of bird flocks and fish (Kennedy and Eberhart 
1995). This algorithm has performed well in optimization scenarios and real- 
world applications.
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The main contribution of this paper is as follows

● Design of an autonomous framework based on fog-cloud control mid
dleware and MADE-k model for fog and cloud resources management

● Development of PSO to solve the problem of IoT services placement as 
a multi-objective optimization problem

● Prioritize requests based on deadlines for better deployment

The rest of the paper is organized as follows: Section 2 describes the back
ground of fog computing architecture, formulates the problem of IoT services 
placement, and addresses evolutionary approaches. Section 3 is devoted to 
literature review. An overview of the proposed framework for resources 
management is discussed in Section 4. The proposed scheme for deploying 
IoT services is presented in Section 5. Section 6 describes the experimental 
results and discussion. Finally, Section 7 concludes this paper.

Background

This section consists of three subsections. The first subsection describes the 
three-layer architecture for the cloud-fog-IoT ecosystem. In the second sub
section, the problem of locating IoT services is formulated and finally, evolu
tionary approaches are discussed in the third subsection.

Cloud-Fog-IoT Ecosystem Architecture

As shown in Figure 1, the cloud manufacturing architecture based on fog 
computing consists of three layers: IoT devices, fog computing layer, and 
cloud computing layer (Natesha and Guddeti 2021). According to this archi
tecture, fog computing is an intermediate layer between IoT devices and cloud 

Figure 1. Cloud-Fog-IoT three-layer ecosystem architecture.
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computing that provides the proper balance between these layers. The devices 
layer consists sensors and monitors that sense data in real-time and transmit it 
to the fog layer. The fog layer is used for real-time IoT data collection and 
analysis. This layer can provide the required service for the received requests 
based on the available resources. Finally, the cloud layer is responsible for 
storing and assigning services to requests that the fog layer is not capable of 
executing.

Fog computing perform communications, processing, and storage on 
resources that are close to end users. This is the most important advantage 
of fog computing, which leads to increased QoS for real-time applications 
(Neware and Shrawankar 2020). Figure 2 highlights some of the advantages of 
fog computing over other computing models.

Problem Formulation

Fog computing improves the usability of IoT-based resources, but requires an 
efficient strategy for services placement (Jia et al. 2018). Applications (a set of 
services) are sent to the fog layer by IoT devices for execution. In general, the 
fog landscape consists of a number of fog colonies, so that each colony consists 
of a number of fog nodes and a fog orchestration control node (Zhang, Wang, 
and Huang 2018). In addition, there is a fog-cloud control middleware in the 
fog layer, which plans the deployment of IoT services based on the MADE-k 
model (Salimian, Ghobaei-Arani, and Shahidinejad 2021). The orchestration 
nodes are responsible for managing and overseeing the subordinate fog 

Figure 2. Some advantages of fog calculations.
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colony. Therefore, each orchestration node receives the details of services 
placement associated with the subordinate fog colony from the middleware 
and apply it on the fog colony. In this regard, the orchestration nodes interact 
with the middleware and report the status of the colonies in each period. In 
addition, the fog colonies are interconnected, as shown in Figure 1, where the 
link between the colonies is through the orchestration nodes (Jia et al. 2018). 
However, when the colonies do not have the resources needed to execute 
a request, the request is transmitted to the cloud by middleware.

In the problem of IoT services placement, the fog landscape includes n fog 
colonies, where Fi refers to i th fog colony. Oi is the fog orchestration control 
node associated with Fi, and f j refers to the j th fog node in Fi. Res Fið Þ is the set 
of subordinate fog nodes in Fi, where f j 2 Res Fið Þ;"j ¼ 1; 2; . . . ; ci. Links 
between system entities have a certain latency; lf j is the link latency between 
f j and Oi, lN is the link latency of a colony with the nearest neighboring fog 
colony, and lR is the link latency between the fog-cloud control middleware 
and cloud resources R. Let Ak 2 AP;"k ¼ 1; 2; . . . ;m be the k th application/ 
request that is sent to the fog layer by IoT devices. Ak consists of rk indepen
dent service, where al 2 Ak;"l ¼ 1; 2; . . . ; rk refers to the l th service and must 
be mapped to a fog node. Therefore, before IoT applications being executed, 
the computational resources of all services must be specified in fog.

The three most important factors in each colony are CT ¼ U;M; Sf g, 
where U indicates CPU usage rate, M indicates RAM usage rate, and S 
indicates storage usage rate (Skarlat et al. 2017). Similarly, every service to 
execute has CT requirements that it should not exceed the available resources 
of the fog nodes. Here, UFi , MFi and SFi show the CT factors for Fi, Uf j , Mf j and 
Sf j represents the CT factors for f j, and Ual , Mal , and Sal refer to the CT factors 
associated with al. In addition to these factors, each service al has a deadline to 
execute that is denoted by Dal . Also, RTAk is the response time of Ak and 
should not exceed DAk (deadline Ak to execute). Therefore, there are two 
limitations to the resources’ utilization and the response time to execute IoT 
applications that should not be violated in the placement process. A descrip
tion of all the symbols and variables related to the problem of IoT services 
placement can be found in Table 1.

Evolutionary Approaches

Solving the problem of optimizing the distribution of services between service 
providers is in the NP-Hard problem category (Salimian, Ghobaei-Arani, and 
Shahidinejad 2021). In general, there are two methods to solve optimization 
problems: exact and approximate. The approximate method consists of two 
types of heuristics and meta-heuristics. Examples of meta-heuristic methods 
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are Simulated Annealing (SA), Genetic Algorithm (GA), Ant Colony 
Optimization (ACO), Whale Optimization Algorithm (WOA), Crow Search 
Algorithm (CSA), Cuckoo Optimization Algorithm (COA), and Open-source 
Development Model Algorithm (ODMA) (Maier et al. 2019; Talatian Azad, 
Ahmadi, and Rezaeipanah 2021). Swarm intelligence-based meta-heuristic 
methods are also known as evolutionary approaches. This paper uses an 
evolutionary approach to problem solving (Maier et al. 2019). Here, the PSO 
algorithm is used as the proposed approach and algorithms ODMA, CSA, 
WOA and COA as the comparative approaches. Hence, these algorithms are 
briefly described below.

● PSO: This algorithm was introduced by Kennedy and Eberhart (1995) for 
optimization applications. PSO is inspired from the nature social behavior 
and dynamic movements with communications of fish, birds and insects. 
Uses a number of agents (particles) that constitute a swarm moving around 
in the search space looking for the best solution. Each particle in search 
space adjusts its “flying” according to its own flying experience as well as 
the flying experience of other particles. Each particle has three parameters 
position, velocity, and previous best position (pbest), particle with best 
fitness value is called as global best position (gbest). Collection of flying 
particles (swarm) are trying to movement toward a promising area to 
achieve global optimization. Each particle dynamically adjusts its velocity 
according to flying. In addition, each particle modifies its position accord
ing to the current position, current velocity, distance between current 
position and pbest, and distance between current position and gbest.

● ODMA: This algorithm was introduced by Hajipour, Khormuji, and 
Rostami (2016) as a new meta-heuristic algorithm to solve optimization 
problems. ODMA is a social-based method and includes swarm-based and 
population-based features. In this algorithm, each point in the solution 
space is considered as an open-source software and evolves over time by 
the open-source development mechanism. ODMA assumes two general 
types of software: Leading and Promising. Leading software is more opti
mistic, so that other software is known as promising. Over time, some 
softwares become leading or show to be promising, and some of them 
cannot developed enough and removed. Evolution phase operations in this 
algorithm include moving toward leading softwares, evolution of the lead
ing softwares based on their history, and forking from leading softwares.

● CSA: This algorithm was introduced by Askarzadeh et al. (2016) as 
a novel meta-heuristic technique based on the intelligent behaviors of 
crows. The CSA works on the idea that crows store their excess food in 
hiding places and retrieve it when needed. The optimization process in 
this algorithm is done by setting only two parameters (i.e., flight length 
and awareness probability), which is very attractive for solving various 
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engineering design problems. CSA uses the flight length parameter to 
control convergence and the awareness probability parameter to control 
diversity.

● WOA: This algorithm has been introduced by Mirjalili and Lewis (2016) 
as a population-based optimization algorithm. WOA mimics the social 
behavior of humpback whales and is inspired by the bubble-net hunting 
strategy. This algorithm performs the evolution process in three phases: 
encircling prey, exploitation (bubble-net attack) and exploration (prey 
search). The WOA assumes that the best solution for the current candi
date is to prey for the target or close to the desired state. After that, other 
agents try to update their position to the best search agent. WOA has been 
tested on 29 well-known test functions that confirm its performance in 
practice.

● COA: This algorithm was introduced by Yang and Deb (2009) for con
tinuous nonlinear optimization problems. COA is based on the life of 
a bird family called a Cuckoo, where the population of cuckoos in 
different societies is divided into two types of mature cuckoos and eggs. 
In this algorithm, cuckoos are required to lay eggs in nest of other birds. 
A number of eggs that are more similar to the host eggs will have a better 
chance of growing and becoming cuckoos. Other eggs are also detected 
and destroyed by the host. Therefore, the basis of COA is derived from the 
effort to survive among cuckoos. The survived cuckoo societies immigrate 
to a better environment and start reproducing and laying eggs.

Literature Review

In this section, resource management approaches in fog and cloud computing, 
including single-objective and multi-objective, are examined. The purpose of 
reviewing these studies is to highlight the importance of using multi-objective 
approaches versus single-objective approaches. In the problem of services 
placement, the decision maker is usually interested in multi-objective problem 
optimization (Skarlat et al. 2017). However, many studies use single-objective 
models to solve this problem (Lee, Saad, and Bennis 2019; Ren et al. 2019). In 
general, the importance of optimal resource management and service provi
sion in fog and cloud computing is understood by the research society. Unlike 
the cloud, research in fog is still immature (Ren et al. 2019). Currently, the 
focus of resource management researchers on fog computing has been to 
reduce costs or latencies (Ren et al. 2019). In addition, objectives such as 
improving QoS, minimizing energy consumption, maximizing the utilization 
of network resources, improving response time, and minimizing transfer to 
cloud have also been considered by researchers (Ren et al. 2019).
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Minh et al. (2017) proposed a solution to the problem of services place
ment in fog with the aim of maximizing the utilization of resources. Here, 
latency is considered as a limitation and this has led to inadequate control of 
response time. In some cases, a possible solution to the problem is not found 
because the response time does not exceed one threshold. In addition, this 
paper does not consider the service costs for deciding whether to deploy 
services. However, response time and cost are important components in this 
problem and there is a lot of research in the literature that considers these 
components to provide services (Jia et al. 2018).

Ramirez et al. (2017) reviewed the benefits of using fog-to-cloud (F2C) in 
providing service for IoT applications. F2C can reduce energy consumption, 
network congestion and service time. The authors proposed two dynamic 
service placement methods, including Random Fit and First-Fit, but did not 
consider QoS and service cost. Skarlat et al. (2017) introduced an architecture 
for providing services in fog colonies and then proposed several algorithms for 
use in this architecture. The purpose of these algorithms is to optimize the 
utilization rate of fog resources. Mahmoud et al. (2018) developed an IoT 
architecture with fog enabled cloud for smart healthcare applications. In this 
architecture, an energy-aware module is used to services placement. The 
authors make all the decisions to the services placement based on energy 
consumption and do not consider deadlines and costs.

Yousefpour et al. (2018) introduced a framework for IoT applications in the 
fog and cloud and a cooperation and offloading policy aimed at reducing 
latencies. The main purpose of this paper is to reduce the latency in respond
ing to requests using offloading. Souza et al. (2018) used the service atomiza
tion technique to deploy distributed services in the IoT-fog-cloud 
environment. In this method, services are atomized and distributed in parallel 
in the environment. The authors used best-fit to map fog nodes to IoT services 
based on service deadlines. Kim and Chung (2018) considered the problem of 
IoT applications deployment as a mixed-integer non-linear programming 
(MINLP) problem. The authors used the energy consumption of fog resources 
to optimize the problem. In addition, they proposed the fog portal as a cloud 
computing infrastructure that highlights user participation in service 
provision.

Santoyo-Gonzalez and Cervello-Pastor (2018) formulated the problem of 
IoT services placement for 5 G networks and used a simulated annealing 
algorithm to solve it. The authors considered the problem as a MILP model 
based on cost reduction. Jia et al. (2018) used a double matching strategy 
(DMS) to improve the services deployment in fog computing. The main 
purpose of this method is to allocate cost-effective resources. Yang et al. 
(2018) proposed a Lyapunov optimization algorithm to solve the problem of 
IoT service placement in fog computing. The main purpose of this algorithm 
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for optimization is to reduce latency and energy consumption. Here, the 
authors use delay energy-based task scheduling (DBTS) to minimize energy 
consumption.

Zhang, Wang, and Huang (2018) optimized the problem of service placement 
by considering several objectives (i.e., multi-objective). The objectives consid
ered in this method include load balancing and reliability. The authors use 
adaptive bacterial foraging optimization to solve the problem. Brogi et al. 
(2018) proposed a multi-objective optimization scheme to solve the problem 
of services placement in a fog environment. This solution provides a balance 
between QoS assurance, utilization of resources and deployment costs. However, 
when comparing considered metrics, response times are more important in fog 
computing. Yousefpour et al. (2019) proposed a comprehensive model of IoT 
applications and resources in fog and cloud computing. The authors formulated 
the problem of service placement and proposed an integer nonlinear model to 
solve it. In addition, two heuristic algorithms are proposed to reduce the 
complexity of solving this problem. Although this approach focuses on reducing 
complexity, but its efficiency is drastically reduced by considering both latency 
and cost.

Hassan, Azizi, and Shojafar (2020) deployed services based on energy 
consumption and priority in the fog-cloud environment. The authors consider 
a maximum of two services in IoT applications and choose the most appro
priate platform from the fog and cloud. Murtaza et al. (2020) introduced an 
adaptive placement approach in the fog-cloud environment that improves 
QoS in terms of latency and energy consumption. The authors use the 
reinforcement learning policy to determine the optimal mapping between 
fog nodes and IoT services. Xavier et al. (2020) introduced an innovative 
approach to providing resources in the IoT-fog-cloud environment. The 
authors consider the interaction between fog and cloud as well as the hetero
geneity of devices in fog to allocate resources. Chen et al. (2020) proposed 
a Stackelberg-based resource allocation framework for fog computing. The 
entities of this framework include mobile fog-cloud and end-users, which 
breaks down the problem into subproblems. Here, for each subproblem, 
only the type of resource is considered and the price is estimated.

Khosroabadi, Fotouhi-Ghazvini, and Fotouhi (2021) proposed an approach 
for services placement in IoT networks with the real-time fog-assisted. The 
authors use a heuristic algorithm based on fog node clustering to solve the 
problem. This algorithm based on QoS has reported promising results. 
Natesha and Guddeti (2021) solved the problem of deploying services in fog 
computing using an elitism-based genetic algorithm. This problem is consid
ered as a multi-objective optimization problem to minimize energy consump
tion, service time and cost. In addition, the authors developed a fog framework 
for two-level resources provisioning using containers. Salimian, Ghobaei- 
Arani, and Shahidinejad (2021) introduced an autonomous approach to the 
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optimal deployment of MADE-k-based IoT services in the fog landscape. The 
authors used the Gray Wolf Optimization (GWO) algorithm to optimize 
service placement. This method increases system performance by taking into 
account execution costs and adapts to the dynamic behavior of the environ
ment. Also, the simulation results show that this method has been converged 
with 93.7% for services placement in fog nodes.

The studies examined are summarized based on the objectives set out in 
Table 2.

Many studies in the literature have addressed the problem of services 
placement in fog computing, so that only some of them were examined in 
this section. However, there are shortcomings in this research, which can be 
attributed to the lack of association quantify between different objectives. The 
problem of service placement involves deployment planning with some lim
itations (Natesha and Guddeti 2021). This paper addresses five key features, as 
shown in Figure 3. The first feature refers to the planning scheme, where it can 
be done centrally or distributed. The second feature is related to the problem- 

Table 1. Description of the symbols related to the problem of services placement.
Parameter Description Parameter Description

t Current time RAk Request time of Ak
ρ Time period xf j

al
Decision variables related to f j and al

n Total number of colonies xO
al Decision variables related to orchestration 

and al

Fi i th fog colony xN
al Decision variables related to nearest colony 

and al

Oi i th fog orchestration control node K Total number of services
f j j th fog node C Total number of resources available in the 

period ρ
Res Fi
� �

Set of subordinate fog nodes in Fi UF utilization of fog

Resal
Fi
� �

set of fog nodes associated with al in Fi TP Throughput

AP Set of requested applications RT Response time
Ak k th application/request SC Service cost
m Total number of applications �UF Utilization of fog weight
rk Number of services in Ak �TP Throughput weight
al l th service of an application �RT Response time weight
UFi CPU usage rate of Fi �SC Service cost weight
MFi RAM usage rate of Fi

xf j

al
Decision variable for node f j

SFi Storage usage rate of Fi xO
al Decision variable for orchestration node

Uf j CPU usage rate of f j xN
al Decision variable for nearest neighbor colony

Mf j RAM usage rate of f j SrvD Number of services deployed before the 
deadline

Sf j Storage usage rate of f j SrvTD All services sent to fog colony
Ual CPU usage rate of al CostSrvD Cost of services related to SrvTD

Mal RAM usage rate of al WTal Waiting time for service deployment al

Sal Storage usage rate of al ECal Execution time for service al

Dal Deadline of al SCcomm Communication cost
DAk Deadline of Ak SCcomp Computing cost
lf j Latency between f j and Oi cvα;β Data size between requests tα and tβ

lN Link latency of a colony with the nearest 
colony

BW Bandwidth between two nodes

lR Link latency between the middleware and 
cloud

CP Communication unit price

RTAk Response time of Ak PP Computing unit price
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solving technique, where the problem can be solved offline or online. The third 
feature controls whether the system is static or dynamic, and supports the 
mobility of fog nodes and end users in the fourth feature. Finally, the fifth 
feature refers to the type of optimization, which can be single-objective or 
multi-objective.

Proposed Framework

The proposed fog computing framework includes the three-layer cloud-fog- 
IoT ecosystem, as shown in Figure 4. As depicted, the cloud is at the highest 
level, then the fog layer, and at the lowest level of IoT devices. At the IoT 
devices layer, there is a set of smart objects that collect data and transfer it to 
the fog layer. The fog layer processes requests received from the IoT devices 
layer to provide services. Depending on some characteristics (for example, 
real-time), each request can be executed at the same level (i.e., fog layer) or 
sent to the cloud layer.

The proposed conceptual computing framework is based on a fog-cloud 
control middleware that provides optimal resource management. This mid
dleware is responsible for controlling the fog landscape and interacting with 
the cloud layer. The middleware according to MADE-k model can process 
applications/requests received from IoT devices and determine the appropri
ate platform for servicing them without engaging the cloud. Each IoT applica
tion includes several services, the resources of which must be provided by fog 
or cloud. Therefore, the middleware must have a mechanism for planning the 
services deployment, where the deployment process takes place at each ρ time 
period. The MADE-k model consists of four phases of monitoring, analysis, 
decision-making and execution, which are linked to a knowledge base.

The fog layer is composed of several fog colonies. Each fog colony 
includes a fog orchestration control node and a number of fog nodes. 
Fog node is an application software that is implemented on IoT devices. 
The orchestration node is responsible for managing and monitoring the 

Figure 3. Taxonomy of services placement problem.
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subordinate fog nodes and is supported by the fog-cloud control middle
ware. If a colony fails to provide the resources needed for a request, the 
request is passed by the orchestration node to the nearest neighboring fog 
colony. This scenario can be repeated by other colonies. Finally, if the 
colonies fail to provide the resources needed for the request, the request 
is sent to the cloud layer. Thus, fog colonies communicate with each other 
through orchestration nodes. The orchestration node can identify the 
nearest neighboring colony by examining the link latency when commu
nicating with other colonies. Each node in the fog colony is connected to 

Figure 4. Proposed ecosystem framework with three layers of cloud-fog-IoT.
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the orchestration node with a separate link. The latency of these links and 
the links between the orchestration nodes with the middleware as well as 
the links between the orchestration nodes themselves are insignificant and 
negligible.

fog-cloud control middleware has an admission control unit that can 
process requests to provide resources. Requests for IoT devices are sent to 
the admission control unit through the fog gateway. This unit has a response 
time threshold for identifying real-time applications. Therefore, the admission 
control unit can detect real-time applications based on the applications dead
line and the response time threshold. Finally, the unit sends latency-sensitive 
and real-time applications to the fog layer and refers other applications to the 

Figure 4. Continued.
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cloud layer. In addition, the MADE-k model is one of the main components of 
the middleware and decides on the deployment of each IoT service. This 
model performs the deployment process for each fog colony in a distributed 
manner. Deployment planning details are sent by the middleware to the 
orchestration nodes in each colony, and then IoT services are executed by 
the fog nodes. Fog nodes have computing power (i.e., RAM, CPU, and 
storage), so they can execute IoT services. The pseudocode of the proposed 
framework for IoT services placement is shown in Algorithm 1. 

Algorithm 1. Pseudocode of the proposed framework
Input: Set of IoT services requested for Ak and details of fog nodes
Output: Services deployment planning

1: for each time period ρ in MADE-k model do
2: for each set of application Ak at time period ρ do
3: Monitor (set of IoT services requested for Ak).
4: Monitor (Ual , Mal , Sal , Dal ).
5: end
6: for each fog node f j in Fi at time period ρ do
7: Monitor (f j status in Fi at time period ρ).
8: Monitor (Uf j , Mf j , Sf j , Df j ).
9: end
10: for each set of application Ak at time period ρ do
11: Calculate the priority of IoT services with Eq. (1).
12: end
13: for each set of application Ak at time period ρ do
14: Using PSO to determine a deployment plan to map fog nodes to IoT services. 

// Deployment planning is based on service priority and monitoring of fog nodes.
15: end
16: for each set of application Ak at time period ρ do
17: Perform IoT services placement on fog nodes based on deployment plan for Ak .
18: end
19: end
20: Planning the deployment of IoT services created by the PSO algorithm.

The loop embedded in line 1 is for performing MADE-k model phases in 
different time periods. According to lines 2–5, the monitoring phase is per
formed for incoming requests. This phase applies to fog nodes in lines 6–9. In 
the monitoring phase, usage rate of CPU, RAM and storage are analyzed, and 
then the status of fog nodes, IoT services, and IoT devices are stored in the 
knowledge base. The analysis phase is performed in lines 10–12, where 
according to Eq. (1) the priority of execute application implementation is 
determined (Skarlat et al. 2017). 

P Akð Þ ¼ α�
1

DAk

þ 1 � αð Þ �
1

t � RAk

(1) 

Where, P Akð Þ indicates the priority of the Ak application. DAk and RAk are the 
deadline and request time for Ak, respectively. Also, t is the current time and α 
is weight factor to consider the effect of the DAk and RAk parameters.

In lines 13–15 of the proposed pseudocode, the PSO algorithm is applied to 
deploy applications (IoT services) on fog nodes. Deployment planning is 
related to the decision-making phase of the MADE-k model, the details of 
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which are discussed in Section 5. Finally, lines 18–16 are related to the 
execution phase that apply the created planning scheme to the fog colonies. 
The computational complexity of Algorithm 1 depends on the number of 
services (i.e.,K), the number of nodes available (i.e., C) as well as the complex
ity of the PSO. In general, the complexity of PSO depends on its fitness 
function. Let FFPSO be the computational complexity of PSO based on fitness 
function. Therefore, the computational complexity of the algorithm 
is O K þ C þ FFPSOð Þ.

Proposed Placement Scheme

The purpose of solving the problem of IoT services placement is to optimize 
the mapping between fog nodes and IoT services so that some constraints are 
satisfied. In this paper, the PSO algorithm is used as an evolutionary algorithm 
for optimization work. The cloud-fog-IoT ecosystem has many challenges in 
providing resources for IoT applications; for example, minimizing the service 
cost, service time, response time, latency, response time, energy consumption, 
SLA violations, and maximizing the throughput, utilization of fog and number 
of services performed. However, many studies have highlighted service cost, 
response time, throughput, and utilization of fog as the main objectives in 
solving this problem (Natesha and Guddeti 2021; Xavier et al. 2020). Hence, 
we formulate the problem of IoT services placement as a multi-objective 
optimization problem to maximize throughput and utilization of fog, and 
minimize service cost and response time in fog computing.

Figure 4. Flowchart proposed algorithm for planning services deployment
The PSO algorithm is configured as a deployment planning scheme in the 

decision-making phase of the MADE-k model. Here, the services requested by 
IoT devices are queued and each ρ period is deployed. Like other evolutionary 
algorithms, the PSO algorithm consists of four main steps: (1) solution 
representation and generate initial population, (2) fitness function calculation, 
(3) population evolution strategy, and (4) determining the stop condition. 
These steps are described below. For a better understanding, the flowchart of 
the proposed algorithm is shown in Figure 5. In addition, a description of the 
symbols and variables associated with this algorithm can be found in Table 3.

The Initial Population

The first step of any evolutionary algorithm is to generate a set of possible 
solutions (often randomly) as the initial population. In the PSO algorithm, 
each solution is known as a particle. Each solution is an encoding of the 
problem that actually shows the structure of the solution representation. In 
this problem, each solution is a sequence of IoT services that are mapped to 
available nodes. Here, the structure of the solution representation is a vector of 
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length K, so that each element is a natural number in the range 1 � C½ �. Here, 
K is the total number of services from all applications and C is the total 
number of resources available in the ρ time period. Available resources can 
be fog nodes, fog orchestration control nodes or cloud. Consequently, each 
service of IoT applications is identifiable with a specific position in the solu
tion. An example of a solution structure with 15 services from 3 IoT applica
tions and 7 available resources is shown in Figure 5.

In this example, the available resources are Res ¼ 1; 2; 3; 4; 5; 6; 7½ � and 
the sequence of services based on the solution is 
P ¼ 3; 1; 2; 1; 3; 6; 2; 4; 4; 7; 3; 5; 7; 4; 6½ �. Accordingly, the first 
service is mapped to the third resource, the second service is mapped 
to the first resource, and so on. Due to the fact that resources in fog 
nodes are considered as blocks, so one node can support more than one 
service. For example, both services a2 and a4 are developed in the first 
resource. The initial population in the PSO algorithm is defined based 
on the solution representation structure and also randomly generated 
according to the services in the queue. Here, the population consists of 
NP solutions that are generated in each time period.

Fitness Function

In this paper, the problem of IoT services placement is formulated as a multi- 
objective optimization problem to maximize throughput and utilization of fog, 
and minimize service cost and response time in fog computing. Therefore, the 
proposed objective function for deployment planning consists of four objec
tives, as shown in Eq. (2). 

Fness ¼
�RT � RT þ �SC � SC
�UF � UF þ �TP � TP

(2) 

Figure 5. An example of a solution structure in the PSO algorithm.
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Where, RT, SC, UF and TP are response time, service cost, utilization of fog 
and throughput, respectively. Also, �RT , �SC, �UF and �TP are the weights of 
these objectives, respectively. In this paper, the effect of all objectives is 
considered the same, so the weight coefficient of all objectives is set to 1. 
According to the definition of the fitness function, the purpose of optimization 
is to minimize it. The process of calculating RT, SC, UF and TP are discussed 
below.

Response Time (RT): This criterion for al service refers to the time interval 
between receiving the service by the fog orchestration control node and 
issuing the first response. This time is defined as RTal and is calculated 
according to Eq. (3). 

RTal ¼WTal þ ECal " al 2 Ak;Ak 2 AP (3) 

Where, WTal is the waiting time for service deployment and ECal is the service 
execution time on the fog node. WTal is calculated based on the total waiting 
time to start the next period and the time required to find the fog node with the 
lowest service cost. In addition, ECal is considered based on the cost of 
executing the service on a fog node.

Service Cost (SC): The cost of service related to communication and 
computing is based on the utilization of fog resources (Faraji Mehmandar, 
Jabbehdari, and Haj Seyyed 2020), as shown in Eq. (4). 

SC ¼ SCcomm þ SCcomp (4) 

Where, SCcomm is the communication cost between two consecutive services 
(for example, tα and tβ) on a fog node, and SCcomp refers to the computing cost. 
These costs are defined based on Eq. (5) and Eq. (6). 

SCcomm ¼ CP �
cvα;β

BW
(5) 

SCcomp ¼ PP � tβ � tα
� �

(6) 

Table 3. Description of the symbols related to the PSO algorithm.
Description Parameter Description Parameter

NP Population size xmin Lower bound of position
Itermax Maximum iteration xmax Upper bound of position
pbesti Local best position of i th particle vmin Lower bound of velocity
gbest Global best position of all particles vmax Upper bound of velocity
Xi Position vector c1 and c2 Acceleration constants
Vi Velocity vector r1 and r2 Random values in 0; 1½ � range
ω Inertia weight to control the velocity impact τ Iteration
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Where, CP and PP are the unit price of communication and computing for 
a fog node, respectively. tα and tβ refer to the time of requests α and β, 
respectively. cvα;β is the size of the data between requests tα and tβ, and BW 
refers to the bandwidth between two nodes. Saeedi et al. (2020) recommend 
CP at $ 0.1 and BW at 20 Mbps.

Utilization of Fog (UF): This criterion indicates the number of service 
placements used for fog resources that should be maximized. The UF is 
calculated based on the communication and deployment letancy associated 
with sending the service to the nearest neighboring fog colony or cloud, as this 
can lead to breaches of application deadlines. Therefore, to calculate the UF, 
the priority of the applications must be calculated based on the deadline 
(Skarlat et al. 2017). Accordingly, the rate of utilization of fog resources is 
calculated based on Eq. (7). 

UF ¼
P

Ak2AP
P Ak� �

�
P

al2Ak

P

f j2Resal Fið Þ

xf j

al þ xO
al þ xN

al

0

@

1

A

0

@

1

A (7) 

Where, AP is the set of requested applications, al is l th service of Ak, f j is j th fog 
node, Fi is i th fog colony, and Resal Fið Þ is the set of fog nodes associated with al 

in Fi. P Ak� �
is the priority of the application Ak and is calculated through Eq. 

(1). Also, for each fog node that is ready to execute service al, three decision 
variables are defined binarily. These variables include xf j

al , xO
al and xN

al , which 
refer to the j th fog node, the fog orchestration control node, and the nearest 
neighboring fog colony, respectively. In fact, decision variables indicate to 
which resource the service al is mapped.

Throughput (TP): Throughput is calculated based on various factors. This 
criterion can mean maximizing the number of services executed relative to the 
total services sent to the fog colonies. Also, SC can mean minimizing the cost 
of executing these services. Based on different interpretations, we use a hybrid 
approach to calculate throughput, as shown in Eq. (8). 

TP ¼
TPA

TPB
(8) 

Where TPA is the throughput of the number of services executed relative to the 
total of services sent to the fog colonies. Also, TPB is the operating cost of 
executing these services, which is considered after complete deployment. TPA 
and TPB are calculated based on Eq. (9) and Eq. (10). 

TPA ¼
SrvD

SrvTD
(9) 
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TPB ¼ CostSrvD (10) 

Where, SrvD refers to the number of services that have been deployed and 
executed on the fog nodes before the deadline, and SrvTD is the total number of 
services sent to the fog colony. Also, CostSrvD refers to the total cost of services 
executed in the fog colony before the deadline.

Evolution Strategy

Each particle in the PSO has a position and is represented by 
Xi ¼ xi;1; xi;2; . . . ; xi;j; . . . ; xi;K

� �
, where K is the dimensionality of the search 

space. In addition, each particle has a velocity, which is represented as 
Vi ¼ vi;1; vi;2; . . . ; vi;j; . . . ; vi;K

� �
. In each iteration, each particle updates its 

position and velocity according to pbest and gbest, as given in Eq. (11) 
and (12). 

vtþ1
i;j ¼ ω:vτ

i;j þ c1:r1: pbesti � xτ
i;j

� �
þ c2:r2: gbest � xτ

i;j

� �
(11) 

xτþ1
i;j ¼ xτ

i;j þ vτþ1
i;j (12) 

Where, xτ
i;j and xτþ1

i;j are the positions of the j th element of the i th particle in 
iteration τ and τ þ 1, respectively. Similarly, vτ

i;j and vτþ1
i;j refer to velocity. 

Also, ω is inertia weight to control the velocity impact, c1 and c2 are accelera
tion constants and r1 and r2 are random values in 0; 1½ � range. In addition, 
parameters within particles are indexed with τ, which it refers to iteration in 
the evolutionary process.

First, each xi;j 2 Xi is randomly initialized in the range 1 � C½ �. In addi
tion, the velocity vector for each vi;j 2 Vi is randomly set in the range 
vmin � vmax½ � where vmin and vmax are the lower and upper bound velocities, 

respectively. Due to the solution structure, the position of IoT services in the 
solution cannot exceed the total number of available nodes (i.e., C). 
Therefore, for the position of the IoT services it is always xmin ¼ 1 and 
xmax ¼ C. Therefore, in the evolution process, all elements of the position 
vector must be a natural value in the range xmin; xmax½ �. Accordingly, after 
each update, the position of each xi;j is corrected to the nearest allowed 
natural within the specified range.

Stop Condition

After completing an iteration of the PSO algorithm, the current population has 
evolved from the previous population, although this evolution may be small. 
This process is repeated until a stop condition is reached. In this paper, the 
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condition of stopping the algorithm is defined based on the fixed number of 
iterations, i.e., Itermax. Once evolution has stopped, the best solution based on 
the fit function is used to solve the IoT services placement.

Experimental Results

This section deals with evaluating and comparing the proposed approach to 
solving the problem of IoT services placement in the cloud-fog-IoT ecosystem. 
Evaluation and comparison are performed based on various services per
formed, waiting time, failed services, services cost, services remaining, and 
runtime. Four evolutionary algorithms (i.e., ODMA, CSA, WOA and COA) 
have been used to compare the performance of the proposed PSO algorithm. 
The results of all the compared algorithms are reported based on the frame
work proposed in this paper. In addition, the simulation was performed by 
MATLAB R2019a and its source code is available from https://github.com/ 
mostafa13651365/PSO-FSPP. The algorithms are implemented on Lenovo 
laptop IdeaPad 320 with Intel Core i7-7500 U processor at 3.5 GHz and 8GB 
RAM. In addition, the results of all experiments are presented on the basis of 
an average of 25 independent performances to be more reliable.

Experimental Setup

The proposed framework is simulated for 1 fog colony (Salimian, Ghobaei- 
Arani, and Shahidinejad 2021), where the cost of cloud computing is $0.3 per 
billing time unit (Ibrahim et al. 2020). The simulation parameters based on 
Salimian, Ghobaei-Arani, and Shahidinejad (2021) and Skarlat et al. (2017) are 
set as follows: NP ¼ 25, Itermax ¼ 100,ω ¼ 0:9, c1 ¼ 2, c2 ¼ 2, α ¼ 0:5, 
tR ¼ 1s, tN ¼ 0:5s, tf ¼ 0:3s.

The results of the algorithms are compared based on a time period (ρ ¼ 1) 
as well as 10 consecutive time periods (ρ ¼ 10) for 1000 requests. In the first 
scenario, the fog colony structure and the requested IoT services are assumed 
according to Table 4. These details for the second scenario are presented in 
Table 5. Here, it is assumed that these parameters follow the normal distribu
tion. In addition, resources are considered as blocks that are allocated to 
services according to demand.

Table 4. Fog colony structure and the IoT services requested for the first scenario.
Characteristic Value

Number of types of services supported in the fog colony 20
Number of resource blocks for each fog node Random between 5500 and 6000
Number of resource blocks for each service Random between 25 and 35
Cost of each service Random between 10 and 20
Number of fog colony nodes 15
The range of the number of services requested in a time period {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}
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Table 6 show the details of resource demand for fog nodes in the first 
and second scenarios. Here, for every 5 consecutive nodes, resource demand 
is considered similarly. Various analyzes have been performed on the number 
of fog nodes considered in the scenarios. In general, considering the large 
number of nodes in each colony increases the planning time for deploying 
services. Also, colonies with low number of nodes cannot show the perfor
mance of the placement approach well, because low number of nodes does not 
lead to the creation of a planning queue. Experimentally, the appropriate 
number of nodes is considered to be 5 for the first scenario and 15 for 
the second scenario. This number can well show the performance of the 
placement approach according to the considered parameters. In general, 
requests are sent to the fog layer as applications by IoT devices. The deadline 
for all applications is randomly set between 120s and 240s. In this paper, 5 
different types of services are considered that the details of their resources are 
given in Table 7. However, each IoT device can have different types, for 
example Apple smartwatch, Samsung smartwatch and so on. According to 
Tables 4–5, the number of services types associated with different types of IoT 
devices that can be supported by fog colonies is 50.

Table 5. Fog colony structure and the IoT services requested for the second scenario.
Characteristic Value

Number of types of services supported in the fog 
colony

20

Number of resource blocks for each fog node Random between 3000 and 3500
Number of resource blocks for each service Random between 5 and 15
Cost of each service Random between 5 and 15
Number of fog colony nodes 5
Number of services requested to fay colony (random 

selection)
Period ρ 1 2 3 4 5 6 7 8 9 10
Time t 8 16 24 32 40 48 56 64 72 80
Number of 

services
71 48 48 46 96 77 37 52 85 55

Table 6. Details of resources for fog nodes.
Fog node type CPU (MIPS) RAM (MB) Storage (MB)

Fog node 1 100–200 256 256
Fog node 2 200–300 512 512
Fog node 3 300–1400 1024 1024
Fog node 4 1400–1600 2048 2048
Fog node 5 1600–3000 4096 4096

Table 7. Details of resources for different types of services.
Service CPU (MIPS) RAM (MB) Storage (MB)

Service type 1 100–200 128 128
Service type 2 200–300 256 256
Service type 3 300–1400 512 512
Service type 4 1400–1600 1024 2048
Service type 5 1600–3000 4096 4096
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Comparison and Discussion

The purpose of this section is to evaluate and compare five optimization 
algorithms (i.e., ODMA, CSA, WOA, COA and PSO) in solving the problem 
of IoT services placement on fog and cloud resources. This comparison was 
performed for 1000 incoming requests based on two scenarios. In the first 
scenario, the evaluation of all algorithms is performed in one time period, but 
in the second scenario, the comparison of algorithms is presented based on 10 
time periods. Convergence, runtime and fitness function are the evaluation 
metrics in the first scenario. However, the evaluation metrics in the second 
scenario include services performed, waiting time, failed services, services cost, 
remaining services, and runtime.

Comparison Based on One Time Period
Here, the results of different algorithms are analyzed and compared based on 
one time period. Here, deploying and executing applications is assumed in the 
fog landscape, so there is no cost to executing services in the cloud. In 
addition, due to the availability of fog landscape, the cost of service in fog is 
ignored. First, the convergence of ODMA, CSA, WOA, COA and PSO algo
rithms in reducing the fitness function is compared. Convergence shows the 
speed of reaching the final answer and causes evolution to stop. Because in this 
case, all solutions in the population are almost the same and the evolution 
continuation due to the reduction of diversity will not have a significant effect 
on improving the fitness function. A comparison of the convergence speed of 
the different algorithms is shown in Figure 6. This comparison is based on 100 
iterations, so that in each iteration for each algorithm, the value calculated for 
the fitness function is reported. As depicted, the efficiency and convergence of 
the PSO to find service deployment planning in the fog colony is better than 
other algorithms. The PSO managed to reduce the fitness function to about 
6830 with only 40 iterations. However, the COA converged at 35 iterations, 
but the efficiency of this algorithm is 0.5% lower than that of PSO. After PSO 
and COA, it can be seen that CSA, WOA and ODMA algorithms have 
provided better results, respectively.

Although the solution provided by PSO has less convergence and fitness 
function, due to the dynamic environment and the need for real-time decision 
making, the runtime metric should also be considered. In general, low runtime 
for planning can reduce service waiting time for deployment on fog nodes. 
Hence, Figure 7 reports the results of the runtime of different algorithms in 
100 independent iterations. The results clearly show the inefficiency of COA in 
solving real-time problems and dynamic environments. This algorithm has the 
worst performance among other algorithms with 79 s of runtime. The reason 
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for this can be the characteristic of COA in successive spawning and commu
nity building. Other algorithms are almost identical since runtime, however, 
the ODMA and PSO results are slightly better.

In this paper, the problem of IoT services placement is formulated as 
a multi-objective optimization problem to maximize utilization of fog 
and throughput, and minimize response time and service cost in fog 
computing, as shown in Eq. (2). Figure 8 shows the value obtained from 
the fitness function for different algorithms. According to the results of 

Figure 6. Comparison results of different algorithms based on convergence speed for one period.

Figure 7. Comparison results of different algorithms based on runtime for one period.
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this figure, the PSO algorithm has better performance and then the COA 
algorithm is in the next rank of efficiency. Therefore, deployment plan
ning by PSO can execute the service at the lowest cost on the fog node, 
which in addition to shortening the response time, also frees up the fog 
node resources sooner.

Comparison Based on 10 Time Period
In the second scenario, the results of the algorithms are compared for 10 
consecutive time periods and 1000 services. Here, different metrics are used to 
compare the algorithms. First, the algorithms are compared based on the 
number of services performed to the total number of monitored services. 
The results of this comparison are reported in Figure 9 for 10 consecutive 

Figure 8. Comparison results of different algorithms based on the fitness function for one period.

Figure 9. Comparison results of different algorithms based on the number of services performed 
before the deadline for 10 periods.
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time periods. The purpose of the proposed framework is to execute requests 
transferred to the fog layer before the deadline. As illustrated, PSO has 
managed to deploy more services than other algorithms before the deadline 
in most time periods. At the end of period 10, the total number of services 
deployed before the deadline for PSO is 585. After PSO, ODMA performed 
better with 577 services. In addition, the number of services performed before 
the deadline for the COA, WOA and CSA is 461, 572 and 572, respectively.

Figure 10 shows the results of comparing different algorithms based on 
runtime in 10 time periods. The purpose of optimization is to find a suitable 
deployment plan with the least runtime. Runtime is a function of the MAPE-k 
model in the decision-making phase. As illustrated, the PSO has the shortest 
runtime in terms of service deployment planning. This superiority is clearly 
evident in all time periods for the PSO. In general, after the end of 10 periods, 
the total runtime of PSO is 7.51 s, which is better than COA, ODMA, WOA 
and CSA with 34.11 s, 8.17 s, 8.43 s and 8.91 s, respectively. Compared to other 
algorithms, COA has a very high runtime, which is due to the spawning policy 
of cuckoos and therefore more run of the fitness function.

The average waiting time for services performed on the fog colony for 
10 periods is shown in Figure 11. Waiting time refers to the sum of processing 
latencies (queue latency) and deployment planning time. Given that the PSO 
had less runtime in the decision-making phase, it can be predicted that this 
algorithm provides less waiting time for services. As illustrated, PSO has the 
minimum waiting time for services at all time periods. At the end of 10 periods, 
the average waiting time of services performed for PSO is 5.37 s, which is the 

Figure 10. Comparison results of different algorithms based on the runtime for 10 periods.
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lowest compared to other algorithms. After PSO, ODMA has a better average 
waiting time of 5.48 s. Meanwhile, the results of this metric for COA, WOA 
and CSA are 10.74, 5.54 and 5.64, respectively.

The number of failed services relative to the total monitored services is 
shown in Figure 12 for the different algorithms. These results are for 10 
independent time periods and 1000 requests. The failed services refer to 
services that could not be performed before the deadline in deployment 

Figure 11. Comparison results of different algorithms based on the average waiting time before 
the deadline for 10 periods.

Figure 12. Comparison results of different algorithms based on the number of failed services for 
10 periods.
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planning. Due to the empty queue at the beginning of the planning stage, there 
is no failed service for all algorithms in the first time period. However, in 
subsequent time periods there have been failed services due to the increase in 
waiting time. Based on the results of different algorithms, PSO has provided 
fewer failed services in all time periods. Meanwhile, PSO is the only algorithm 
that in the second time period has managed to plan all monitored services 
before the deadline. In general, after the end of 10 periods, the total number of 
failed services for PSO is 28, which is superior to COA, ODMA, WOA and 
CSA with 141, 36, 41 and 41 failed services, respectively.

Figure 13 shows the results of the fitness function for different algorithms in 
10 time periods. According to the definition, the purpose is to minimize the 
fitness function by algorithms. This metric should be considered based on the 
number of services performed relative to the total monitored services. The 
results of this comparison for all time periods show that PSO performs better 
than other algorithms. At the end of 10 periods, the average fitness function 
for PSO, CSA, ODMA, WOA, and CSA is 327.4, 248.5, 322.7, 319.4, and 319.4, 
respectively, as shown in Figure 14. Accordingly, the PSO provides the lowest 
value of the fitness function compared to other algorithms.

In another experiment, the number of remaining services passed to the 11th 

time period was compared for different algorithms. This metric indicates that 
the free resources of the fog nodes are not sufficient to execute some services 
and must be placed for the next time period. Table 8 shows the results of this 
comparison for different algorithms, where some services must be placed in 
the 11th time period. According to this table, the first column refers to 
algorithms name, the second column shows the total number of services 

Figure 13. Comparison results of different algorithms based on the fitness function for 10 periods.

e2008149-592 M. SALIMIAN ET AL.



monitored in fog, the third column is related to the number of services 
performed after the end of 10 time periods, the fourth column refers to the 
number of failed services, and finally the last column shows how many services 
there are to be placed in time period 11. The results of this comparison show 
that PSO, ODMA, WOA and CSA have the best performance with only 2 
remaining services. However, PSO is more successful than these algorithms 
because it has only 28 failed services.

Table 9 summarizes the results of the PSO, COA, ODMA, WOA and CSA 
algorithms. These results are presented for different metrics based on 1000 
requests and 10 time periods. These metrics include number of services 
performed, runtime, average waiting time, number of failed services, cost 
services (fitness function), and number of services remaining.

Figure 14. Comparison results of different algorithms based on the average fitness function after 
the end of 10 periods.

Table 8. Comparison results of different algorithms based on the number of remaining services for 
planning in the 11th period.

Algorithms
Total services 

monitored in fog
Services performed up to 

10th period
Number of 

services failed
Remaining services for the 

11th period

PSO 615 585 28 2
COA 615 461 141 13
ODMA 615 577 36 2
WOA 615 572 41 2
CSA 615 572 41 2

Table 9. Summary of results of different algorithms.
Evaluation metric PSO COA ODMA WOA CSA

Number of monitored services 615 615 615 615 615
Average runtime (s) 7.50 34.11 8.16 8.42 8.91
Number of services performed (%) 95.12 74.96 93.82 93.01 93.01
Average waiting time (s) 5.37 10.74 5.48 5.54 5.64
Failed services (%) 4.55 22.93 4.23 6.67 6.67
Remaining services (%) 0.33 2.11 0.33 0.33 0.33
Cost services 327 248 322 319 319

APPLIED ARTIFICIAL INTELLIGENCE e2008149-593



The results clearly show the superiority of PSO over other algorithms. 
After PSO, the results show that ODMA, WOA, CSA and COA algorithms 
are in the next ranks, respectively. Algorithms such as PSO and ODMA rarely 
violate application deadlines, but ODMA uses more cloud resources than 
PSO. The use of cloud resources due to the physical distance of the cloud data 
center leads to higher service costs, as indicated in the ODMA results. On 
average, PSO results are 242.8%, 1.1%, 11.2% and 12.6% superior relative to 
COA, ODMA, WOA and CSA, respectively. In general, the following results 
can be obtained from comparing PSO with other algorithms. PSO solutions 
are significantly more diverse than solutions of other algorithms due to their 
better maintenance strategy. PSO has better distribution capability which 
helps to converge and reduce runtime. Also, PSO seems to perform better in 
high-dimensional search spaces than other algorithms, especially COA.

Conclusion

Cloud computing is not able to meet all the needs of IoT applications due to 
the distance from the network edge. The aim of fog computing is to utilization 
of storage and computing resources close to the network edge to execute IoT 
applications. Fog computing are still in their infancy, and there is a lack of 
theoretical basis for IoT services placement and provisioning fog resources. In 
this paper, an efficient conceptual computing framework based on fog-cloud 
control middleware is introduced to IoT services placement in the fog layer. 
The problem of IoT services placement in fog was established as an optimiza
tion problem that aims to reduce latency and costs, and maximize the utiliza
tion of fog resources. The framework uses the MADE-k model (monitoring, 
analysis, decision-making and execution with a shared knowledge-base) to solve 
the problem. This model is configured in fog-cloud control middleware and 
manages all fog colonies, where each colony contains a number of fog nodes 
and one fog orchestration control node. In the monitoring phase, all IoT 
services and fog nodes are evaluated and their details are stored in the knowl
edge-base. IoT services are prioritized in the analysis phase. The placement 
process is performed autonomously by applying the PSO in the decision- 
making phase, and then the placement plan is applied to the landscape in the 
execution phase. The proposed framework improves system reliability by estab
lishing fog-cloud collaboration and provides an effective placement of IoT 
services. The placement plan of IoT services provided by PSO based on the 
utilization of fog resources is more efficient and has less latency and cost 
compared to the plans created by ODMA, CSA, WOA and COA algorithms. 
Finding multi-objective policies based on the Pareto Archive is suggested as 
future work. Also, analyzing parallel heuristic algorithms to find more accurate 
placements than evolutionary approaches is another aspect of future work.
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