Journal of Advances in Mathematics and Computer Science

33(5): 1-8, 2019; Article no.JAMCS.50893 ISSN: 2456-9968 (Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

Aspects of the Fourier-Stieltjes Transform of C^* -algebra Valued Measures

Koami Gbemou¹ and Yaogan Mensah^{1,2*}

¹Department of Mathematics, University of Lomé, Togo. ²ICMPA-UNESCO Chair, University of Abomey-Calavi, Benin.

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2019/v33i530193 <u>Editor(s):</u> (1) Dr. Sheng Zhang, Professor, Department of Mathematics, Bohai University, China. <u>Reviewers:</u> (1) Francisco Bulnes, Tescha, Mexico. (2) Pasupuleti Venkata Siva Kumar, VNR VJIET, India. Complete Peer review History: http://www.sdiarticle3.com/review-history/50893

Original Research Article

Received: 15 June 2019 Accepted: 22 August 2019 Published: 09 September 2019

Abstract

This paper deals with the Fourier-Stieltjes transform of C^* -algebra valued measures. We construct an involution on the space of such measures, define their Fourier-Stieltjes transform and derive a convolution theorem.

 $Keywords:\ C^*\ algebra;\ vector\ measure;\ Fourier\ Stieltjes\ transform;\ convolution.$

2010 Mathematics Subject Classification: 42A38, 46G10, 43A05.

1 Introduction

Banach space valued measures play an important rôle in the geometric theory of Banach spaces. For instance in [1] the author used the theory of vector measures to prove that $L^1[0,1]$ is not isomorphic to a dual of a Banach space. See [2] for interesting historical notes. It is natural to think that C^* -algebra valued measures may be useful in the theory of C^* -algebras. This paper is in some manner a contribution in that direction. Here we are interested in the bounded C^* -algebra valued measures transform.

^{*}Corresponding author: E-mail: mensahyaogan2@gmail.com;

The rest of the paper is structured as follows. In Section 2, we present basic elements of the theory of C^* -algebras with examples. In Section 3, we construct an involution on the space of bounded C^* -algebra valued measures on a locally compact group and finally in Section 4, we defined the Fourier-Stieltjes transform and we prove a convolution theorem.

2 C*-algebras: Definition and Examples

In this section, we recall what is a C^* -algebra and we give various examples. Interested readers can consult [3, 4]. All the vector spaces considered here are complex vector spaces.

Definition 2.1. A Banach algebra is a Banach space \mathfrak{A} which is also an algebra such that

$$\forall a, b \in \mathfrak{A}, \|ab\| \le \|a\| \|b\|. \tag{2.1}$$

Definition 2.2. An involution on an algebra \mathfrak{A} is a map $* : \mathfrak{A} \longrightarrow \mathfrak{A}$ such that

$$\begin{array}{rcl} (a^*)^* & = & a, \\ (a+b)^* & = & a^*+b^*, \\ (ab)^* & = & b^*a^*, \\ (\lambda a)^* & = & \bar{\lambda}a^*. \end{array}$$

for $a, b \in \mathfrak{A}$ and $\lambda \in \mathbb{C}$. A *-Banach algebra is a Banach algebra with an involution.

Definition 2.3. A C^* -algebra is a *-Banach algebra \mathfrak{A} such that for all $a \in \mathfrak{A}$,

$$||a^*a|| = ||a||^2. \tag{2.2}$$

The following result is well known as the " C^* -condition".

Proposition 2.1. A *-Banach algebra \mathfrak{A} in which $\forall a \in \mathfrak{A}, \|a\|^2 \leq \|a^*a\|$ is a C*-algebra.

Let us give some examples of C^* -algebras.

- **Example 2.1.** 1. The set of complex numbers \mathbb{C} is the prototype of C^* -algebras. The norm is the modulus |z| and the * operation is the conjugation \overline{z} .
 - 2. Let \mathcal{H} be a complex Hilbert space. Denote by $B(\mathcal{H})$ the set of bounded operators on \mathcal{H} . Then $B(\mathcal{H})$ is a C^* -algebra under the norm

$$||T|| = \sup\{||T\xi|| : ||\xi|| \le 1\}$$

and the involution $T \to T^*$ where T^* is the adjoint of T defined by

$$\forall \xi, \eta \in \mathcal{H}, \, \langle T\xi, \eta \rangle = \langle \xi, T^*\eta \rangle$$

3. Let $M_n(\mathbb{C})$ be the set of square complex matrices of order n. It is a C^* -algebra under the matrix operations, the norm defined by

$$||A|| = (\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2)^{\frac{1}{2}}$$

where A is the matrix $A = (a_{ij})_{1 \le i \le n, 1 \le j \le n}$, and the *-operation $A^* = {}^t\overline{A}$.

4. Let X be a compact Hausdorff space. Consider C(X) the set of complex continuus functions on X. Then C(X) is a C^* -algebra under the usual pointwise operations on C(X), the norm defined by

$$||f||_{\infty} = \sup\{|f(x)| : x \in X\}$$

and the *-operation

 $f^*(x) = \overline{f(x)}.$

Now for a locally compact Hausdorff space X one may consider the set $C_0(X)$ instead of C(X) where $C_0(X)$ is the set of complex continuous functons on X that vanish at infinity. Then $C_0(X)$ is a C^* -algebra under the same operations, the same norm and the same involution as C(X).

3 A *-Banach Algebra Structure on $\mathcal{M}^1(G, \mathfrak{A})$

Here we would like to trace how far the C^* algebraic structure can infer the structure of the space of vector measures on a locally compact group G. Let G be a locally compact group and let \mathfrak{A} be a C^* -algebra. We denote by $\mathcal{B}(G)$ the σ -field of Borel subsets of G. Following [2] we call a vector measure any set function $m : \mathcal{B}(G) \to \mathfrak{A}$ such that for any sequence $(A_n)_{n\geq 1}$ of pairwise disjoint elements of $\mathcal{B}(G)$ one has

$$m(_{n=1}^{\infty}A_n) = \sum_{n=1}^{\infty} m(A_n).$$
(3.1)

A vector measure m is said to be bounded if there exists M > 0 such that

$$\forall A \in \mathcal{B}(G), \, \|m(A)\| \le M.$$

The set of such bounded vector measures is denoted by $\mathcal{M}^1(G, \mathfrak{A})$. The variation of a vector measure m is the set function |m| defined by

$$|m|(A) = \sup_{\pi} \sum_{n} ||m(A_n)||,$$

where the supremum is taken over all the partitions π of A into pairewise disjoint measurable subsets of A. If $|m|(G) < \infty$ then m is called a vector measure of bounded variation. To be concrete let us give an example of a vector measure taken from [2] and adapted to the case of a locally compact group.

Example 3.1. We take $G = \mathbb{R}^d$ and we obviously denote by $L^1(\mathbb{R}^d)$ and $\mathcal{C}_0(\mathbb{R}^d)$ the Lebesgue space of complex integrable functions on \mathbb{R}^d and the space of complex continuous functions on \mathbb{R}^d which vanish at infinity respectively. The Fourier transform of $f \in L^1(\mathbb{R}^d)$ is

$$\mathcal{F}f(x) := \widehat{f}(x) := \int_{\mathbb{R}^d} f(t) e^{-i\langle x,t\rangle} dt, \ x \in \mathbb{R}^d.$$
(3.2)

The function \widehat{f} is a member of $\mathcal{C}_0(\mathbb{R}^d)$ and

$$\|\widehat{f}\|_{\infty} \le \|f\|_{1}. \tag{3.3}$$

Now let $T : L^1(\mathbb{R}^d) \to \mathcal{C}_0(\mathbb{R}^d)$ be a bounded linear operator. A concrete example for T is for instance the Fourier transform \mathcal{F} on \mathbb{R}^d . Define

$$m(A) = T(\chi_A) \tag{3.4}$$

where A is a member of the Borel σ -algebra of G. Then $||m(A)||_{\infty} \leq ||T||\mu(A)$ where μ is the Lebesgue measure of \mathbb{R}^d . First notice that m is finitely additive. In fact if A and B are disjoint measurable sets then

$$m(A \cup B) = T(\chi_{A \cup B}) = T(\chi_A + \chi_B) = T(\chi_A) + T(\chi_B) = m(A) + m(B).$$
(3.5)

Therefore, for a sequence $(A_n)_{n\geq 1}$ of pairwise disjoint measurable sets we have

$$\|m(_{n=1}^{\infty}A_{n}) - \sum_{n=1}^{k} m(A_{n})\| = \|m(_{n=1}^{k}A_{n}) + m(_{n=k+1}^{\infty}A_{n}) - \sum_{n=1}^{k} m(A_{n})\|$$
$$= \|m(_{n=k+1}^{\infty}A_{n})\|$$
$$\leq \|T\|\mu(_{n=k+1}^{\infty}A_{n})$$
$$= \|T\|\sum_{n=k+1}^{\infty} \mu(A_{n}) \to 0 \text{ when } k \to \infty$$

since the real series $\sum_{n} \mu(A_n)$ is convergent and therefore the remainder $\sum_{n=k+1}^{\infty} \mu(A_n)$ goes to 0 whenever k tends to ∞ . We conclude that m is a vector measure taking values in the C^{*}-algebra $\mathcal{C}_0(\mathbb{R}^d)$.

To move forward, we present some properties of $\mathcal{M}^1(G,\mathfrak{A})$.

On $\mathcal{M}^1(G, \mathfrak{A})$, one defines the norm:

$$|m|| = |m|(G) \tag{3.6}$$

and the convolution product

$$m_1 * m_2(f) = \int_G \int_G f(xy) dm_1(x) dm_2(y), \qquad (3.7)$$

where $m_1, m_2 \in \mathcal{M}^1(G, \mathfrak{A})$ and $f \in \mathcal{C}_0(G, \mathfrak{A})$. And one has

$$||m_1 * m_2|| \le ||m_1|| ||m_2||.$$

It is well-known that $(\mathcal{M}^1(G,\mathfrak{A}), \|\cdot\|, *)$ is a Banach algebra.

Proposition 3.1. If \mathfrak{A} is unital then so is $\mathcal{M}^1(G, \mathfrak{A})$.

Proof. Let us assume that \mathfrak{A} has a unit $1_{\mathfrak{A}}$. For $A \in \mathcal{B}(G)$, set

$$\Delta(A) = \delta(A) \mathbf{1}_{\mathfrak{A}} = \begin{cases} \mathbf{1}_{\mathfrak{A}} & \text{if } e \in A \\ 0 & \text{otherwise} \end{cases}$$

where δ is the Dirac mass at e (the neutral element in the group G). It follows that

$$\Delta \ast m(f) = \int_G \int_G f(xy) d\Delta(x) dm(y) = \int_G f(y) dm(y) = m(f),$$

that is $\Delta * m = m$. We have also

$$m * \Delta(f) = \int_G \int_G f(xy) dm(x) d\Delta(y) = \int_G f(x) dm(x) = m(f),$$

that is $m * \Delta = m$. Hence Δ is the unit of $\mathcal{M}^1(G, \mathfrak{A})$.

Proposition 3.2. $\mathcal{M}^1(G, \mathfrak{A})$ is an involutive Banach algebra.

4

Proof. We know already that $\mathcal{M}^1(G, \mathfrak{A})$ is a Banach algebra. On this algebra, let us now define an involution. For $m \in \mathcal{M}^1(G, \mathfrak{A})$, set

$$m^{\blacktriangle}(A) = m(A^{-1})^*, \,\forall A \in \mathcal{B}(G).$$
(3.8)

where $A^{-1} = \{x^{-1} : x \in A\}$, or equivalently

$$m^{\blacktriangle}(f) = \int_{G} f(x^{-1}) dm^{*}(x)$$
 (3.9)

where * is the involution of the C^* -algebra \mathfrak{A} and f belongs to $\mathcal{C}_c(G;\mathfrak{A})$, the space of \mathfrak{A} -valued functions with compact support. One can easily check that the mapping $m \mapsto m^{\blacktriangle}$ defines an involution on $\mathcal{M}^1(G,\mathfrak{A})$.

4 The Fourier-Stieltjes Transform

Research on the Fourier-Stieltjes transform stays flourishing. A recent study concerning this subject can be found in [5]. Our analysis here borrows ideas from [6, 7, 8, 9]. Methods there were applied to the case where G is a compact group or G acts on a finite dimensional Hilbert C^* -module. With a little adaptation we applied it to the case of a general locally compact group. For more informations about representation theory and Fourier analysis on groups, on may consult [10, 11, 12].

There are various formulations of the Fourier-Stieltjes transform depending on the nature of the underlying group and the structure of the codomain of the measures.

In the case G is abelian, the Fourier-Stieltjes transform of the vector measure m is

$$\widehat{m}(\chi) = \int_{G} \overline{\langle \chi, x \rangle} dm(x), \tag{4.1}$$

where χ designates a character of the group G. If G is compact and $\mathfrak{A} = \mathbb{C}$, then the Fourier-Stieltjes transform of m is a family $(\widehat{m}(\sigma))_{\sigma \in \widehat{G}}$ of endomorphisms $\widehat{m}(\sigma) : \mathcal{H}_{\sigma} \to \mathcal{H}_{\sigma}$ given by the relation:

$$\langle \widehat{m}(\sigma)\xi,\eta\rangle = \int_{G} \langle \sigma(x^{-1})\xi,\eta\rangle dm(x),\,\xi,\eta\in\mathcal{H}_{\sigma}.$$
(4.2)

where σ is a member of a class of unitary irreducible representation of G, \mathcal{H}_{σ} is the representation space of σ and \hat{G} is the unitary dual of G. When the group G is compact and \mathfrak{A} is a Banach space, the Fourier-Stieltjes transform of a bounded vector measure m on G is defined and studied in [6]. It is interpreted as a family $(\hat{m}(\sigma))_{\sigma \in \hat{G}}$ of sesquilinear mappings $\hat{m}(\sigma) : \mathcal{H}_{\sigma} \times \mathcal{H}_{\sigma} \to \mathfrak{A}$ given by:

$$\widehat{m}(\sigma)(\xi,\eta) = \int_{G} \langle \sigma(x^{-1})\xi,\eta \rangle dm(x).$$
(4.3)

We denote the conjugate space of \mathcal{H}_{σ} by $\overline{\mathcal{H}}_{\sigma}$. We denote by $\mathcal{H}_{\sigma}\hat{\otimes}_{\pi}\overline{\mathcal{H}}_{\sigma}$ the completion of the normed tensor product space $\mathcal{H}_{\sigma}\otimes\overline{\mathcal{H}}_{\sigma}$ with respect to the projective tensor norm π . See [13] for more informations on the tensor product of Banach spaces.

Let *m* be a vector measure on a locally compact group *G*. From [8] we see that the Fourier-Stieltjes transform of *m* is the collection $(\hat{m}(\sigma))_{\sigma\in\hat{G}}$ of operators $\hat{m}(\sigma) : \mathcal{H}_{\sigma}\hat{\otimes}_{\pi}\overline{\mathcal{H}}_{\sigma} \to \mathfrak{A}$ where each $\hat{m}(\sigma)$ is defined by the integral

$$\widehat{m}(\sigma)(\xi \otimes \eta) = \int_{G} \langle \sigma(x^{-1})\xi, \eta \rangle dm(x).$$
(4.4)

We denote by $\mathcal{L}(\mathcal{H}_{\sigma}\hat{\otimes}_{\pi}\overline{\mathcal{H}}_{\sigma},\mathfrak{A})$ the set of bounded operators from $\mathcal{H}_{\sigma}\hat{\otimes}_{\pi}\overline{\mathcal{H}}_{\sigma}$ into \mathfrak{A} .

Example 4.1. Consider the matrix group G = SU(2) where

$$SU(2) = \{A \in M_2(\mathbb{C}) : A^*A = I, \det A = 1\}$$
$$= \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} : a, b \in \mathbb{C}, |a|^2 + |b|^2 = 1 \right\}.$$

Let H_2 be the set of homogeneous polynomials of degree 2 in two variables z_1, z_2 . Then

$$H_2 = \mathbb{C}z_1^2 \oplus \mathbb{C}z_1z_2 \oplus \mathbb{C}z_2^2.$$

Now consider the representation $\sigma: SU(2) \to GL(H_2)$ given by

$$[\sigma(A)f](z_1, z_2) = f((z_1, z_2)A), A \in SU(2), f \in H_2.$$
(4.5)

Consider a bounded linear operator $T: L^1(SU(2)) \to C_0(SU(2))$ and the vector measure *m* given by $m(E) = T(\chi_E)$, so that m(f) = Tf for *f* integrable with respect to the Haar measure on SU(2). Then the Fourier-Stieltjes transform of *m* is given by

$$\widehat{m}(\sigma)(f \otimes g) = m(\phi_{f,g}^{\sigma}) = T(\phi_{f,g}^{\sigma})$$
(4.6)

where $\phi_{f,g}^{\sigma}(A) = \langle \sigma(A^{-1})f, g \rangle.$

Proposition 4.1. If $m \in \mathcal{M}^1(G, \mathfrak{A})$ and $\sigma \in \widehat{G}$ then $\widehat{m}(\sigma) \in \mathcal{L}(\mathcal{H}_\sigma \hat{\otimes}_\pi \overline{\mathcal{H}}_\sigma, \mathfrak{A})$ and $\|\widehat{m}(\sigma)\|_{\mathcal{H}_\sigma \hat{\otimes}_\pi \overline{\mathcal{H}}_\sigma \to \mathfrak{A}} \leq \|m\|$.

Proof. Let $m \in \mathcal{M}^1(G, \mathfrak{A})$. For each $\sigma \in \widehat{G}$, we have

$$\begin{split} \|\widehat{m}(\sigma)(\xi \otimes \eta)\| &= \|\int_{G} \langle \sigma(x^{-1})\xi, \eta \rangle dm(x)\| \\ &\leq \int_{G} \|\langle \sigma(x^{-1})\xi, \eta \rangle \|d|m|(x) \\ &\leq \|\xi\| \|\eta\| |m|(G) = \|\xi\| \|\eta\| \|m\|. \end{split}$$

Thus $\widehat{m}(\sigma)$ is a bounded operator and $\|\widehat{m}(\sigma)\|_{\mathcal{H}_{\sigma}\hat{\otimes}_{\pi}\overline{\mathcal{H}}_{\sigma}\to\mathfrak{A}} \leq \|m\|.$

Using arguments form [7, Lemma 4.1.5] applied to the underlying Banach space structure of \mathfrak{A} , one obtains the injectivity of the Fourier-Stieltjes transform $m \mapsto \hat{m}$.

Proposition 4.2. The map $m \mapsto \widehat{m}$ from $\mathcal{M}^1(G, \mathfrak{A})$ into $\prod_{\sigma \in \widehat{G}} \mathcal{L}(\mathcal{H}_\sigma \hat{\otimes}_{\pi} \overline{\mathcal{H}}_{\sigma}, \mathfrak{A})$ is injective.

Proposition 4.3. If $m \in \mathcal{M}^1(G, \mathfrak{A})$ and $T \in \mathcal{L}(\mathcal{H}_\sigma \hat{\otimes}_\pi \overline{\mathcal{H}}_\sigma, \mathfrak{A})$ then the mapping

$$x \mapsto T[(\sigma(x^{-1})\xi) \otimes \eta]$$

from G into \mathfrak{A} is integrable with respect to m.

Proof.

$$\int_{G} \|T[(\sigma(x^{-1})\xi) \otimes \eta]\| dm(x) \le \|T\| \|\xi\| \|\eta\| \int_{G} \chi_{G} d|m|$$
$$= \|T\| \|\xi\| \|\eta\| \|m\| < \infty.$$

Thus the map $x \mapsto T[(\sigma(x^{-1})\xi) \otimes \eta]$ is *m*-integrable.

For $T \in \mathcal{L}(\mathcal{H}_{\sigma} \otimes \overline{\mathcal{H}}_{\sigma}, \mathfrak{A})$ and $m \in \mathcal{M}^1(G, \mathfrak{A})$, one defines the product \sharp by:

$$T\sharp[\widehat{m}(\sigma)](\xi \otimes \eta) = \int_{G} T[(\sigma(x^{-1})\xi) \otimes \eta] dm(x).$$
(4.7)

Then we have the following analog of the well-known convolution theorem.

Proposition 4.4. If $m, n \in \mathcal{M}^1(G, \mathfrak{A})$ then

$$(\widehat{n*m})(\sigma) = \widehat{m}(\sigma) \sharp \widehat{n}(\sigma).$$
 (4.8)

Proof. Let m and n be in $\mathcal{M}^1(G, \mathfrak{A})$ and $\xi \otimes \eta \in \mathcal{H}_{\sigma} \otimes \mathcal{H}_{\sigma}$. We have:

$$\begin{split} [\widehat{m}(\sigma)\sharp\widehat{n}(\sigma)](\xi\otimes\eta) &= \int_{G}\widehat{m}(\sigma)[(\sigma(y^{-1})\xi)\otimes\eta]dn(y) \\ &= \int_{G}\int_{G}\langle\sigma(x^{-1})\sigma(y^{-1})\xi,\eta\rangle dm(x)dn(y) \\ &= \int_{G}\int_{G}\langle\sigma(x^{-1}y^{-1})\xi,\eta\rangle dm(x)dn(y) \\ &= \int_{G}\int_{G}\langle\sigma((yx)^{-1})\xi,\eta\rangle dn(y)dm(x) \text{ (Fubini)} \\ &= \widehat{n*m}(\sigma)(\xi\otimes\eta). \end{split}$$

Hence

$$\widehat{m}(\sigma) \sharp \widehat{n}(\sigma) = (\widehat{n * m})(\sigma).$$

Remark 4.1. One knows that the convolution product is commutative if and only if the group G is commutative. Thus if G is commutative we have

$$\widehat{m}(\sigma)\sharp\widehat{n}(\sigma) = (\widehat{n}*\widehat{m})(\sigma) = (\widehat{m}*\widehat{n})(\sigma).$$

5 Conclusion

In this study, we have constructed an involution on the space of bounded measures on a locally compact group taking values in a C^* -algebra. The Fourier-Stieltjes transform of a C^* -algebra valued measure has been defined and finally a convolution theorem has been proved.

Competing Interests

Authors have declared that no competing interests exist.

References

- Gel'fand IM. Abstrakte funktionen and lineare operatoren. Mat. Sb. (N. S.). 1938;4(46):235-286.
- [2] Diestel J, Uhl J. J. JR. . Vector measures. Amer. Math. Soc, Provide. 1977;15.
- [3] Averson W. An invitation to C^* -algebras. Springer-Verlag, New York; 1976.

- [4] Landsman NP. Lecture notes on c^* -algebras. Hilbert C^* -Modules and Quantum Mechanics; 1998. arXiv: math-ph/9807030v1.
- [5] Farashahi AG. Fourier-Stieltjes transforms over homogeneous spaces of compact groups. Groups, Geom. Dyn. 2019;13:511-547.
- [6] Assiamoua VSK. Fourier-Stieltjes transforms of vector-valued measures on compact groups. Acta Sci. Math.(Szeged). 1989;53:301-307.
- [7] Assiamoua VSK. $L_1(G, A)$ -multipliers. Acta Sci. Math.(Szeged). 1989;53:309-3018.
- [8] Mensah Y. Facts about the Fourier-Stieltjes transform of vector valued measures on compact groups. Int. J. Anal Appl. 2013;2(1):19-25.
- Wodome K, Mensah Y. On a transform of Fourier-Stieltjes type for C^{*}-algebra valued measures. Pure Math. Sci. 2017;6(1):113-121.
- [10] Deitmar A, Echterhoff S. Principles of harmonics analysis. Springer, New York; 2009.
- [11] Folland GB. A course in abstract harmonic analysis. CRC Press; 1995.
- [12] Gaal SA. Linear analysis and representation theory. Springer, Berlin; 1973.
- [13] Ryan RA. Introduction to tensor products of Banach spaces. Monographs in Mathematics, Springer; 2002.

O 2019 Gbemou and Mensahş; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

http://www.sdiarticle3.com/review-history/50893