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ABSTRACT 
 

The dynamics of the quantum bouncing ball under the influence of gravity has been studied. The 
Fourier transform techniques was first used to derive the wave function (Airy function) of the time-
independent Schrodinger wave equation for a linear potential in the form of the well-known Airy 
integral. The asymptotic dependence of the Airy function was presented. In order to obtain the 
numerical solution of the energy levels of the “bouncing ball”, the power series method was first 
used to derive the Airy function in power series form. Subsequently, the energy levels were then 
computed with the support of Maple Software. The results are tabulated with the WKB (Wentzel, 
Kramers, and Brillouin) approximation calculations. 
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1. INTRODUCTION  
 
The solution to the time-independent 
Schrodinger wave equation for a particle 
bouncing on a perfectly reflecting hard surface 
under the influence of the Earth gravitational 
potential energy ( �(�) = ���(� > 0)	  ) is 
presented in this paper. This linear potential has 
other practical implications in the study of quark-
antiquark energy spectrum [1] and also in the 
study of the condensation behaviour of a Bose-
Einstein idea gas [2]. Nesvizhevsky et al. [3], 
have shown experimentally that quantum effect 
can be observed macroscopically by using a very 
small mass such as an ultra-cold neutron 
bouncing on a perfectly reflecting mirror. Also, 
Jenke et al. [4] have performed gravity 
experiments with ultra-cold neutrons to calculate 
the energy levels using a Gravity Resonance 
Spectroscopy (GRS). The dynamics of the 
quantum bouncing ball have been discussed in a 
number of pedagogical texts such as [1,5-7]. This 
paper relies on the brief discussion of the 
“bouncing ball” in [5, p. 26 – 29]. It is worthwhile 
to mention also that the calculations of the 
energy levels in the pedagogical textbooks cited 
herein were based on the WKB approximation 
calculations and their asymptotic dependence. 
Following the omission on the numerical solution, 
a tractable approach namely the power series 
method with the support of Maple computer 
program was used to compute the energy levels. 
 

2.  SCHRODINGER WAVE EQUATION 
FOR A LINEAR POTENTIAL 

 

The time-independent Schrodinger wave 
equation is given as 
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The second derivative of (3) gives 
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On substituting (4) into (1)   with    �, � and �  
defined above, (1) reduces to 
 

   
���

���
− �� = 0  .                                             (5) 

 
Equation (5) is the well know Airy differential 
equation which has practical applications in 
physics (see [8]). The solution to (5) yields the 
Airy functions ��(�)  and ��(�)  of which ��(�) 
blows up as its argument grows and is not 
accepted as a wave function [9].   
 

3. ASYMPTOTIC DEPENDENCE OF THE 
AIRY FUNCTION ��(�) 

 
Fourier transform properties were first used to 
transform (5) into the Airy Integral. Let  
 

 ��(�) = (��)���(�)                                      (6) 
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Where �(�)  is the function and  ��(�)  is the 
transform. Substituting (6) and (7) for � = 2  and 
� = 1 respectively into (5) yields 
 

 −����(�) − �
���(�)

��
= 0  .                               (9) 

 
Clearly, (9) is a first order ordinary differential 
equation which can be evaluated by the method 
of separation of variables. The solution of (9) is 
given as 
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 Substituting (10) into (8) gives 
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The improper integral in (11) is the solution to (5) 
and can be evaluated using the method of 
steepest descents discussed in [10, p. 90 – 94] 
and [11]. This method gives the leading term of 
the asymptotic behaviour of ��(�)	as  
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The other correction terms in (12) can be 
obtained with the formula given in [12, p. 448] 
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for large �  .                                              (13) 
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4.  DETERMINATION OF THE ENERGY 

LEVELS OF THE BOUNCING BALL  
 
 

The energy levels are the zeros of Airy 

function		��(�) in the units of   �
� ��ℏ�

�
�

�

�
. In order 

to find the zeros, the power series techniques of 
differential equation is applied to (5).   
 
Let the solution to (5) be  �(�) = 		 ∑ 	���

�∞
���   . 

             (14) 
 
Putting (14) into (5) yields the recurrent relation 
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(15)	 
 

Substituting the constant terms in (15) into (14) 
allows us to write the solution as a linear 
combination of two linearly independent 
functions.  
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Using the initial value conditions 
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We can write (16) as 
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Equation (21) is the power series form of the Airy 
function ��(�)   which oscillates for negative 
values of its argument but collapses to zeros for 
positive values. 
 
Gea-Banacloche [9] states that the exact 
analytical solution of the zeros of (21) are not 
available.  However, an approximation solution 
such as the Wentzel, Kramers, and Brillouin 
(WKB) method has been used to find the zeros 
(see [1] and problem 8.6 in [7]). The zeros 
asymptotic dependence are given as 
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Fig. 1. This shows the graph of ��(�) function  
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To find numerical solution of (21), the two linearly independent functions  ��(�)   and ��(�)  are 
expanded in Maple   to 	�(����) as shown below. 
 
 

 

 

Using the boundary condition � = 0 such that � �
���

�
� ≡ �� �−

�

�
� = 0 helps us to find the roots. 

 

The results are tabulated below: 
 

Table 1. This shows the first seven energy levels in units of  �
���ℏ�

�
�

�

�
 

 
 

� Numerical Solution WKB Approximation 
1 2.338107410 2.320250794 
2 4.087949446 4.081810015 
3 5.520559833 5.517163872 
4 6.786708296 6.784454481 
5 7.944095215 7.942486664 
6 9.024004490 9.021373236 
7 10.01217466 10.03914214 

 

5. CONCLUSION  
 
The dynamics of a quantum bouncing ball under 
the influence of Earth’s gravity, has been studied 
with a view to determining the energy levels 
arising from the solution to the time-independent 
Schrodinger wave equation for a linear potential. 
The power series method was used to solve (5) 
and yields the wave function (Airy function) which 
has many practical applications in physics and 
applied mathematics. The zeros of the Airy 
function were then used to find the energy levels 
which enables us to determine the allowed 
heights with which a quantum particle would 
bounce. 
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