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Abstract 
 

This paper is a tutorial exposition on how to translate concepts of voting systems to the Boolean domain, 
and consequently on how to use Boolean tools in the computation of a prominent index of voting powers, 
viz., the Banzhaf voting index. We discuss Boolean representations for yes-no voting systems, in general, 
and for weighted voting systems, in particular. Our main observation is that non-minimal winning 
coalitions are related to minimal ones via partial-order structures and also as particular subordinate loops 
that cover the all-1 cell in the Karnaugh map. We review the method of computing the total Banzhaf 
indices by the Conventional Karnaugh Map (CKM). Then we extend this method to handle larger 
problems via the Variable-Entered Karnaugh Map (VEKM). The map methods are demonstrated by two 
classical weighted voting systems.  
 

Original Research Article 
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1 Introduction 
 
A weighted voting system [1] is a special case of yes-no voting system, wherein a weight is assigned to each 
voter and an appropriate decision threshold is fixed. A resolution (proposal) is passed (accepted) if the sum 
of weighted votes in favor of it reaches or exceeds the given threshold. A prominent measure of the voting 
power of an individual voter P in such a system is called the Total Banzhaf IndexTBI(P) of such a voter 
[1,2,3,4,5]. It is the number of winning states or configurations in which the voter is among supporters or 
proponents of the resolution (proposal) such that a switch of the voter to join the opponents changes the state 
from winning to losing. Rushdi & Ba-Rukab [5] named each of the 2� states or configurations of an n-
member weighted voting system a primitive coalition. The Total Banzhaf Index  TBI(P) is then the number 
of winning primitive coalitions (WPCs) of which voter P  is a member such that defection of P causes a 
transition to a losing primitive coalition (LPC). Implicit in the definition of the Banzhaf index is the 
assumption that system states or configurations (primitive coalitions) are equally likely. This in turn 
necessitates that voters cast their votes independently of each other.   
 
The aim of this paper is to explore map methods for the calculation of Banzhaf voting powers or indices.  
The methods are illustrated via the prominent examples of the European Economic Community (EEC), a 6-
member weighted voting system and the Extended European Economic Community (EEEC), a 9-member 
weighted voting system, which are two predecessors of the European Union (EU) of today. The paper 
reviews the use of the conventional Karnaugh Map (KCM) for computing TBI(P) for systems with up to 6 
members and then utilizes the Variable-Entered Karnaugh Map (VEKM) systems with up to 12 members.  
 
The organization of the rest of the paper is as follows. Section 2 explores the Boolean description of a yes-no 
voting system. Section 3 classifies mathematical representations of a weighted voting system. Section 4 
reviews the use of a CKM in computing Banzhaf indices, while section 5 extends the map utility for that task 
by using the more powerful VEKM representation. Section 6 concludes the paper. 
 

2 Boolean Representation of a Yes-no Voting System 
 
The passage of a resolution in a yes-no voting system might be described by a switching function, i.e., a two-
valued Boolean function, henceforth called simply a Boolean function) that is 1 if the resolution is passed 
and 0 if it is rejected. This Boolean function will be called herein the system success function and will  be 
denoted by g(X). Here the binary vector X =  [X�X� … X�]� is an n-tuple of the votes X� [ 1 ≤ i ≤ n] cast by 
voters, where X�  is 1 or 0 if voter i  says ‘yes’ or ‘no’, respectively. Table 1 indicates that prominent 
properties that might be enjoyed by a yes-no voting system are inherited by its success Boolean function 
g(X). Note that the property of causality is implied by that of monotonicity. A yes-no voting system which 
possesses  these two properties is called monotone, while a success function g(X)possessing them is called 
monotonically non-decreasing (or simply monotonically increasing) and sometimes called semi coherent.  
The function is (fully) coherent if, in addition, it has the relevancy property.   
 
If a coherent function g(X) is represented on a CKM, the three properties of Table 1 are manifested as [6,7]: 
 

1. Causality: The CKM is entered by 0 in the all-0 cell  (the cell X�X� … X� within the non-asserted 
domain of every variable), and entered by 1 in the all-1 cell (the cell X�X� … X� within the asserted 
domain of every variable). 

2. Monotonicity: The map entry cannot decrease (from 1 to 0) upon transition from the non-asserted 
half-map domain of a variable X� to its asserted half-map domain, with states of other variables 
unchanged.  
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3. Relevancy: For every i (1 ≤ i ≤ n), there exists at least one instance in which crossing the border 
of variable X� from its non-asserted half-map domain to its asserted half-map domain leads to an 
increase of cell entry (from 0 to 1).  

 
Such a coherent function g(X) is a unate function [8], and can have a sum-of-products (sop) representation 
consisting solely of uncomplemented literals. Examples of such a representation are the function's minimal 
sum (minimal sop covering it) and its complete sum (disjunction of all prime implicants) which are the same 
[9]. Since the complete sum of any Boolean function is unique and canonical, this means that the minimal 
sum of a coherent g(X) is also unique and canonical.   
 

3 Mathematical Representations of a Weighted Voting System 
 
This section surveys various mathematical representations of a weighted voting system. These include listing 
of its weights and threshold, use of inequalities involving a pseudo-Boolean function (expressed in algebraic 
or map form), utilization of a threshold Boolean function (again, expressed in algebraic or map form), listing 
of all winning coalitions (WCs) or, in particular, listing of all minimal winning coalitions (MWCs).   
 

3.1 Listing of weights and threshold 
 
An n-member weighted voting system is usually described by an n-dimensional vector of weights  
 

W = [W�W� … W�]� 
 
and a threshold T. In the case o the original European Economic Community (EEC), which lasted from 1958 
to 1973 [1], these are given by 
 

W =  [W� W� W�    W� W� W �]�= [  4    4     4        2    2   1   ]�,                        (1a) 
 
 

T = 12.                                               (1b) 
 
Here the subscripts F, G, I, B, N, and L stand for France, Germany, Italy, Belgium, the Netherland and 
Luxemburg, respectively. Note that the threshold constitutes (12/17)= 70.6% of the total weights ∑ W�

�
��� . In 

1973, the first enlargement of the EEC took place making it the Extended European Economic Community 
(EEEC) by adding three new members, namely: Britain (R), Denmark (D) and Ireland (E). The weight vector 
and threshold became: 
 

W′ = [W′
� W′

�  W′
�    W

′
� W′

� W′
�    W′

� W′
� W′

�]� 
=  [10        10     10     10        5      5        3           3          2    ]�                                        (2a) 

 
and 
 

T′ = 41.                                                                                                                                            (2b) 
 

The new threshold is now equal to (41/58)=70.7% of the new sum of weights ∑ W�
′�

��� . 
 

3.2 Inequalities involving a Pseudo-Boolean function 
 
A weighted voting system can be represented by an inequality of the form  
 

G(X) =  W�X =  ∑ W�X� ≥ T.�
���                    (3) 
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Here the function G(X) is a pseudo-Boolean (G(X): B�
� → R) where B� is the Boolean carrier {0, 1}, R is the 

real line, and the vector X = [X�X� … X�]� is an n-dimensional vector of binary indicators X� (1 ≤ i ≤ n) for 
voter i, such that X� = 1 if voter  i supports the decision, and X� = 0 if voter i opposes the decision. The 
representation (3) for the EEC and EEEC is, respectively  
 

G(X) = W�F + W�G + W�I + W�B +  W�N +  W�L 
= 4F + 4G + 4I + 2B + 2N + L ≥ 17.                                                                           (4) 

 
and  
 

G′(X) =  W′
�F + W′

�G + W′
�I +  W′

�R + W′
�B + W′

�N + W′
�D +  W′

�E + W′
�L 

                         = 10F + 10G + 10I + 10R + 5B + 5N + 3D + 3E + 2L ≥ 41.                                       (5) 
 
Beside the algebraic forms above for G(X) and  G′(X), these pseudo-Boolean functions have convenient 
CKM or VEKM representations as we will see shortly. 

 

3.3 Threshold Boolean functions 
 
A weighted voting system can be represented by a threshold Boolean function g(X) such that [7,10,11] 
 

{g(X) = 1}  ⇔ {G(X) =  ∑ W�X� ≥ T�
��� }.                                  (6) 

 
In the sequel, we will show how to obtain map representations for g�(X) of the EEC system and g�

′ (X) for 
the EEEC system.   
 

3.4 Winning coalitions 
 
A weighted voting system is also uniquely characterized by the set of winning coalitions. A winning 
coalition is any set of voters whose siding by a proposal secures its approval. For a coherent or semi-coherent 
system, the grand coalition (set of all voters) is a winning coalition. For example, the grand coalition {F, G, 
I, B, N, L} of the EEC system is a winning coalition. A common practice in the literature (see, e.g., Taylor & 
Pacelli [1]) is to abandon the parenthetical notation of sets to a form of juxtapositioning in which the above 
grand coalition is written simply as FGIBNL. We follow this little abuse of notation in listing all winning 
coalitions of the EEC system in Fig. 1. This figure has a totally ordered set of horizontal lines depicting 
coalition weights, with a minimal value of 12 corresponding to the threshold  and a maximum value of 17 
expressing the sum of voter weights or the weight of the grand coalition. Set containment (partial order) 
relations are depicted by directed non-horizontal lines such that a superset is at the upper end of a straight 
line segment with a corresponding immediate subset at its lower end. The arrow of each directed line is 
associated with the name of single voter that is to be added to a subset to obtain the corresponding immediate 
superset. Clearly the grand coalition is a superset of any winning coalition. Each of the four winning 
coalitions FGI, FGBN, FIBN, and GIBN is not a subset of any other coalition, and is a minimal winning 
coalition (MWC). Clearly, the MWCs can be used to generate all winning coalitions and hence they also 
suffice to uniquely characterize the voting system. 
 
In passing, we note that a conventional winning coalition (which is a set of 'yes' voters) will be seen shortly 
to correspond to an implicant without complemented literals of the system success function g(X).  By 
contrast, a winning primitive coalition other than the grand coalition is a set of both, 'yes' voters and 'no' 
voters and corresponds to a minterm implicant of g(X)  that possesses both complemented and 
uncomplemented literals. The terminology winning primitive coalition (WPC) is not within the standard 
jargon of the topic, but together with its complementary term "losing primitive coalition (LPC)", it facilitates 
discussions concerning specific system states or configurations. The two terms provide direct counterparts to 
the Boolean terms of a true minterm (true vector) and false minterm (false vector). 
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Fig. 1. A Partial-order structure depicting relations among minimal and non-minimal winning 
coalitions. This structure is superposed on a totally ordered set of horizontal lines depicting coalition 

weights. The grand coalition (FGIBNL) subsumes (is a superset of) every winning coalition 
 

4 Computation of the Banzhaf Indices 
 
This section explains the meaning and computation of the Banzhaf indices [1,2,12] via Karnaugh map 
representations of pseudo-Boolean and threshold Boolean functions. The section sets the stage for our novel 
contribution in which we compute these indices via the Variable-Entered Karnaugh Map rather than the 
Conventional Karnaugh Map. Now, we demonstrate how to compute the Banzhaf power indices for the EEC 
system. We draw in Fig. 2 a six-variable Karnaugh map to represent the pseudo-switching function 
represented in the L.H.S. of Equation (4).  Each map cell represents either a winning primitive coalition 
(WPC) when its entry equals or exceeds the threshold of 12, or a losing primitive coalition (LPC) when its 
entry is less than 12. We distinguish a WPC by highlighting its weight (cell entry) in bold, while keeping that 
of a LPC  at light color.  Now, to obtain the total Banzhaf index  of France TBI(F), we note that the map can 
be split into two halves, namely (a) the asserted domain of F where F=1 (the right half of the map, shown 
shaded), and (b) the non-asserted domain of F where F=0 (the left half of the map, shown unshaded).  The  
border between these two F-domains is an F-axis of symmetry that bisects the physical normal distance 
between two cells in a pair of mirror-image cells w.r.t. the F-border. Any of these pairs of mirror-image cells 
has its two cells separated by a unit Hamming distance since they differ only in the value of variable F while 
sharing the same value of other variables.   
 
Now, we note that coherency dictates that a pair of mirror-image cells cannot be a LPC cell in the asserted 
domain with a corresponding WPC cell in the non-asserted domain. There are pairs of mirror-image cells of 
the same type of cell in the asserted and non-asserted domain (WPC-WPC pairs or LPC-LPC pairs), but we 
are not interested in them. What we need to identify is the pairs of mirror-image cells with a WPC in the 
asserted domain and a LPC in the non asserted domain. Fig. 2 does exactly this task by using arrows to 
indicate transitions across the F-border from a WPC cell (with its bold entry enclosed in a continuous 
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ellipse), to a mirror-image LPC cell (with its non-bold entry encircled in a dotted ellipse). There are 10 such 
transitions in Fig. 2, which are each from a winning primitive coalition of which France (F) is a member such 
that her defection renders the coalition a losing one. Therefore, the number of these transitions expresses 
TBI(F) and hence  
 

TBI(F) = 10.                                                           (7a) 
 

The job done for F by Fig. 2 is repeated by Figs. 3 and 4 for B and L, respectively, and lead to 
 

TBI(B) = 6.                                             (7b) 
 
TBI(L) = 0.                                                           (7c) 
 

This job is not repeated for G, I, or N since we know by symmetry that  
 

TBI(G) = TBI(I) = TBI(F),                                                        (7d) 
 
TBI(N) = TBI(B).                                                           (7e) 
 

Table 2 summarizes our results for the total Banzhaf powers, which we call 'raw' values. Table 2 shows also 
two kinds of normalizations of these values. The first normalization entails dividing the raw values by the 
total number of configurations (the number of cells in the Karnaugh maps), which is 2� =  2� = 64. An 
alternative, and more appealing, normalization is to divide each of the raw values by their sum, thereby 
allowing interpreting the resulting normalized indices as probabilities, and allowing easy comparison with 
the other prominent type of indices, such as the Shapley-Shubik indices [13].  
 
Now, we repeat our work using the Karnaugh map representation of the success function of the EEC system 
in Fig. 5. This function is the threshold Boolean function g�(X) that is 1 iff G�(X) in either of Figs. 2-4 is 
equal to or exceeds 12. The Karnaugh map in Fig. 5 is the same as those in Figs. 2-4 with a bold entry 
replaced by 1 and a non-bold entry replaced by 0. In Fig. 6, we obtain the Boolean difference (derivative) [7, 
11,14,15]. 
 

���

��
= g�(F, G, I, B, N, L)⨁g��F, G, I, B, N, L� =   g�(1, G, I, B, N, L)⨁g�(0, G, I, B, N, L).                    (8) 

 
by combining every two cells in a pair of cells that are mirror-images w.r.t. the F-border into a single cell.  
The entry of the combined cell is obtained by XORing the entries of its parent cells according to the rules 
 

1 ⨁0 = 1.                                             (8a) 
 
0 ⨁ 0 = 1 ⨁1 = 0.                                            (8b) 

 
Now, TBI(F) is the number of true vectors (1-entred cells) in Fig. 6, viz. 10. Similarly, Fig. 7 indicates that 
TBI(B) = 6. We deliberately omit a similar figure for computing TBP(L), since it obviously lacks any true 
cells and represents the Boolean constant 0, thereby indicating that TBI(L) =0.   
 
To close this section, we revisit the concept of minimal coalitions (earlier discussed via Fig. 1) from a 
Boolean perspective. We cover the function g�(X) in Fig. 5 by its minimal sum (minimal sum-of-products) 
representation, using four continuous prime-implicant loops, viz;  
 

g�(X) = FGI ∨ FGBN ∨ FIBN ∨ GIBN.                                            (9) 
 
Despite the striking similarity of Equation (9) with the top line in Fig. 1 containing all minimal winning 
coalitions (MWCs), we stress again that the same notation is used for different entities.  For example, FGI in 
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Equation (9) is a Boolean product or term (F ⋀ G ⋀ I)of indicator variables F, G, and I that is a prime 
implicant of the Boolean function g�(X), while FGI in Fig. 1 (better understood as {F, G, I}) is a set of 
members F, G, and I that are mere symbols of the respective countries. Each of the four terms in Equation (9) 
is a prime implicant since its loop cannot be contained in a larger loop.  Each of them is essential since it is 
the only prime-implicant loop to cover particular 1-entred cells (shown starred in Fig. 8). Fig. 8 does not only 
illustrate the minimal winning coalitions as prime implicants of the success function, but it is useful in 
identifying other non-minimal winning coalitions as well. An example of these non-minimal winning 
coalitions is FGIL, represented by a dotted loop in Fig. 8. In general, a non-minimal winning coalition is 
represented by a product of non-complemented literals, i.e., one that is subsumed by the product of the grand 
coalition, and hence its loop must cover the all-1 cell. Note that the 8-cell loop FGI has a product that is 
subsumed by the 8 products FGI, FGIB, FGIN, FGIL, FGIBN, FGIBL, FGINL, and FGIBNL. This 
subsumption relation corresponds to the cubical lattice in Fig. 1 depicting partial order with top element FGI 
and Bottom element FGIBNL. Similarly, each of the 4-cell loops FGBN, FIBN, and GIBN has a product that 
subsumes 4 products corresponding to a sub-cubical lattice in Fig. 1.   
 

 
 

G� = 4F + 4G + 4I + 2B + 2N + L. 
 

Fig. 2. A six-variable Karnaugh map for the pseudo-switching function G� in the L.H.S. of (4).  Bold 
entries are those greater than or equal to the threshold(12) and represent winning  primitive coalitions 
(WPCs). The asserted region of F is shaded. The weight of a WPC of which France (F) is a member is 
encircled in a continuous ellipse when defection of France is critical, i.e., when transition across the F-
boundary leads to a losing  primitive coalition (LPC), i.e., to a configuration of  a weight less than the 
threshold (non-bold) encircled in a dotted ellipse. The figure indicates that TBI(F) is the number of 

arrows (transitions from a WPC to a mirror image WLC across the F boundary) which is 10 
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Table 1. Comparison between a yes-no voting system and a Boolean function describing its success 
 
Property A yes-no voting system A success Boolean  

functiong(X) 
Causality The empty coalition (the one to which none of 

the voting members belongs) is losing. 
g(0) = 0 

The grand coalition (the one to which all the 
voting members belong) is winning. 

g(1) = 1 

Monotonicity   A winning coalition remains winning if a new 
voting member joins it and a losing coalition 
remains losing if one of its members defects. 

g(X)≥ g(Y) 
for  X ≥ (Y) 
or g(X|1�)  ≥ g(X|0�)  

Relevancy No voting member is dummy, i.e., for every 
voting member, there exists at least one winning 
coalition to which this member belongs 
critically, i.e., such that the coalition ceases to be 
winning upon defection of this member. 

��(�)

���
= g(X|0�)⨁g(X|1�) 

is not identically 0, i.e., there 
exists an instance of X such 
that 
g(X|1�)⨁g(X|0�) ≠ 0 

 

 
 

G� = 4F + 4G + 4I + 2B + 2N + L. 
 
Fig. 3. A replica of Fig. 2 but with the asserted region of B shaded. Arrows indicate when defection of 

B changes a WPC into a LPC. The number of these arrows is TBI(B) = 6 
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G� = 4F + 4G + 4I + 2B + 2N + L. 
 

Fig. 4. A redrawing of  Fig. 2 with the asserted region of L shaded. All mirror images across the L-
boundary are either WPC-WPC or LPC-LPC. There is no transitions across the L-boundary from a 

WPC to a LPC, and hence TBI(L) = 0 
 

Table 2. Various values of the Banzhaf indices for the old EEC 
 

L N B I G F  
1 2 2 4 4 4 Weights 
0 6 6 10 10 10 Raw (Total) 

Banzahaf indices 

0

64
 

6

64
 

6

64
 

10

64
 

10

64
 

10

64
 

Banzhaf indices 
normalized w.r.t. 
total 
combinations 

0

42
 

6

42
 

6

42
 

10

42
 

10

42
 

10

42
 

Banzhaf indices 
normalized to 
add to 1 
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g�(F, G, I, B, N, L). 
 

Fig. 5. A threshold switching function representing the EEC voting system. It  is equal to 1 iff the 
inequality { G� ≥ 12}  is satisfied, and equal to 0 otherwise. From now on, all 0-entered cells will be left 

blank 
 

5 Vekm Utilization in the Computation of Banzhaf Indices 
 
We now demonstrate the utility of the Variable-Entered Karnaugh Map (VEKM) in computing the Banzhaf 
indices of the 9 − member Extended European Economic Community (EEEC). Fig. 9 represents condition 
(5) as a Karnaugh map of 5 map variables depicting indicators for the less-weighted countries B, N, D, E, 
and L. Entries of the map are in terms of a weighted sum of the indicators of the more (and equally) weighted 
countries F, G, I, and R. Fig. 10 is a VEKM representation of the success g�(X) of the EEEC system.  Entries 
of the VEKM in Fig. 10 are in terms of certain symmetric switching function [16,17]. The functions are of 
the form Sy(C; Y), where Y = {F, G, I, R} and  C ⊆ {0, 1, 2, 3, 4, 5, 6} is the characteristic set of the function.  
In fact, C in Fig. 10 takes only 3 values, namely φ (corresponding to Sy(φ; Y = 0), {4} or {3, 4}. The 
function g�(X) can now be read via standard VEKM techniques [18,19,20]. In fact, the entered function 
Sy({3, 4}; Y), is covered by the loops in Fig. 10, while the function Sy({4}; Y) appears everywhere in the map 
except in the all-0 cell, and is covered simply by a disjunction of all map variables.  The expression for g�(X) 
is 



 
 
 

Rushdi and Ba-Rukab; BJMCS, 20(4): 1-17, 2017; Article no.BJMCS.31191 
 
 
 

11 
 
 

g�(X) = (BNL ∨ BNE ∨ BND ∨ NED ∨ BED)Sy({3,4}; F, G, I, R) 
∨ (B ∨ N ∨ D ∨ E ∨ L)S�({4}; F, G, I, R) 

 
= (BNL ∨ BNE ∨ BND ∨ NED ∨ BED)(FGI ∨ FGR ∨ FIR ∨ GIR) 

 
∨ (B ∨ N ∨ D ∨ E ∨ L)FGIR.                  (10)         

 
The above expression is the minimal sum (also the complete sum) of g�(X). It is a disjunction of 25 prime 
implicants each representing a minimal winning coalition that has a weight of 41 or more. Due to symmetry, 
we note that  
 

TBI(F) = TBI(G) = TBI(I) = TBI(R),               (11a) 
 

TBI(B) = TBI(N),                 (11b) 
 

TBI(D) = TBI(E),                  (11c) 
 
and hence it will suffice to calculate TBI for France (F), Belgium (B), Denmark (D), and Luxemburg (L). 

Figs. 11-14 are VEKM representations for 
���

��
, 

���

��
, 

���

��
, and 

���

��
, respectively.  In Fig. 11, we made use of the 

relations 
 

�

��
(Sy{4}; F, G, I, R)) =

�

��
(FGIR) =  GIR,                            (12) 

 
∂

∂F
(Sy{3,4}; F, G, I, R)) =

∂

∂F
(FGI ∨ FGR ∨ FIR ∨ GIR) 

   = (GI ∨ GR ∨ IR) ⊕ (GIR) 

= GIR⋁GIR⋁GIR,                                               (13) 
 
While in Figs. 12-14, we used the relation 
 

Sy({4}; F, G, I, R)⨁Sy({3, 4}; F, G, I, R) =  Sy({3}; F, G, I, R) 

=  FGIR ⋁ FGIR ⋁ FGIR ⋁ FGIR.                                                           (14) 
 
Thanks to the fact that every entry in the maps of Figs. 11-14 is in the form of a minterm expansion, we can 
immediately write the required indices as  
 

TBI(F) = weight �
���

��
� = 20 × 1 + 11 × 3 = 20 + 33 = 53,            (15a) 

 

TBI(B) = weight �
���

��
� = 1 × 1 + 7 × 4 = 1 + 28 = 29,             (15b) 

 

TBI(D) = weight �
���

��
� = 1 × 1 + 5 × 4 = 1 + 20 = 21,             (15c) 

 

TBI(L) = weight �
���

��
� = 1 × 1 + 1 × 4 = 1 + 4 = 5,                          (15d) 

 
A notable observation is that L is no longer a dummy voter as it was in the old EEC. The indices might be 
normalized by dividing each TBI by the sum of the TBIs. Each of France, Germany, Italy and Britain has a 

normalized Banzhaf voting power of (53/317) = 0.167. The corresponding values are (29/317)= 0.091 for 
Belgium and the Netherlands, (21/317)= 0.066 for Denmark and Ireland and (5/317) = 0.016 for 
Luxembourg.  
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Fig. 6. The Boolean derivative  (
���

��
) representing configurations where France (F) is critical within the 

EEC 
 

 
 

Fig. 7. The Boolean derivative (
���

��
) representing configurations where Belgium (B) is critical within 

the EEC 
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g�(F, G, I, B, N, L). 
 

Fig. 8. The minimal winning coalitions are the prime implicants of g�, namely coalitions FGI, FGBN, 
FIBN, and GIBN of weight 12 each. Other (non-minimal) winning coalitions are among non-prime 

implicants of g�, namely, those of weight 13 (FGIL, FGBNL, FIBNL, and GIBNL), those of weight 14 
(FGIB, FGIN), those of weight 15 (FGIBL, FGINL), that of weight 16 (FGIBN) and the grand 

coalition of weight 17 (FGIBNL). Loops for all minimal winning coalitions are shown. A sample loop 
for a non-minimal winning coalition (FGIL) is also shown. Each  loop of a winning coalition (whether 

minimal or not) has a product of non-complemented literals only and hence must cover the all-1 
shaded cell that represents the grand coalition 

 

415A  4110 A 415 A

412 A 417 A 4112 A 417 A

415 A 4110 A 4115 A 4110 A

413A 418 A 4113A 418 A

416 A 4111A 4116 A 4111A

418 A 4113A 4118 A 4113 A

415 A 4110 A 4114 A 4110 A

418 A 4113A 418 A

41A

413A

 
 

Fig. 9. Conditions for the Expanded European Economic Community (EEEC), where A = 
10(F+G+I+R) 
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Fig. 10. Threshold function representing the upholding of a decision on the Expanded European 

Economic Community (EEEC) 
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Fig. 11. The Boolean derivative 
���

��
 representing when France is critical within the EEEC 
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Fig. 12. The Boolean derivative 
���

��
 representing when Belgium (B) is critical within the EEEC 
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Fig. 13. The Boolean derivative 
���

��
  representing when Denmark  (D) is critical within the EEEC 
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Fig. 14. The Boolean derivative  
���

��
 representing when Luxemburg (L) is critical within the EEEC. 

Note that Luxemburg ceased to be dummy or powerless upon expansion of the EEC 
 

6 Conclusion 
 
This paper is mainly intended as a demonstration of utility the of the VEKM in the computation of Banzhaf 
indices. The demonstration is achieved via a 9-variable example using a VEKM of 5 map variables and 4 
entered variables. However, the VEKM might be conveniently used up to 12 variables (6 map variables plus 
6 entered ones). As an offshoot, the paper also has a strong pedagogical and expository component as it 
translates many concepts and results of weighted voting systems to the Boolean domain.   
 

In particular, system states and configurations are represented as individual cells called primitive coalitions. 
The system minimal winning coalitions are identified with the prime implicants of the system success 
function. Non-minimal winning coalitions are also related to minimal ones via partial-order structures and 
also as particular subordinate loops that cover the all-1 cell in the Karnaugh map.   
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