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Abstract

Texture is one of the most obvious characteristics in solar images and it is normally described by texture features.
Because textures from solar images of the same wavelength are similar, we assume that texture features of solar
images are multi-fractals. Based on this assumption, we propose a pure data-based image restoration method: with
several high-resolution solar images as references, we use the Cycle-Consistent Adversarial Network to restore
blurred images of the same steady physical process, in the same wavelength obtained by the same telescope. We
test our method with simulated and real observation data and find that our method can improve the spatial
resolution of solar images, without loss of any frames. Because our method does not need a paired training set or
additional instruments, it can be used as a post-processing method for solar images obtained by either seeing-
limited telescopes or telescopes with ground-layer adaptive optic systems.
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1. Introduction

The imaging process of optical telescopes can be modeled by
Equation (1):

( ) ( ) ( ) ( ) ( )= * +x y x y x y x yImg , Obj , PSF , Noise , , 1

where Obj(x, y) and Img(x, y) are the original and observed
images, ∗ is the convolutional operator, PSF(x, y) is the point-
spread function (PSF) of the whole optical system, and Noise(x,
y) stands for the noise from the background and the detector.
During real observations, many different effects will introduce
variable PSF(x, y) and Noise(x, y). These effects make the Img
(x, y) different from the Obj(x, y), and makes further scientific
research difficult.

For ground-based solar observations, because the exposure time
is short (dozens of milliseconds) and the field of view is large
(compared to the isoplanatic angle), the atmospheric turbulence,
thermal, and gravity deformations of the optical system will
introduce PSF(x, y) with highly spatial and temporal variations.
Even with the help of adaptive optics and active optics systems, the
residual error will still introduce a variable PSF(x, y). The variable
PSF of solar images is different from that of ordinary nighttime
astronomy observations; it is often called short-exposure PSF,
because the exposure time is only dozens of milliseconds.
The short-exposure PSF cannot be described by any of the
contemporary analytical PSF models, such as the Moffat or the
Gaussian model, and it is the main limitation for ground-based
solar observations.

Several different image restoration methods have been proposed
to reduce the effects created by the short-exposure PSF and
increase the spatial resolution of astronomical images, such as
the blind deconvolution algorithm (Jefferies & Christou 1993), the
speckle reconstruction algorithm (Labeyrie 1970; von der Luehe
1993), the phase diversity algorithm (Paxman et al. 1992, 1996;
Löfdahl & Scharmer 1994), and the multi-object multi-frame blind
deconvolution algorithm (van Noort et al. 2005). These methods

have different hypotheses or prior values of the PSF(x, y) or the
Img(x, y), including wavefront measurements or assuming that the
image is invariant between different frames, and have achieved
remarkable performance.
Texture is fundamental characteristic of an image and it

describes the grayscale spatial arrangement of images. Normally,
texture features are used to evaluate textures. In our recent paper
(Huang et al. 2019), we have presented the multi-fractal properties
of texture features in solar images of different wavelengths. Based
on the results of that paper, in this Letter we use a Cycle-
Consistent Adversarial Network (CycleGAN) to restore solar
images with multi-fractal properties as regularized conditions. Our
method can restore an arbitrary number of solar images obtained
by the same telescope within a few days with only several high-
resolution images as references. We discuss the multi-fractal
property of texture features in Section 2 and introduce our method
in Section 3. In Section 4, we show the performance of our
method with real and simulated observation data. We make our
conclusions and anticipate our future work in Section 5.

2. The Multi-fractal Property of Texture Features In Solar
Images

Textures are mostly related to spatially repetitive structures that
are formed by several repeating elements (Castelli & Bergman
2002). Similar to other natural images, solar images also have a lot
of textures, such as the granulation in TiO and the filament in
H-alpha, as shown in Figure 1. The texture feature is a description
of the spatial arrangement of the grayscale in an image, and it is
usually used to describe the regularity or coarseness of an image.
Manually designed texture features have been successfully used to
describe the arrangement of texture constituents in a quantitative
way (Tamura et al. 1978; Manjunath & Ma 1996; Li-wen et al.
2019). However, textures in solar images are not arranged in a
regular or periodic way, which makes it hard to design adequate
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texture features by hand. According to our experience, textures in
solar images have the following properties.

1. In the same wavelength, textures from different solar
images are similar.

2. For the same solar image, the shape variation of textures
in the same spatial scale satisfies the same statistical law.
For example, filaments are bending with a smooth curve
instead of a polyline.

These properties indicate that although texture features are not
organized in a regular way for solar images, the relative weights
of different texture features are stable. This means that if we
measure the relative weights of texture features in a statistical
way, the probability distribution in the same wavelength should
be the same. We can use multi-fractal properties to describe
texture features in solar images (Jia et al. 2014; Peng et al. 2017).
The multi-fractal property of texture features means that the
spatial distribution of textures in solar images (coded by texture
features) satisfies the same continuous power spectrum, and that
the exponents of the spectrum are different for different scales.

Because textures are just images of the background physical
process and because the physical process that generates the
textures does not change, the multi-fractal properties of
texture features are valid for all solar images obtained in the
same wavelength; i.e., the texture features of solar images
in the same wavelength satisfy the same power spectrum.
Recent works suggest that neural networks are very good at
representing complex functions.

In this Letter, we try to take further advantage of this property
and propose using neural networks to evaluate multi-fractal
properties from solar images. The multi-fractal properties are
encoded in a neural network and can be visualized by feature
maps of each layer. In our recent paper (Huang et al. 2019), we
show the multi-fractal properties of G-band images. In this Letter,
the multi-fractal properties are used as a regularized condition of
the CycleGAN in the same way as other regularization conditions
have been used in traditional deconvolution algorithms such as the
total variation condition in deconvolution algorithms. Therefore,
we do not try to extract the multi-fractal property of texture
features directly; instead, we use a number of high-resolution
images to represent it in a statistical way.

In real observations, we can obtain numerous high-resolution
solar images through speckle reconstruction, phase diversity,
multi-object multi-frame deconvolution, or observations with

diffraction-limited adaptive optic systems such as the single-
conjugate or multi-conjugate adaptive optics systems (Rao et al.
2018). The spatial resolution of these images are around the
diffraction limit of the telescope and can reveal the highest
spatial frequency of the observation data. As the texture features
from high-resolution solar images are just the realization of the
theoretical multi-fractal property, we can use the multi-fractal
properties of texture features from high-resolution images as a
restriction condition for image post-processing methods, as we
will discuss in the next section.

3. The CycleGAN for Image Restoration with the Multi-
fractal Property

3.1. Introduction of the CycleGAN

The deep convolutional neural network (DCNN) is a type of
deep-learning framework and is widely used in image restoration
(Xu et al. 2014; Wieschollek et al. 2016; Zhang et al. 2017). For
solar images, several different DCNNs have been proposed for
image restoration or enhancement (Asensio Ramos et al. 2018;
Díaz Baso & Asensio Ramos 2018). These methods are based on
supervised learning, which requires pairs of high-resolution
images and blurred images as training set to model the
degradation process, i.e., the PSF(x, y). However, for real
observations, obtaining the training set is difficult, and the
number and diversity of images in the training set are usually not
large enough to represent different image degradation processes.
A trained DCNN will output unacceptable results, when blurred
images have a different PSF(x, y) than that of the training set.
The requirement of many paired images in the training set limits
the wider application of these image restoration methods.
The generative adversarial network (GAN) is a generative

model (Goodfellow et al. 2014) that contains two DNNs: a
generator G and a discriminator D. Given the real data set R, G
tries to create false data that looks like the genuine data from R,
while D tries to discriminate the false data and the genuine data.
The GAN can be effectively trained with the back-propagation
algorithm when there are only limited training data. For the
image restoration of galaxies, the GAN has been successfully
trained with only 4105 pairs of training images (Schawinski
et al. 2017). However, as discussed above, the GAN also models
the degradation process from these training images. For solar
observations, because the atmospheric-turbulence-induced short-
exposure PSF is much more complex than the long-exposure
PSF, the number of training images required in the GAN will be
greatly increased and the performance of GAN will be strongly
influenced by limited training data.
Limited training data is also a problem for other image-

related tasks. Zhu et al. (2017) proposed the CycleGAN to
solve this problem. The CycleGAN is an unsupervised learning
algorithm that contains a pair of GANs. Given two sets of
images, one GAN learns the image mapping and the other
GAN learns the inverse mapping. Under the constrain
condition that the mapped image after inverse mapping should
be similar to itself and vice versa (cycle consistency loss), the
CycleGAN can restore blurred images directly by using high-
resolution images as references. It should be noted that,
although the supervised DCNN, the GAN, and the CycleGAN
all try to learn the restoration function, when used for image
restoration the CycleGAN has very different hypothesis than
that of the other methods. The CycleGAN is constrained by the
probability distribution of data (multi-fractal property of texture

Figure 1. Examples of high-resolution solar images obtained by (a) H-alpha
and (b) TiO filters of the New Vacuum Solar Telescope (NVST). In addition to
the large structures, there are also a lot of textures in these images. It is easy to
tell the difference between images from these two wavelengths, because
the textures in each wavelength are relatively stable and high-resolution
observations are carried out by humans.
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features in this Letter), while other methods are constrained by
the blur properties contained in pairs of training images. The
detailed structure of the CycleGAN used in this Letter will be
discussed in the next subsection.

3.2. Structure of the CycleGAN for Solar Image Restoration

The structure of the CycleGAN used in this Letter is shown
in Figure 2.4 Because short-exposure PSFs for solar observa-
tion have a very complex structure, we use a very deep CNN as
a generator as shown in Figure 3 and the Appendix. The
residual block in Table 1 (Appendix) is defined in Table 2
(Appendix). This generator is inspired by Zhu et al. (2017).
However, because the CycleGAN will learn the short-exposure
PSF that has complex structures, we modify it and use smaller
convolution kernels here to increase its representation ability.
For the discriminator, we use an ordinary CNN that is normally
used in image style transfer (Isola et al. 2017; Yi et al. 2017;
Zhu et al. 2017) as shown in Table 3 in the Appendix.

As shown in Figure 2, I and O are blurred images and high-
resolution images. One GAN in the CycleGAN tries to learn the
restoration function and it has a generator Restore and a
discriminator DO, which can be written as: I ORestore: . The
other GAN tries to learn the PSF and it has a generator PSF and
a discriminator DI, which can be written as O IPSF: . We
apply ordinary adversarial loss to both of these two GANs as

( ) [ ( )]
[ ( ( ( )))] ( )
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where ( )~I p Idata
stands for the expectation in the probability

space of data(I) and vise versa. These two adversarial losses can
make the distribution generated by the above two generators close
to the real distribution of I or O. However, because the generator
is very complex, with the adversarial loss the generator would
learn other mappings that also match the distribution of I or O. To
further restrict the space of possible mapping functions, we use
the cycle consistency loss ( ) Restore, PSFcyc to constrain the

Figure 2. Architecture of the CycleGAN used in this Letter. The left figure shows the basic structure of CycleGAN. I stands for the observation image and O stands for
the reference high-resolution image. Restore and PSF stand for the two functions to be learned: the restore function and the PSF. DI and DO are two discriminators that
are used to evaluate the generator output. The middle and right figures stand for the two learning processes in the CycleGAN. The blue dots are blurred images and the
red dots are high-resolution images. The CycleGAN will restore I to O’ and then will blur O’ to I’ and vise versa from O to O’. The cycle consistency loss is
introduced to make sure that the above translation will not change the image.

Figure 3. Architecture of the generator in figure (a) and the discriminator in figure (b). The generator is shown in Figure (a), which consists of convolutional layers
(Conv in yellow), instance normalization layers (IN in red), Conv-transpose layers (convT in blue), and residual blocks (residual blocks in purple). The discriminator is
shown in figure (b), which consists of convolutional layers, instance normalization layers, and softmax layers (in dark purple). The high-resolution image O will be
transformed to the blurred image I through the generator and the blurred image will be sent to the discriminator DI for discrimination. There are two of sets of the
generator and the discriminator in the CycleGAN, and they have the same structure.

4 The complete code used in this Letter is written in Python programming
language (Python Software Foundation) with the package Pytorch and can be
downloaded from 10.12149/101006.

3

The Astrophysical Journal Letters, 881:L30 (7pp), 2019 August 20 Jia et al.

https://doi.org/10.12149/101006


solution space:

( )
[ ( ( )) ]

[ ( ( )) ] ( )

( )

( )

 
 

=

´ -
+ -

~

~

 


O O

I I

Restore, PSF

Restore PSF

PSF Restore , 4

O p O

I p I

cyc

1

1

data

data

where 1 stands for the 1-norm. The cycle consistency loss
guarantees that, for each image, the CycleGAN will bring it
back to the original value:

( ) ( ( )) ( )  »O O O OPSF Restore PSF 5

( ) ( ( )) ( )  »I I I IRestore PSF Restore . 6

Because the image restoration algorithm should not flip the
gray value between different pixels, we use the identity loss to
constrain the contrast of the image, preventing the rapid change
of grayscale between different pixels.
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Finally, we calculate the total variation of O and I and use
them as the total variation loss to improve the image quality
and reduce the artifacts generated by the CycleGAN,
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where 2 stands for the 2-norm, and ∇h and ∇w are horizontal
and vertical gradient of these images, respectively. We calculate
the weighted summation of the above loss functions and use
the function defined below to train the CycleGAN, where λ

is the relative weight of the cycle consistency loss.
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3.3. Other Restriction Conditions for the CycleGAN in Image
Restoration

Because the CycleGAN tries to model the degradation
process according to the statistical probability distribution of
texture features in images, the restriction of this model should
lie in both the image and degradation processes. First of all, as
the CycleGAN does not have any paired training images as
supervisions and it is supervised in the form of O and I, where
O and I are high-resolution images and blurred images,
respectively, they should satisfy the following properties for O.

1. High-resolution images need to have the same or smaller
pixel scale than that of the blurred images. Then we can
down sample all the high-resolution images to images of
the same pixel scale as that of blurred images in data set O.

2. The apparent structures should be removed from high-
resolution images, albeit keeping it small enough, because
the apparent structures, such as sunspots, have different
textures and will change the multi-fractal properties.

3. We need enough images with textures to represent the
multi-fractals in a statistical way. According to our
experience, at least 100 frames of reference images with
256×256 pixels are required; however, it is much

smaller than the ordinary DNN-based image restoration
method.

As the CycleGAN is to model the restoration function and the
PSF, which have very strong spatial and temporal variations,
we need to set several restrictions in I to make the CycleGAN
robust in real applications.

1. When restoring a single frame of a solar image, it would
be better to divide it into smaller images the size of
around dozens of arcseconds.

2. For several continuous frames of solar images, it would be
better to cut the interested areas (the size of around dozens
of arcseconds) from these images and directly restore these
temporal-continuous small images with the CycleGAN.

3. To reduce image processing time, it would be better to
use texture-rich small images that are cut from blurred
images to train the CycleGAN. After training, the Restore
can be directly used to restore all the blurred images.

Last but not least, reference images and blurred images need to
have the same multi-fractal property, so the images taken in the
same wavelength band within a few days is strict enough for
our method. We tested our method with real observation data
and found that the neural network used in this Letter is complex
enough for the image restoration task, because we did not find
any images that the CycleGAN had failed to restore. With the
above restrictions, the CycleGAN can be effectively trained
through several thousand iterations. In the next Section, we
present implementations of our algorithm.

4. Implementations of the CycleGAN for Image Restoration

4.1. Performance Evaluation with Simulated Observation Data

Overfitting is a major problem that can limit the performance
of our algorithm. Because the CycleGAN is a generative
model, overfitting will make Restore remember the structure of
high-resolution images and generate false structures during
image restorations. To test our algorithm, we use the
CycleGAN to restore simulated blurred images. There are
two sets of images used in this Letter: observations carried out
in the H-alpha wavelength between 2018 April 2 and 3, and
observations carried out in TiO band on 2014 November 17.
These two sets of data are both observed by the NVST (Liu
et al. 2014): the H-alpha data was observed in 656.28 nm and
bandpass of 0.025 nm with a pixel scale of 0 136 and the TiO
data was observed in 705.8 nm and bandpass of 1 nm with with
a pixel scale5 of 0 052. These images are restored by speckle
reconstruction methods (Li et al. 2015).
From five high-resolution H-alpha wavelength images, we

crop 500 images of 256×256 pixels as references and crop
another five images of 256×256 as test images. From five
high-resolution TiO solar images, we crop 500 images of
256×256 pixels as references and crop another five images of
256×256 pixels as test images. According to real observation
conditions, we use the Monte Carlo method to simulate several
high-fidelity atmospheric turbulence phase screens with D/r0 of
10 for H-alpha wavelength and four for TiO data (Jia et al.
2015a, 2015b), where D stands for the diameter of telescope and
r0 stands for the coherent length of atmospheric turbulence. We
calculate simulated short-exposure PSFs with these phase

5 For more details, please refer to http://fso.ynao.ac.cn/cn/introduction.
aspx?id=8.
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screens through far field propagation (Basden et al. 2018). At
last, we convolve test images and temporal-continuous PSFs to
generate 100 simulated blurred images as simulated blurred
H-alpha and TiO data.

These simulated blurred images and high-resolution images in
the same wavelength are used to train the CycleGAN with 2000
iterations. Because all of the simulated blurred images have the
original high-resolution images, we can compare them to test our
algorithm. The results are shown in Figure 4. We carefully check
these images and find that the resolution of the restored images has
been improved and there are no observable difference between the
restored images and the original images. We have also calculated
the median filter-gradient similarity (MFGS; Deng et al. 2017) of
the simulated blurred images, the original high-resolution images,
and the restored images to further test our method. For H-alpha
data, the MFGS is increased from 0.75±0.05 to 0.81±0.04,
while the mean MFGS of the original images is 0.81±0.04. For
TiO data, the mean MFGS is increased from 0.81±0.03 to
0.82±0.02, while the mean MFGS of the original images is
0.82±0.03. According to these results, we find that the image
quality has been increased by our method.

4.2. Performance Evaluation with Real Observation Data

In this section we use real observation data from NVST to
evaluate performance of the CycleGAN and also show our
recommendations of how to use the CycleGAN in real
applications. According to the size of the isoplanatic angle,
an image should be cut into small images for restoration.
However, considering the processing speed we use images with
256×256 pixels (equivalent to around 0.5×0.5 arcmin)
for restoration. This is much larger than the isopanatic angle
and the restoration results will decrease slightly; however this

trade-off is necessary. In real applications, there are two types
of image restoration: the restoration of several continuous solar
images in a small interested region or restoration of a single-
frame relatively large image.
For the first scene, we use both H-alpha images observed

between 2018 April 2 and 3 and small TiO images observed on
2017 August 19 to test our algorithm. For each wavelength,
500 frames of images with 256×256 pixels are extracted from
five frames of blurred images with 1024×1024 pixels, as I
and 500 frames of images with 256×256 pixels are extracted
from one speckle-reconstructed image with 1024×1024
pixels as O. Because the CycleGAN is deep and complex,
the maximal number and size of the reference image and the
blurred image are actually limited by the computer.6 After
training, we can use the Restore to directly restore two
interested regions with 256×256 pixels in the blurred images.
It takes around 1 minutes to process 333 frames of these
blurred images. Two frames of restored images are shown in
Figure 5 and interested readers can also find animated versions
of these figures in the online version of this Letter. They are
100 frames of blurred solar images from H-alpha and 79 frames
from TiO before and after restoration, alone with their MFGS
values. From these figures, we find that the resolution of the
restored images have been improved. The mean MFGS is
increased from 0.65±0.01 to 0.89±0.004 for TiO data and
from 0.75±0.03 to 0.89±0.007 for H-alpha data.
For the second scene, we test the performance of our

algorithm in large images. A blurred image from the NVST is
shown in the left panel of Figure 6. The validation part is the

Figure 4. Simulated short-exposure images, restored images, and the original high-resolution images. The figures in the top row show the simulated blurred images,
the figures in the middle row show the original high-resolution images, and images in the bottom row show the images restored by our method. The left two columns
are images in the H-alpha wavelength, and the right two columns are images in TiO. From these figures, we can find the spatial resolution is increased by our method
and, compared with the original high-resolution images, there are no obvious artefacts in the restored images.

6 In this Letter, we use a computer with two Nvidia GTX 1080 graphics cards,
128 GB memory, and two Xeon E5 2650 processors. It will cost 4498 s to train
the CycleGAN with 6000 iterations.
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image in the white box, and the rest of this image is used as the
training part. We extract 500 frames of images with 256×256
from the training part as I, and use 500 frames of high-resolution
images used above as O in the CycleGAN. After 6000 iterations,
the images in I are restored and we use Restore to restore images
in the white box. The results are shown in the right panel of
Figure 6. We find that the spatial resolution of the observed
images has been improved and the difference in image quality
between the validation part and the training part is very small.
The MFGS is increased from 0.78 to around 0.89 for this image.

5. Conclusions

As more and more high-resolution solar images are obtained,
we propose a pure data-based image restoration method to
make better use of these data. We assume texture features of
solar images in the same wavelength are multi-fractals and use
a deep neural network called CycleGAN to restore blurred
images, with several high-resolution images from the same
telescope as references. Our method does not need paired
images as the training set. Instead, with only several high-
resolution images observed in the same wavelength, our
method can provide promising restoration results for every
frame of real observation data without any additional
instruments. We use simulated blurred images to test our
algorithm. We compare the reconstructed images with real
images and find that the MFGS has been increased with our
method. In addition, we also use our algorithm to restore real
observation images. Although the image quality increased by
our method is slightly smaller than the speckle-reconstructed
images, our method can restore every frame of blurred images,
while the speckle-reconstructed method use a lot of blurred

images (dozens or hundreds) and only obtains one frame of
restored image. Our method is suitable for future observation
data obtained by seeing-limited telescope or telescopes with
ground-layer adaptive optic systems. Because our method does
not have any prior assumption of the degradation process, it can
also be used to restore images of other astronomical objects
with features, such as galaxies, nebulae, or supernova
remnants.
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Appendix
Detailed Structure of the CycleGAN

In this Appendix, we will describe the structure of the
Generator and the Discriminator in the CycleGAN. The Generator
has several residual blocks, which were first introduced by He
et al. (2015), to increase its learning ability.

Figure 6. Two frames of real observation images and their corresponding
restored images. The size of these two images is 1024×1024 pixels. It is
obvious that restored images have a higher spatial resolution. The MFGS is
increased from 0.78 to 0.89±0.003 in the reference region and the MFGS in
the test region of the restored image is 0.89.

Figure 5. Two frames of real observation images and their corresponding restored images. The two left panels are from the H-alpha wavelength, and the two right
panels are from TiO. It is obvious that restored images have better quality. An animated version of this figure is available. In the animation the H-alpha portion is on
top, while the TiO sequence is on the bottom. The video duration is 25 s.

(An animation of this figure is available.)

Table 1
Structure of the Generator

Type Kernel Size⧹Stride Output

Conv2d 7×7⧹1 256×256×64

IN L 256×256×64
ReLu L 256×256×64
Conv2d 3×3⧹2 128×128×128

IN L 128×128×128
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Table 3
Structure of the Discriminator

Type Kernel Size⧹Stride Output Negative Slope

Conv2d 4×4⧹2 128×128×64 L
LeakyReLU L 256×256×64 0.2
Conv2d 4×4⧹2 64×64×128 L
IN L 64×64×128 L
LeakyReLU L 64×64×128 0.2
Conv2d 4×4⧹1 64×64×256 L
IN L 64×64×256 L
LeakyReLU L 64×64×256 0.2

Table 2
Structure of the ResidualBlock

Type Kernel Size⧹Stride

Conv2d 3×3⧹1
IN L
ReLu L
Conv2d 3×3⧹1
IN L

Note. All the layers have the same definitions as those in Table 1. The input
will feed into the first layer and the output simultaneously (ResidualBlock-
OUT=OUT+INPUT, where OUT is the output of the last IN layer, INPUT
is the input of the ResidualBlock and ResidualBlockOUT is the output of this
ResidualBlock).

Table 1
(Continued)

Type Kernel Size⧹Stride Output

ReLu L 128×128×128
Conv2d 3×3⧹2 64×64×256

ResidualBlock L 64×64×256
ResidualBlock L 64×64×256
ResidualBlock L 64×64×256
ResidualBlock L 64×64×256
ResidualBlock L 64×64×256
ConvT2d 3×3⧹2 128×128×128

IN L 128×128×128
ReLu L 128×128×128
ConvT2d 3×3⧹2 256×256×64
IN L 256×256×64
ReLu L 256×256×64
Conv2d 7×7⧹1 256×256×1

Note. Conv2d is the standard convolutional layer. IN is an instance normalization
layer that will normalize each image through ( ) ( )= -I I I IVar , where I and
Var(I) are mean value and variance of I, respectively. ReLu is the activation
function. ResidualBlock is special structure of neural network and the input will
feed into its output and the first layer as defined in Table 2. ConvT2d is a
transposed convolutional layer that will up-sample the input data through learnable
weights.

Table 3
(Continued)

Type Kernel Size⧹Stride Output Negative Slope

Conv2d 4×4⧹1 64×64×1 L
Sigmoid L L L

Note. LeakyReLu is a leakyReLu activation function that has a small slope for
negative values, and in this Letter we use the negative slope of 0.2. Sigmoid is
the output layer of the discriminator and is used for the classification of the
input signals. All other layers have the same definitions as those in Table 1.
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