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Abstract

The magnetic field plays an essential role in the initiation and evolution of different solar phenomena in the corona.
The structure and evolution of the 3D coronal magnetic field are still not very well known. A way to ascertain the
3D structure of the coronal magnetic field is by performing magnetic field extrapolations from the photosphere to
the corona. In previous work, it was shown that by prescribing the 3D-reconstructed loops’ geometry, the magnetic
field extrapolation produces a solution with a better agreement between the modeled field and the reconstructed
loops. This also improves the quality of the field extrapolation. Stereoscopy, which uses at least two view
directions, is the traditional method for performing 3D coronal loop reconstruction. When only one vantage point
of the coronal loops is available, other 3D reconstruction methods must be applied. Within this work, we present a
method for the 3D loop reconstruction based on machine learning. Our purpose for developing this method is to
use as many observed coronal loops in space and time for the modeling of the coronal magnetic field. Our results
show that we can build machine-learning models that can retrieve 3D loops based only on their projection
information. Ultimately, the neural network model will be able to use only 2D information of the coronal loops,
identified, traced, and extracted from the extreme-ultraviolet images, for the calculation of their 3D geometry.

Unified Astronomy Thesaurus concepts: Solar coronal loops (1485); Convolutional neural networks (1938)

1. Introduction

Coronal loops are 3D arch-like structures with footpoints
located in the opposite polarity of the magnetic field. In the solar
corona, the plasma pressure is dominated by the magnetic
pressure (Gary 2001), which confines the coronal loop plasma to
the 3D flux tubes. The coronal loops are mainly visible on the
solar disk in the extreme-ultraviolet (EUV) images, which shows
only the projection of the 3D structures. The reconstruction of
the 3D shape of coronal loops has important implications for the
magnetic field and topology (Reale 2010).

The magnetic field plays an important role in the initiation
and evolution of different solar phenomena in the corona.
While at the photospheric level full-disk vector magnetic field
measurements are provided by several observatories, in the
chromosphere and corona the vector magnetic field is only
sometimes provided and only for small fields of view. Different
approaches are used to obtain the coronal magnetic field. One
of these approaches is based on magnetic field extrapolations
into the corona having as bottom boundary photospheric
magnetic field data (see Wiegelmann & Sakurai 2012;
Wiegelmann et al. 2017, for reviews). Another approach is a
stereoscopic reconstruction based on simultaneously recorded
images from at least two view directions in the EUV
wavelengths (chromosphere and low corona) and white light
(high corona; see Aschwanden 2011 for a review). When
applied to the 3D reconstruction of the coronal magnetic loops,
the output of the two methods does not match (De Rosa et al.
2009). Chifu et al. (2017) showed that by constraining the
nonlinear force-free field (NLFFF) extrapolations with the 3D

stereoscopically reconstructed loops, one can obtain a better
field model.
The 3D stereoscopic reconstruction method requires images

of the same object recorded from at least two view directions.
This requirement limits the time range for finding the 3D
information on solar coronal loops. One of the steps for
stereoscopy is the identification and matching of the same
object in the available images (Inhester 2006). This condition
limits the possibility of selecting a large number of coronal
loops.
With the method laid out in this work, we can make use of all

of the epochs at which EUV images and vector magnetograms
simultaneously exist. The 2D loops that one would be able to
identify, visually or automatically, in an EUV image will be 3D-
reconstructed by the neural network (NN) method. The resulting
3D loops can then be used as a constraint for the magnetic field
extrapolation, as shown by Chifu et al. (2017). This method
allows us to use many more loops as a constraint for
extrapolation than had been previously possible. The method
that we present here for the 3D coronal loop reconstruction
constrains the coronal magnetic field models to fit the
observations. These coronal magnetic field models can then be
used by magnetohydrodynamic (MHD)models to investigate the
heating mechanisms of coronal loops.

2. Methods

2.1. Convolution NN

NNs are designed to work like the processes inside a human
brain. In this context, what we call a neuron in the brain is a
mathematical function that infers quantities based on the input
data according to the NN architecture.
Among the various different NN architectures, there is a

subset called the convolutional neural network (CNN). These
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networks use convolutional layers where 1D or 2D filters are
applied to the input data. The unidimensional (1D) CNN basic
structure used in this work can be then resumed as a
combination of the following layers: (1) layers that apply a
convolution between a kernel and each set of data points (in our
case, loop position), with the goal of enhancing particular
features in the data; (2) a pooling layer that downsamples the
data by reducing the data information but retains the more
prominent features; (3) the so-called “fully connected layers,”
which take the results of the previous operations and multiply
them by a set of weights to estimate the final output. Most of
the operations performed in these layers have an associated
activation function, which are mathematical equations that
determine the importance of a certain variation.

One key element of any NN is the training process in which
an input data set and its respective output data are used. This
allows the model to determine the weights that the fully
connected layers will apply. The network employs an
optimization procedure to minimize the differences, using a
loss function, between the training set and the estimated output.
It is common practice to use a fraction of the input data not
used for the training and compare it to the model output. This is
called validation loss, and it allows us to evaluate the evolution
of the training and identify problems like overfitting. To
optimize the minimization process, we can divide the data into
small batches. During the training, the weights will be updated
at the end of each batch, leading to a better and faster
convergence. Overfitting can be avoided by introducing
dropout elements that randomly remove a fraction of the
points from the training process, introducing a level of
randomness to the system and helping it to avoid false local
minima. “Epoch” refers to each full iteration of the training
process described above.

In this work, we follow the CNN architecture model
presented on Gafeira et al. (2021). We optimized the
hyperparameters by trial and error until we found a CNN
model satisfying a loss function that was at least 103 of the
normalization values to all considered cases. We trained the
model using the optimizer AdaMax, which is a first-order
gradient-based optimization of stochastic objective functions
(Kingma & Ba 2014). We used a batch size of 64 and a
validation split of 0.3. The convolutional layers and the first
dense layer use a nonlinear function called the rectified linear
activation unit (ReLU; Nair & Hinton 2010) and the last dense
layer a linear function. The global structure of the CNN and the
respective hyperparameters used in this work are summarized
in Table 1.

The input parameters are the 2D position of the loops (X, Y),
the length of the loop, the distance between the footpoints of

the loops, and the angle defined by the two footpoints with the
top of the loops. The 2D positions X and Y are interpolated to
all have a fixed size of 1500 points.
The output and training set of the CNN is the Z component

of the corresponding 2D loop with a fixed size of 1500 points.
We applied a normalization factor that corresponds to the

loop average height used in the training of CNN. In this work
the normalization used is 8.75 ADU for Data type 1, and for
Data type 2 Case 1 is 10.1 Mm, Case 2 is 77.54 Mm, and Case
3 is 73.15Mm.

2.2. Nonlinear Force-free Field Extrapolation

To produce a data set that is large enough for training the
CNN we used the NLFFF extrapolation method, proposed
initially by Wheatland et al. (2000) and implemented by
Wiegelmann (2004). The NLFFF optimization method is based
on the minimization of a functional Ltot as a sum of the
following terms:
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where the minimization of L1 satisfies the force-free condition
and the L2 satisfies the Gauss Law. The minimization of the L3
ensures that at the photospheric level the modeled field (B) is as
close as possible to the observed one (Bobs). wf is the boundary
weight function (more details in Wiegelmann 2004), ( )sa

-diag 2

represents the estimated measurement errors for the three field
component (see Tadesse et al. 2011, for more details). The
method was implemented in the Cartesian (Wiegelmann 2004)
and spherical (Tadesse et al. 2011) coordinate system. Both of
the implementations use as a bottom boundary the vector
magnetic field. The lateral and top boundaries are fixed from an
initial calculated potential field.

3. Data Preparation

We tested the CNN method in four different cases by using
input loops obtained from different solutions of the NLFFF
extrapolation. The first case uses synthetic data, and the last
three are based on observational data.

1. Data type 1. The NLFFF extrapolation uses as bottom
boundary a semi-analytical force-free field solution
proposed by Low & Lou (1990). The solution is obtained
by solving the Grad–Shafranov equation for an axisym-
metric nonlinear force-free field. The results obtained
based on the synthetic data are defined as Case 0.

2. Data type 2. In this category are the data obtained by
the Heliospheric Magnetic Imager (HMI) instrument
(Couvidat et al. 2012) on board Solar Dynamic
Observatory (SDO) spacecraft (Pesnell et al. 2012). We
defined three Cases:

i. Case 1. We use as input for the NLFFF a field of view of
1280× 400 from a full-disk HMI vector magnetogram.

Table 1
CNN Model Architecture Used in this Work

Layer Size Activation

1D convolutional 150 ReLU
1D MaxPooling 2
1D convolutional 90 ReLU
1D MaxPooling 2
1D convolutional 45 ReLU
Dropout factor of 0.25
Fully connected dense layer 4 times the loop length ReLU
Fully connected dense layer loop length length linear

2
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ii. Case 2. For the NLFFF extrapolation method in spherical
coordinates, we used as bottom boundary a full-disk
vector magnetogram recorded on 2010 August 2.

iii. Case 3. For the last case, we use synoptic vector
magnetograms, which are HMI data products suitable for
the full Sun extrapolation (Liu et al. 2017). These maps are
constructed from the daily HMI vector magnetograms. The
size of the HMI synoptic magnetograms is 3600×
1440 pixels and the pixel size is 0.1 degrees in longitude
and 0.001 in sin latitude.

From the solutions of the extrapolations, using a fourth-order
Runge–Kutta method, we traced 3D magnetic field lines and
we projected them on the solar surface.

4. Results

4.1. Data Type 1

Case 0. We tested the CNN method described in Section 2.1
with 3D and 2D loops obtained from an NLFFF extrapolation,
which used as a bottom boundary a Low & Lou semi-analytical
force-free field solution. We used the Cartesian coordinate
system for a computational box in the X, Y, and Z-direction of
192× 192× 96 grid points. For the training of the CNN, we
used 21,704 loops traced from the NLFFF solution.

We trained the CNN initially using 250 epochs. After the
training, we evaluated the result of the training and validation

loss function. Since the model has converged after 250 epochs,
we stopped the training process. In the presented model we did
not find any indication of overfitting. That would be visible as a
sudden increase of the validation loss function. In Figure 1(a)
we display the validation and training loss evolution obtained
from the CNN model for Case 0.
For the evaluation of the CNN solution, we calculated the

root mean square (rms)

( )R
= å

N
RMS , 4

2

where R is the ratio between the Z coordinate of the
reconstructed and the original loops and N is the number of
elements in a loop.
In Figure 1(b) we show the rms distribution for Case 0. The

rms values spanning 0.9–1.1 represent 99.96% from the entire
data set of loops. An rms value of unity means that the CNN
reconstructed loop and the original ones are perfectly
matched. The CNN could obtain almost perfectly the 3D
position for 99.96% of loops. In Figure 1(c) we display the
Low & Lou magnetic field solution used for the NLFFF
extrapolation overplotted with a randomly selected subset (for
better visibility) of the original traced and the reconstructed
3D loops.

Figure 1. CNN results for Data type 1, Case 0.
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4.2. Data Type 2

Case 1. We applied the NLFFF extrapolation in the Cartesian
geometry to an HMI vector magnetic field recorded on 2010 July
15. From the full-disk 4096× 4096 pixels we selected a
1280× 400 field of view. The height of the box is 320 pixels.
From the solution of the extrapolation, we traced 10,127 loops.
The CNN network reached a reasonable solution after 250
epochs similar to Case 0. In Figure 2(a) we plot the evolution of
the training and validation losses with the epochs. Figure 2(b)
shows the distribution of the rms (Equation (4)). The rms values
between 0.9 and 1.1 represent a percentage of 99.06 of all loops.
In Figure 2(c) we present the HMI vector magnetogram used as
input for extrapolation together with few randomly selected 3D
original and reconstructed loops (orange and blue solid line).
The two different categories of reconstructed loops are made
based on the rms values. The orange loops are the ones with rms
smaller than 1.1 and the blue loops with rms larger than 1.1.

Case 2. For the spherical NLFFF optimization code we use
full-disk HMI vector magnetic field recorded on 2010 August 2.
The computational domain of 256× 372× 512 grid points

extends over r = [1, 2.5] Re, θ = [−70°, 70°] in latitude and
f = [90°, 270°] in longitude. The latitudinal boundaries exclude
the polar areas because the surface data in polar latitudes have
poor quality and the numerical finite-difference representation
used for the Ltot functional expressed in the spherical coordinates
becomes singular at the poles. From the solution of the
extrapolation, we traced and used for the CNN 10368 3D loops.
98.31% of the loops had an rms (Equation (4)) between 0.5
and 1.5.
Case 3. We used as boundary data full Sun synoptic vector

magnetogram.
For the NLFFF extrapolation we used the computational

domain of 180× 280× 720 grid points extending over r =
[1, 2.5] Re, θ = [−70°, 70°] in latitude and f = [0°, 360°] in
longitude. From the solution of the extrapolation, we traced
loops higher than r= 1.05 Rs. For the training, we used a total of
18,555 loops. We applied to the loops reversible transformations
that are useful for the CNN method and which are: coordinate
transformations, rotation to ensure z is positive, and transforma-
tions that x and y components are in the positive domain. We
also filtered the loops based on their inflection points to exclude

Figure 2. CNN results for Data type 2, Case 1.
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the over-wiggling loops, which in general are not visible in the
EUV images. Compared with the other cases, the Case 3 loops
have a wider range in the values of length, distance between
footpoints, and heights; therefore, the CNN method did not
perform as well as in the previous cases. In Figure 3(a) we show
the evolution of the training and validation loss function. For this
case, the CNN model converged after 400 epochs. Figure 3(b)
displays the distribution of the rms ratios of the loops. From all
of the loops, 94.5% is in the rms range of 0.5–1.5. The
performance is not as good as in the previous cases. In

Figure 3(c) we show the radial magnetic field of the synoptic
map at the photospheric level with the disk center corresponding
to 180° longitude.

5. Discussions and Conclusions

Stereoscopy is a suitable method for deriving the 3D geometry
of solar phenomena. The study, evolution, and kinematics of
these phenomena are essential for understanding their physical
processes and space-weather forecasting models. This analysis is

Figure 3. CNN results for Data type 2, Case 3.
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constrained by the data availability of at least two view
directions of the same object, reducing the reconstruction
possibilities. On the other hand, solar observations from one
view direction are more abundant than two simultaneous views.
When only one vantage point is available, the CNN method can
be used and applied to coronal loops and other curve-like
structures.

In conclusion, the new 3D loop reconstruction method will
allow the user to employ only one image from a single vantage
point. One would select as many loops as possible from the
EUV image by visual inspection or automatic identification.
The 2D curve-like structure parameters mentioned in the
Section 2.1 can be used as input to the CNN models that have
already been trained (see Case 0 to Case 3 from Section 4). The
output of the used CNN model will be the third component of
the 2D curve-like structures. In the end, one will have all the
three components of the curve-like structures.

The NN model presented in this Letter can only perform the
3D geometrical reconstruction of loop types used for
the training. It does not have any direct contribution to the
magnetic field modeling. Indirectly, the 3D coordinates of the
CNN reconstructed loops can be used, for example, as a
constraint for the magnetic field modeling as shown by Chifu
et al. (2017).

Data are courtesy of NASA/SDO and the HMI science teams.
I.C. acknowledges DFG-grant WI 3211/5-1. The HMI data are
provided courtesy of NASA/SDO and the HMI science team. I.C.
would like to thank M. Madjarska for helpful discussions. R.G.
acknowledges financial support by the Portuguese Government

through the Foundation for Science and Technology—FCT
FEDER—European Regional Development Fund through
COMPETE 2020—Operational Programme Competitiveness
and Internationalization.

ORCID iDs

Iulia Chifu https://orcid.org/0000-0002-5481-9228
Ricardo Gafeira https://orcid.org/0000-0003-4920-0153

References

Aschwanden, M. J. 2011, LRSP, 8, 5
Chifu, I., Wiegelmann, T., & Inhester, B. 2017, ApJ, 837, 10
Couvidat, S., Schou, J., Shine, R. A., et al. 2012, SoPh, 275, 285
De Rosa, M. L., Schrijver, C. J., Barnes, G., et al. 2009, ApJ, 696, 1780
Gafeira, R., Suárez, D. O., Milic, I., et al. 2021, arXiv:2103.09651
Gary, G. A. 2001, SoPh, 203, 71
Inhester, B. 2006, arXiv:0612649
Kingma, D. P., & Ba, J. 2014, arXiv:1412.6980
Liu, Y., Hoeksema, J. T., Sun, X., & Hayashi, K. 2017, SoPh, 292, 29
Low, B. C., & Lou, Y. Q. 1990, ApJ, 352, 343
Nair, V., & Hinton, G. E. 2010, in Proc. 27th Int. Conf. Machine Learning,

ICML’10, ed. J. Fürnkranz & T. Joachims (Madison, WI: Omnipress), 807,
http://dl.acm.org/citation.cfm?id=3104322.3104425

Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, SoPh, 275, 3
Reale, F. 2010, LRSP, 7, 5
Tadesse, T., Wiegelmann, T., Inhester, B., & Pevtsov, A. 2011, A&A,

527, A30
Wheatland, M. S., Sturrock, P. A., & Roumeliotis, G. 2000, ApJ, 540, 1150
Wiegelmann, T. 2004, SoPh, 219, 87
Wiegelmann, T., Petrie, G. J. D., & Riley, P. 2017, SSRv, 210, 249
Wiegelmann, T., & Sakurai, T. 2012, LRSP, 9, 5

6

The Astrophysical Journal Letters, 910:L10 (6pp), 2021 March 20 Chifu & Gafeira

https://orcid.org/0000-0002-5481-9228
https://orcid.org/0000-0002-5481-9228
https://orcid.org/0000-0002-5481-9228
https://orcid.org/0000-0002-5481-9228
https://orcid.org/0000-0002-5481-9228
https://orcid.org/0000-0002-5481-9228
https://orcid.org/0000-0002-5481-9228
https://orcid.org/0000-0002-5481-9228
https://orcid.org/0000-0003-4920-0153
https://orcid.org/0000-0003-4920-0153
https://orcid.org/0000-0003-4920-0153
https://orcid.org/0000-0003-4920-0153
https://orcid.org/0000-0003-4920-0153
https://orcid.org/0000-0003-4920-0153
https://orcid.org/0000-0003-4920-0153
https://orcid.org/0000-0003-4920-0153
https://doi.org/10.12942/lrsp-2011-5
https://ui.adsabs.harvard.edu/abs/2011LRSP....8....5A/abstract
https://doi.org/10.3847/1538-4357/aa5b9a
https://ui.adsabs.harvard.edu/abs/2017ApJ...837...10C/abstract
https://doi.org/10.1007/s11207-011-9723-8
https://ui.adsabs.harvard.edu/abs/2012SoPh..275..285C/abstract
https://doi.org/10.1088/0004-637X/696/2/1780
https://ui.adsabs.harvard.edu/abs/2009ApJ...696.1780D/abstract
http://arxiv.org/abs/2103.09651
https://doi.org/10.1023/A:1012722021820
https://ui.adsabs.harvard.edu/abs/2001SoPh..203...71G/abstract
http://arxiv.org/abs/0612649
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s11207-017-1056-9
https://ui.adsabs.harvard.edu/abs/2017SoPh..292...29L/abstract
https://doi.org/10.1086/168541
https://ui.adsabs.harvard.edu/abs/1990ApJ...352..343L/abstract
http://dl.acm.org/citation.cfm?id=3104322.3104425
https://doi.org/10.1007/s11207-011-9841-3
https://ui.adsabs.harvard.edu/abs/2012SoPh..275....3P/abstract
https://doi.org/10.12942/lrsp-2010-5
https://ui.adsabs.harvard.edu/abs/2010LRSP....7....5R/abstract
https://doi.org/10.1051/0004-6361/201015491
https://ui.adsabs.harvard.edu/abs/2011A&A...527A..30T/abstract
https://ui.adsabs.harvard.edu/abs/2011A&A...527A..30T/abstract
https://doi.org/10.1086/309355
https://ui.adsabs.harvard.edu/abs/2000ApJ...540.1150W/abstract
https://doi.org/10.1023/B:SOLA.0000021799.39465.36
https://ui.adsabs.harvard.edu/abs/2004SoPh..219...87W/abstract
https://doi.org/10.1007/s11214-015-0178-3
https://ui.adsabs.harvard.edu/abs/2017SSRv..210..249W/abstract
https://doi.org/10.12942/lrsp-2012-5
https://ui.adsabs.harvard.edu/abs/2012LRSP....9....5W/abstract

	1. Introduction
	2. Methods
	2.1. Convolution NN
	2.2. Nonlinear Force-free Field Extrapolation

	3. Data Preparation
	4. Results
	4.1. Data Type 1
	4.2. Data Type 2

	5. Discussions and Conclusions
	References



