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Abstract

This paper deals with the Fourier-Stieltjes transform of C∗-algebra valued measures. We
construct an involution on the space of such measures, define their Fourier-Stieltjes transform
and derive a convolution theorem.
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1 Introduction

Banach space valued measures play an important rôle in the geometric theory of Banach spaces.
For instance in [1] the author used the theory of vector measures to prove that L1[0, 1] is not
isomorphic to a dual of a Banach space. See [2] for interesting historical notes. It is natural to
think that C∗-algebra valued measures may be useful in the theory of C∗-algebras. This paper is
in some manner a contribution in that direction. Here we are interested in the bounded C∗-algebra
valued measures and their Fourier-Stieltjes transform.
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The rest of the paper is structured as follows. In Section 2, we present basic elements of the theory
of C∗-algebras with examples. In Section 3, we construct an involution on the space of bounded
C∗-algebra valued measures on a locally compact group and finally in Section 4, we defined the
Fourier-Stieltjes transform and we prove a convolution theorem.

2 C∗-algebras: Definition and Examples

In this section, we recall what is a C∗−algebra and we give various examples. Interested readers
can consult [3, 4]. All the vector spaces considered here are complex vector spaces.

Definition 2.1. A Banach algebra is a Banach space A which is also an algebra such that

∀a, b ∈ A, ∥ab∥ ≤ ∥a∥∥b∥. (2.1)

Definition 2.2. An involution on an algebra A is a map ∗ : A −→ A such that

(a∗)∗ = a,

(a+ b)∗ = a∗ + b∗,

(ab)∗ = b∗a∗,

(λa)∗ = λ̄a∗.

for a, b ∈ A and λ ∈ C. A ∗-Banach algebra is a Banach algebra with an involution.

Definition 2.3. A C∗-algebra is a ∗-Banach algebra A such that for all a ∈ A,

∥a∗a∥ = ∥a∥2. (2.2)

The following result is well known as the ”C∗-condition”.

Proposition 2.1. A ∗-Banach algebra A in which ∀a ∈ A, ∥a∥2 ≤ ∥a∗a∥ is a C∗-algebra.

Let us give some examples of C∗-algebras.

Example 2.1. 1. The set of complex numbers C is the prototype of C∗-algebras. The norm is
the modulus |z| and the ∗ operation is the conjugation z.

2. Let H be a complex Hilbert space. Denote by B(H) the set of bounded operators on H.
Then B(H) is a C∗-algebra under the norm

∥T∥ = sup{∥Tξ∥ : ∥ξ∥ ≤ 1}

and the involution T → T ∗ where T ∗ is the adjoint of T defined by

∀ξ, η ∈ H, ⟨Tξ, η⟩ = ⟨ξ, T ∗η⟩.

3. Let Mn(C) be the set of square complex matrices of order n. It is a C∗-algebra under the
matrix operations, the norm defined by

∥A∥ = (

n∑
i=1

n∑
j=1

|aij |2)
1
2

where A is the matrix A = (aij)1≤i≤n,1≤j≤n, and the ∗-operation A∗ = tA.
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4. Let X be a compact Hausdorff space. Consider C(X) the set of complex continous functions
on X. Then C(X) is a C∗-algebra under the usual pointwise operations on C(X), the norm
defined by

∥f∥∞ = sup{|f(x)| : x ∈ X}
and the ∗-operation

f∗(x) = f(x).

Now for a locally compact Hausdorff spaceX one may consider the set C0(X) instead of C(X)
where C0(X) is the set of complex continuous functons on X that vanish at infinity. Then
C0(X) is a C∗-algebra under the same operations, the same norm and the same involution
as C(X).

3 A ∗-Banach Algebra Structure on M1(G,A)

Here we would like to trace how far the C∗ algebraic structure can infer the structure of the space
of vector measures on a locally compact group G. Let G be a locally compact group and let A be
a C∗-algebra. We denote by B(G) the σ-field of Borel subsets of G. Following [2] we call a vector
measure any set function m : B(G) → A such that for any sequence (An)n≥1 of pairwise disjoint
elements of B(G) one has

m(∞n=1An) =

∞∑
n=1

m(An). (3.1)

A vector measure m is said to be bounded if there exists M > 0 such that

∀A ∈ B(G), ∥m(A)∥ ≤ M.

The set of such bounded vector measures is denoted byM1(G,A). The variation of a vector measure
m is the set function |m| defined by

|m|(A) = sup
π

∑
n

∥m(An)∥,

where the supremum is taken over all the partitions π of A into pairewise disjoint measurable subsets
of A. If |m|(G) < ∞ then m is called a vector measure of bounded variation. To be concrete let us
give an example of a vector measure taken from [2] and adapted to the case of a locally compact
group.

Example 3.1. We take G = Rd and we obviously denote by L1(Rd) and C0(Rd) the Lebesgue
space of complex integrable functions on Rd and the space of complex continous functions on Rd

which vanish at infinity respectively. The Fourier transform of f ∈ L1(Rd) is

Ff(x) := f̂(x) :=

∫
Rd

f(t)e−i⟨x,t⟩dt, x ∈ Rd. (3.2)

The function f̂ is a member of C0(Rd) and

∥f̂∥∞ ≤ ∥f∥1. (3.3)

Now let T : L1(Rd) → C0(Rd) be a bounded linear operator. A concrete example for T is for
instance the Fourier transform F on Rd. Define

m(A) = T (χA) (3.4)
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where A is a member of the Borel σ-algebra of G. Then ∥m(A)∥∞ ≤ ∥T∥µ(A) where µ is the
Lebesgue measure of Rd. First notice that m is finitely additive. In fact if A and B are disjoint
measurable sets then

m(A ∪B) = T (χA∪B) = T (χA + χB) = T (χA) + T (χB) = m(A) +m(B). (3.5)

Therefore, for a sequence (An)n≥1 of pairwise disjoint measurable sets we have

∥m(∞n=1An)−
k∑

n=1

m(An)∥ = ∥m(kn=1An) +m(∞n=k+1An)−
k∑

n=1

m(An)∥

= ∥m(∞n=k+1An)∥
≤ ∥T∥µ(∞n=k+1An)

= ∥T∥
∞∑

n=k+1

µ(An) → 0 when k → ∞

since the real series
∑
n

µ(An) is convergent and therefore the remainder
∞∑

n=k+1

µ(An) goes to 0

whenever k tends to ∞. We conclude that m is a vector measure taking values in the C∗-algebra
C0(Rd).

To move forward, we present some properties of M1(G,A).

On M1(G,A), one defines the norm:
∥m∥ = |m|(G) (3.6)

and the convolution product

m1 ∗m2(f) =

∫
G

∫
G

f(xy)dm1(x)dm2(y), (3.7)

where m1,m2 ∈ M1(G,A) and f ∈ C0(G,A). And one has

∥m1 ∗m2∥ ≤ ∥m1∥∥m2∥.
It is well-known that

(
M1(G,A), ∥ · ∥, ∗

)
is a Banach algebra.

Proposition 3.1. If A is unital then so is M1(G,A).

Proof. Let us assume that A has a unit 1A. For A ∈ B(G), set

∆(A) = δ(A)1A =

{
1A if e ∈ A
0 otherwise

where δ is the Dirac mass at e (the neutral element in the group G). It follows that

∆ ∗m(f) =

∫
G

∫
G

f(xy)d∆(x)dm(y) =

∫
G

f(y)dm(y) = m(f),

that is ∆ ∗m = m. We have also

m ∗∆(f) =

∫
G

∫
G

f(xy)dm(x)d∆(y) =

∫
G

f(x)dm(x) = m(f),

that is m ∗∆ = m. Hence ∆ is the unit of M1(G,A).

Proposition 3.2. M1(G,A) is an involutive Banach algebra.
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Proof. We know already that M1(G,A) is a Banach algebra. On this algebra, let us now define an
involution. For m ∈ M1(G,A), set

mN(A) = m(A−1)∗, ∀A ∈ B(G). (3.8)

where A−1 = {x−1 : x ∈ A}, or equivalently

mN(f) =
∫
G

f(x−1)dm∗(x) (3.9)

where ∗ is the involution of the C∗-algebra A and f belongs to Cc(G;A), the space of A-valued
functions with compact support. One can easily check that the mapping m 7→ mN defines an
involution on M1(G,A).

4 The Fourier-Stieltjes Transform

Research on the Fourier-Stieltjes transform stays flourishing. A recent study concerning this subject
can be found in [5]. Our analysis here borrows ideas from [6, 7, 8, 9]. Methods there were applied to
the case where G is a compact group or G acts on a finite dimensional Hilbert C∗-module. With a
little adaptation we applied it to the case of a general locally compact group. For more informations
about representation theory and Fourier analysis on groups, on may consult [10, 11, 12].

There are various formulations of the Fourier-Stieltjes transform depending on the nature of the
underlying group and the structure of the codomain of the measures.

In the case G is abelian, the Fourier-Stieltjes transform of the vector measure m is

m̂(χ) =

∫
G

⟨χ, x⟩dm(x), (4.1)

where χ designates a character of the group G. If G is compact and A = C, then the Fourier-Stieltjes
transform of m is a family (m̂(σ))σ∈Ĝ of endomorphisms m̂(σ) : Hσ → Hσ given by the relation:

⟨m̂(σ)ξ, η⟩ =
∫
G

⟨σ(x−1)ξ, η⟩dm(x), ξ, η ∈ Hσ. (4.2)

where σ is a member of a class of unitary irreducible representation of G, Hσ is the representation
space of σ and Ĝ is the unitary dual of G. When the group G is compact and A is a Banach space,
the Fourier-Stieltjes transform of a bounded vector measure m on G is defined and studied in [6].
It is interpreted as a family (m̂(σ))σ∈Ĝ of sesquilinear mappings m̂(σ) : Hσ ×Hσ → A given by:

m̂(σ)(ξ, η) =

∫
G

⟨σ(x−1)ξ, η⟩dm(x). (4.3)

We denote the conjugate space of Hσ by Hσ. We denote by Hσ⊗̂πHσ the completion of the
normed tensor product space Hσ⊗Hσ with respect to the projective tensor norm π. See [13] for
more informations on the tensor product of Banach spaces.

Let m be a vector measure on a locally compact group G. From [8] we see that the Fourier-Stieltjes
transform of m is the collection (m̂(σ))σ∈Ĝ of operators m̂(σ) : Hσ⊗̂πHσ → A where each m̂(σ) is
defined by the integral

m̂(σ)(ξ ⊗ η) =

∫
G

⟨σ(x−1)ξ, η⟩dm(x). (4.4)

We denote by L(Hσ⊗̂πHσ,A) the set of bounded operators from Hσ⊗̂πHσ into A.
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Example 4.1. Consider the matrix group G = SU(2) where

SU(2) = {A ∈ M2(C) : A∗A = I, detA = 1}

=

{(
a b

−b a

)
: a, b ∈ C, |a|2 + |b|2 = 1

}
.

Let H2 be the set of homogeneous polynomials of degree 2 in two variables z1, z2. Then

H2 = Cz21 ⊕ Cz1z2 ⊕ Cz22 .

Now consider the representation σ : SU(2) → GL(H2) given by

[σ(A)f ](z1, z2) = f((z1, z2)A), A ∈ SU(2), f ∈ H2. (4.5)

Consider a bounded linear operator T : L1(SU(2)) → C0(SU(2)) and the vector measure m given
by m(E) = T (χE), so that m(f) = Tf for f integrable with respect to the Haar measure on SU(2).
Then the Fourier-Stieltjes transform of m is given by

m̂(σ)(f ⊗ g) = m(ϕσ
f,g) = T (ϕσ

f,g) (4.6)

where ϕσ
f,g(A) = ⟨σ(A−1)f, g⟩.

Proposition 4.1. If m ∈ M1(G,A) and σ ∈ Ĝ then m̂(σ) ∈ L(Hσ⊗̂πHσ,A) and ∥m̂(σ)∥Hσ⊗̂πHσ→A ≤
∥m∥.

Proof. Let m ∈ M1(G,A). For each σ ∈ Ĝ, we have

∥m̂(σ)(ξ ⊗ η)∥ = ∥
∫
G

⟨σ(x−1)ξ, η⟩dm(x)∥

≤
∫
G

∥⟨σ(x−1)ξ, η⟩∥d|m|(x)

≤ ∥ξ∥∥η∥|m|(G) = ∥ξ∥∥η∥∥m∥.

Thus m̂(σ) is a bounded operator and ∥m̂(σ)∥Hσ⊗̂πHσ→A ≤ ∥m∥.

Using arguments form [7, Lemma 4.1.5] applied to the underlying Banach space structure of A, one
obtains the injectivity of the Fourier-Stieltjes transform m 7→ m̂.

Proposition 4.2. The map m 7→ m̂ from M1(G,A) into
∏

σ∈Ĝ

L(Hσ⊗̂πHσ,A) is injective.

Proposition 4.3. If m ∈ M1(G,A) and T ∈ L(Hσ⊗̂πHσ,A) then the mapping

x 7→ T [(σ(x−1)ξ)⊗ η]

from G into A is integrable with respect to m.

Proof. ∫
G

∥T [(σ(x−1)ξ)⊗ η]∥dm(x) ≤∥T∥∥ξ∥∥η∥
∫
G

χGd|m|

=∥T∥∥ξ∥∥η∥∥m∥ < ∞.

Thus the map x 7→ T [(σ(x−1)ξ)⊗ η] is m-integrable.
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For T ∈ L(Hσ ⊗Hσ,A) and m ∈ M1(G,A), one defines the product ♯ by:

T♯[m̂(σ)](ξ ⊗ η) =

∫
G

T [(σ(x−1)ξ)⊗ η]dm(x). (4.7)

Then we have the following analog of the well-known convolution theorem.

Proposition 4.4. If m,n ∈ M1(G,A) then

̂(n ∗m)(σ) = m̂(σ)♯n̂(σ). (4.8)

Proof. Let m and n be in M1(G,A) and ξ ⊗ η ∈ Hσ ⊗Hσ. We have:

[m̂(σ)♯n̂(σ)](ξ ⊗ η) =

∫
G

m̂(σ)[(σ(y−1)ξ)⊗ η]dn(y)

=

∫
G

∫
G

⟨σ(x−1)σ(y−1)ξ, η⟩dm(x)dn(y)

=

∫
G

∫
G

⟨σ(x−1y−1)ξ, η⟩dm(x)dn(y)

=

∫
G

∫
G

⟨σ((yx)−1)ξ, η⟩dn(y)dm(x) (Fubini)

=n̂ ∗m(σ)(ξ ⊗ η).

Hence
m̂(σ)♯n̂(σ) = ̂(n ∗m)(σ).

Remark 4.1. One knows that the convolution product is commutative if and only if the group G is
commutative. Thus if G is commutative we have

m̂(σ)♯n̂(σ) = ̂(n ∗m)(σ) = ̂(m ∗ n)(σ).

5 Conclusion

In this study, we have constructed an involution on the space of bounded measures on a locally
compact group taking values in a C∗-algebra. The Fourier-Stieltjes transform of a C∗-algebra valued
measure has been defined and finally a convolution theorem has been proved.
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