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ABSTRACT 
 

Smoking has been suspected to have some relation with the occurrence of oral cancers. However, 
not much research has been documented with advanced analysis.  Utilizing Gene Expression 
Omnibus (GSE) data, a differential expression (DE) analysis was conducted to investigate the 
impact of smoking on oral carcinogenesis. The dataset underwent quality control, followed by K-
nearest neighbors (KNN) clustering of cells. Cell types were assigned by using the sc-type cell 
marker library and the annotations provided by the data contributors. Subsequently, DE analysis 
was performed for each identified cell type. The results of the DE analysis revealed significant 
upregulation of keratin-related genes, extracellular matrix (ECM) related genes, and 
immunoglobulin-related genes in smoker tissues. Notably, neutrophils and macrophages exhibited 
elevated expression of the keratin (KRT) gene family. Moreover, normal epithelial cells displayed 
increased expression of type 1 collagen (COL1A1). Neutrophils showed heightened expression of 

Original Research Article 

https://doi.org/10.56557/jomahr/2024/v9i28801
https://prh.ikprress.org/review-history/12276


 
 
 
 

Jeon; J. Med. Health Res., vol. 9, no. 2, pp. 1-14, 2024; Article no.JOMAHR.12276 
 
 

 
2 
 

trefoil factor 3 (TFF3), which is associated with mucosa secretion. Furthermore, macrophages and 
naive CD4+ T cells exhibited elevated levels of matrix metalloproteinases (MMPs), enzymes 
involved in ECM degradation. Interestingly, tumor cells and fibroblasts demonstrated elevated 
expression of S100A7 (S100 calcium-binding protein A7), an antimicrobial peptide known to impact 
keratinocyte differentiation. These findings shed light on the complex molecular changes that can 
potentially lead to the remodeling of the local microenvironment. 
 

 
Keywords: Differential expression analysis; gene expression omnibus data; primary oral cavity Tumor; 

transcriptomics. 
 

1. INTRODUCTION 
 
Smoking is the culprit of major health risks 
across multiple diseases [1,2]. Smoking 
drastically increases the likelihood of developing 
various respiratory problems, i.e., chronic 
bronchitis and emphysema, including chronic 
obstructive pulmonary disease (COPD) [3]. 
These complications are recognized by 
narrowing and blockage of the airways, leading 
to difficulty breathing and reduced lung function 
over time [4]. Moreover, smoking is a primary 
cause of lung cancer, accounting for the vast 
majority of cases worldwide [5]. The carcinogenic 
chemicals in tobacco smoke damage cells in the 
lungs and other parts of the body, triggering the 
uncontrolled growth of abnormal cells that form 
tumors [6]. Beyond lung cancer, smoking is 
linked to cancers of the throat, mouth, 
esophagus, bladder, pancreas, and more [7]. 
 
Secondhand smoke exposure is also profoundly 
harmful, affecting non-smokers who inhale 
tobacco smoke exhaled by smokers or released 
from burning cigarettes [8]. Non-smokers 
exposed to secondhand smoke face an 
increased risk of developing respiratory 
infections, asthma, and even lung cancer [9]. 
Furthermore, exposure to secondhand smoke 
raises the chances of heart disease by up to 
30%, primarily due to the toxic chemicals and 
fine particles in cigarette smoke that can damage 
blood vessels and affect heart function [10]. 
These combined health impacts underscore the 
urgent need for comprehensive tobacco control 
measures to protect both smokers and non-
smokers from the devastating consequences of 
smoking and secondhand smoke exposure [11]. 
 
This research aims to elucidate the 
transcriptomic differences between smokers and 
non-smokers in relation to oral cancer. While it’s 
well established that smoking leads to cancer, 
investigating the specific mechanisms underlying 
smoking-induced carcinogenesis can bring new 
insight. A causal connection between smoking 

and cancers in the lung, larynx, oral cavity, 
pharynx, esophagus, pancreas, bladder, kidney, 
cervix, and stomach has been thoroughly 
reported [12].  Notably, a decrease in the 
smoking population correlates with a reduction in 
cancer cases, reinforcing this relationship [13].  
Carcinogenic compounds, such as tobacco-
specific nitrosamines (TSNAs), polycyclic 
aromatic hydrocarbons (PAHs), aromatic amines, 
and aldehydes, are known to play pivotal roles. 
TSNAs encompass 4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK) and N’-
nitrosonornicotine (NNN), both inducing lung 
tumors across species [14]. PAHs, arising from 
incomplete combustion from sources like tar, 
automobile engine exhaust, and furnaces, are 
notable carcinogens [15]. Aromatic amines, 
including 2naphthylamine and 4-aminobiphenyl 
(4-ABP), are linked to bladder cancer [16]. Lastly, 
aldehydes like formaldehyde and acetaldehyde, 
prevalent in various environments, are 
recognized carcinogens [17]. 
 
Genetic and epigenetic abnormalities triggered 
by carcinogens can lead to chronic inflammation 
[18]. This sustained, deregulated inflammation 
subsequently disrupts expressions in 
inflammatory pathways. Molecules like 
Interleukin(IL)-1β, prostaglandin (PG)E2, and 
transforming growth factors (TGF)-β are integral 
components of these inflammatory pathways 
[19,20]. Significantly, epithelial-mesenchymal 
transition (EMT) plays a pivotal role in 
inflammation, fibrosis, and cancer development. 
In cancerous tissue, EMT regulation falters, 
consequently activating molecules within the 
inflammatory pathway [21,22]. For example, NNK 
has been identified as an EMT inducer by 
promoting the downregulation of E-cadherin [23]. 
This interconnected process underscores the 
intricate relationship between inflammation, EMT, 
and carcinogenesis. 
 
Previous literature explored oral cancer 
carcinogenesis by assessing different cancer 
stages in a mouse model [24]. This investigation 
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revealed that genes associated with stem cells 
and keratinocytes, specifically MYC targets v1, 
exhibited significant enrichment. This outcome 
was further substantiated by the identification of 
cisplatin-resistant nasopharyngeal carcinoma cell 
lines displaying the same pattern. Another study 
investigated epigenetic changes in oral cancer 
attributed to alcohol and tobacco exposure [25].  
The research uncovered hypermethylation in 
promoter regions of genes with tumor-
suppressive roles. Furthermore, extensive global 
(genome-wide) hypomethylation was observed, 
accompanied by alterations in methylation 
patterns across genes, changes in noncoding 
RNAs, and modifications of histones. These 
findings provide comprehensive insights into the 
multifaceted epigenetic alterations associated 
with oral cancer development. 
 

2. EXPERIMENTAL METHODS 
 

2.1 Data Sources 
 
The single-cell RNAseq data (accession number 
GSE234933) was obtained from Gene 
Expression Omnibus, and it was disclosed on 
July 24th, 2023. As of the writing of this article, 
the contributors of the data have not yet 
published a paper citing this dataset and 
anonymously utilized for this study. However, 
their publication might be included once it 
becomes available. 
 

2.2 Metadata  
 
The GSE234933 dataset screening was 
performed to specifically identify primary tumors 
of the oral cavity. The screening processes 
facilitated the patients to be categorized into two 

distinct groups based on their smoking status: 
smokers (HN1, HN60, HN67, HN72, and HN75) 
and non-smokers (HN7, HN30, HN49, and 
HN74). 
 

2.3 Data Processing Procedures 
 
The downloaded data was processed through 
the steps illustrated in Fig. 1. Briefly, the data 
was filtered to select high-quality cells and genes 
for further processing. Next, the filtered data was 
clustered using KNN clustering. By employing 
gene marker libraries (sc-type), the cell types of 
the clusters were identified. Lastly, the 
differentially expressed genes were identified for 
each cell type under the smoking condition. 
 

2.4 Data Quality Control 
 
The data contributors provided count matrices in 
rds file format, which were further processed into 
Seurat objects using the Seurat R package 
(v.3.2.2) (Seurat). To enhance data quality and 
reliability, we applied several filtering steps. 
Firstly, cells with less than 500 UMIs and 80% 
biological complexity level (UMIs per gene) were 
excluded to avoid clustering artifacts caused by 
cells consisting mainly of themselves. Secondly, 
cells with a high number of mitochondrial genes 
were removed as they might indicate cellular 
damage or stress. Lastly, the cells with fewer 
than 250 genes and more than 5000 genes were 
filtered out to ensure consistency in the number 
of genes per cell. The data quality and the 
criteria used for filtering are visually depicted in 
Fig. 2. Throughout the quality control process, no 
potential doublets were removed. Table 1 
presents the total number of cells remaining after 
the quality control steps were applied. 

 

 
 

Fig. 1. Graphical overview of workflow 
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Fig. 2. Quality control criteria for each cell visualized. Vertical and horizontal lines are drawn to 
show the cells that were filtered out. The mitochondrial ratio is depicted with the shade of the 

data points 
 

Table 1. Number of cells after quality control 
 

 HN1 HN60 HN67 HN72 HN75 HN7 HN30 HN49 HN74 

Smoker Yes Yes Yes Yes Yes No No No No 
Num. of cells 2570 7757 4287 3994 9968 1347 5146 3711 11474 

 

2.5 Normalization Procedures 
 
The count matrices were normalized to values 
between 0 and 1, following the filtering process. 
Then, the top 2000 genes with the highest 
variability were selected, and the ScaleData 
function was then applied to scale the count 
matrices using these selected genes. Upon a 
quick visualization of the data using PCA, it was 
observed that the mitochondrial ratio did not 
appear to act as a confounding factor. However, 
to ensure robustness, the SCTranform function 
was employed to regress out any potential 
genetic variability associated with the 
mitochondrial ratio [26,27]. The resulting 
regressed count matrices were then integrated 
using the FindIntegrationAnchor and 
Integratedata functions, ensuring data integration 
across different conditions. 
 

2.6 Cell Type Markers 
 
Forty principal components were computed with 
the RunPCA function and created an elbow plot 
to identify the most informative components. 

Based on this plot, the first 13 principal 
components were selected for dimension 
reduction, because the percentage change of 
variation dropped below 0.1% at the 13th 
component. Findneighbors and Findcluster 
functions were employed to determine k-nearest 
neighbors and clusters. The clustering resolution 
of 0.6 was used and applied the RunUMAP 
function to generate a 2-dimensional 
representation of the data. Next, the markers 
were identified for each cluster using the 
FindAllMarkers function. To assign cell types to 
the clusters, the sc-Type library was utilized, and 
its auto-detection function suggested that the 
tissue best matched the immune system library. 
The data contributors provided cell-type 
metadata. After inspecting the clustered cells 
(Figs. 3 and 4), it became evident that the sc-
Type cell types aligned well with those identified 
by the contributors. Consequently, we merged 
both sets of cell type annotations to yield a more 
detailed cell type classification. Specifically, we 
retained the cell types originally identified by the 
contributors, such as fibroblasts, normal 
epithelial cells, macrophages, and monocytes. 
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However, all other cell types were replaced with 
sc-type classifications to gain more detailed 
information. The cancer cells were merged from 
sc-Type with tumor cells from the contributors to 
form a larger cluster representing tumor cells. 
Additionally, we merged non-classical monocytes 
with macrophages. Thereafter, the erythroid-like 
and erythroid precursor cells were merged from 
sc-Types with the "Unknowns" category. 
 

2.7 Differential Expression Analysis 
 
In order to prepare the dataset for differential 
expression analysis, the count matrices were 
converted into a single cell experiment object 
using the SingleCellExperiment package. Next, 
the counts were aggregated based on cell types 
and sample IDs. Then, the aggregated counts 
were used to create a DESeq2 object using 
DESeqDataSetFromMatrix function from the 
DESeq2 package [28]. To improve the accuracy 
of the results, the apeglm algorithm was 
employed to shrink the logarithmic fold change 
(LFC) values [29]. Finally, for statistical 
significance, genes with a padj value less than 
0.05 were selected. 
 

3. RESULTS 
 

3.1 Cell type Identification 
 
Based on the cell type annotation provided by 
the data contributors, the cell type clusters were 
identified as shown in Fig. 3. Among these 
clusters, some cells are categorized as "Not 
Applicable" (NA). The contributors likely removed 
these cells during their quality control step. 

However, my quality control process did not 
remove them. 
 
As illustrated in Fig. 4, a total of 21 clusters were 
identified using the sc-Type algorithm. The cell 
types were similar to those provided by the 
contributors but with more detailed clustering. 
Notably, the sc-Type algorithm distinguished 
between four different T cell types, two B cell 
types, and two dendritic cell types. It also 
identified progenitor cells and natural killer cells, 
which were both merged into T cells by the 
contributors. However, sc-Type library has higher 
classification errors for tumor cells. It identified a 
significant proportion of tumor cells as erythroid 
cells. It is important to note that the sc-Type 
library is not specifically designed for tumor cells 
or support cell (e.g., fibroblast) classification, and 
this might be the reason for its low reliability in 
this context. 
 
By combining the clustering result from sc-type 
library and the contributor’s annotation, the cell 
types were finalized as shown in Fig. 5. 
 

3.2 Differential Expression Analysis 
 
3.2.1 Sample-wise PCA 
 
Fig. 6 shows how smokers and non-smokers are 
different from each other. The dimensions of the 
aggregated count matrices were reduced by 
principle component analysis (PCA). In addition 
to tumor cells, all cell types underwent PCA to 
distinguish smokers from non-smokers. However, 
no distinctive pattern was discovered in all cell 
types. 

 

 
 

Fig. 3. Cell type annotation provided with the raw data mapped to UMAP. 
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Fig. 4. Cell type identified using sc-Type library 
 

 
 

Fig. 5. Finalized cell types 
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Fig. 6. Principal component analysis of data aggregated by sample ID 
 

 
 

Fig. 7. S100A7, SPRR1B and SPRR2A are differentially expressed in tumor 
 

3.2.2 Tumor cells 
 

As shown in Fig. 7, there are three genes 
significantly upregulated among smokers: 
S100A7, SPRR1B and SPRR2A. S100A7 (S100 
calcium-binding protein A7) is overexpressed in 
skin diseases [30]. A study suggests that 
S100A7 affects keratinocyte differentiation, 
potentially making the keratinocyte layer tougher. 
The upregulation of SPRR1B in oral cancer cells 
is supported by past literature [31]. 
 

3.2.3 Progenitor cells 
 

As presented in Fig. 8, there are                               
three genes significantly upregulated among 

smokers: HPGD, KIT and                                    
MS4A2. Downregulation of HPGD is                      
shown to promote cervical cancer                 
proliferation [32]. KIT is a known proto-
oncogenic gene [33]. 
 

3.2.4 Plasma B Cells 
 

Fig. 9 presents two genes significantly 
upregulated among smokers: IGHV3-20 and 
IGHV7-4-1. Both genes are related to the 
expression of immunoglobulin heavy chain. The 
elevated immunoglobulin expression is thought 
to be elevated in inflammation-related diseases 
such as multiple sclerosis [34]. 
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3.2.5 Fibroblasts 
 
As shown in Fig. 10, there are three genes 
significantly upregulated among smokers: 
IGHV4-39, PI3, and S100A7. It is                   
noteworthy to point out that S100A7 is also 
over-expressed in tumor cells, and                          
IGHV family genes are over-expressed in 
plasma B cells. 
 
3.2.6. Normal epithelial cells 
 
As plotted in Fig. 11, there are two genes 
significantly upregulated among smokers: 
COL1A1 and IGKV2-28. 
 

COL1A1 transribes for type 1 collagen while 
IGKV2-28 is predicted to be part of 
immunoglobulin complex. A recent paper 
suggests that elevated COL1A1 expression 
plays key role in remodeling microenvironment 
in tumor tissue [35]. 
 

3.2.7 Neutrophils 
 

As shown in Fig. 12, there are two genes 
significantly upregulated among smokers: KRT4 
and TFF3. KRT4 is related to keratin while TFF3 
is related to mucosa secretion. A previous 
literature also found KRT4 as a good prognostic 
marker for tongue carcinoma [36]. TFF3 is also 
overexpressed in cervical cancer cells [37]. 

 
 

Fig. 8. HPGD, KIT and MS4A2 are differentially expressed in progenitor cells 
 

 
 

Fig. 9. IGHV3-20 and IGHV7-4-1 are differentially expressed in Plasma B cells 
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Fig. 10. IGHV4-39, PI3, and S100A7 are differentially expressed in fibroblasts 
 

 
 

Fig. 11. COL1A1 and IGKV2-28 are differentially expressed in normal Epithelial cells 
 
3.2.8 Macrophages 
 
As illustrated in Fig. 13, there are two                     
genes significantly upregulated among            
smokers: IGKV1-33, KRT6A, and MMP10. It is 
noteworthy to point out that an IGKV                      
family gene is overexpressed in normal             
epithelial cells, and a keratin-family (KRT)               
gene is overexpressed in neutrophils.                    
MMP10 is one of matrix metalloproteinases 
(MMPs). 

3.2.9 Monocytes 
 
As shown in Fig. 14, there is one gene 
significantly upregulated among smokers: IGLV3-
1. IGLV3-1 is predicted to be part of 
immunoglobulin that participates in antigen 
recognition. Elevation of IGLV3-1 expression 
indicates that monocytes are more activated, 
considering that their main functions are to 
recognize antigens and recruit more immune 
cells. 
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Fig. 12. KRT4 and TFF3 are differentially expressed in Neutrophils 
 

 
 

Fig. 13. IGKV1-33, KRT6A, and MMP10 are differentially expressed in macrophages 
 

 
 

Fig. 14. IGLV3-1 is differentially expressed in monocytes 
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Fig. 15. MMP1 is differentially expressed in naive CD4+ T cells 
 
3.2.10 Naive CD4+ T Cells 
 
Fig. 15 shows the facts that the gene significantly 
upregulated among smokers: MMP1. MMP1 is 
one of matrix metalloproteinases (MMPs) similar 
to MMP10, which is overexpressed in 
macrophages. 
 

4. DISCUSSION 
 

4.1 Quality Control on the Data 
 
In Fig. 2, samples HN7, HN1, HN49, and HN60 
exhibited cells with high mitochondrial gene 
expression. The high mitochondrial gene 
expression is often associated with cell death 
and autolysis. It is possible that these cells were 
subjected to harsh conditions before the 
scRNAseq experiment. Although I regressed out 
mitochondrial gene expression as a confounding 
factor, compensating for cell loss remains a 
difficult task. In future studies, I plan to merge 
data from different experiments to enhance the 
reliability of the results, creating a larger dataset 
with a substantial sample size and higher cell 
counts. This approach aims to counteract the 
effects of cell loss and ensure more robust 
conclusions. 
 

4.2 Keratin and ECM-Related Genes 
 
Three keratinocyte-related genes (S100A7, 
KRT4, KRT6A) were found to be overexpressed 
in three different cell types: tumor cells, 
neutrophils, fibroblasts, and macrophages. 
Additionally, COL1A1, a major component of 

keratin, showed overexpression in normal 
epithelial cells. The pathway for destruction of 
extracellular matrix also seems to be 
overexpressed, as shown by MMP1 and MMP10 
overexpression in macrophages and naive CD4+ 
T cells. These findings provide evidence that 
smoking most likely reduces the ECM and 
replaces it with collagen and keratin. This will 
have an effect of stiffening the oral tissue. 
S100A7 also increases the tight junction between 
cells, making the tissue in general much difficult 
to penetrate. This can be thought to be the 
tissue’s response to protect itself from outside 
substance, namely carcinogens from tobacco. 
The microenvironment of the oral tumor tissue 
would likely be remodeled to reflect the harsher 
condition. Further systematic analysis, such as 
pathway analysis, is essential to gain a deeper 
understanding of the mechanism of smoking-
induced molecular changes. Such analysis will 
provide valuable insights into the underlying 
molecular pathways and mechanisms involved in 
the effects of smoking on carcinogenesis. 
 

4.3 Immunoglobulin-related Genes 
 
In tissue from smokers, there is notable 
overexpression of six antibody-related genes, 
including S100A7, which is a gene closely 
associated with immune responses. The 
immunoglobulin heavy chain (IGHV) constitutes 
a primary component of antibodies. The principal 
function of plasma B cells revolves around 
secreting antibodies that target and neutralize 
antigens. Therefore, the substantial expression 
of IGHV family genes in plasma B cells is a 
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plausible finding. Interestingly, the presence of 
immunoglobulin kappa variable cluster (IGKV) 
expression in fibroblasts and macrophages was 
unexpected, as these cells are not known for 
being significant antibody expression. Such 
expression could potentially stem from noise 
originating from sequence alignment errors, 
warranting further investigation. 
 

5. CONCLUSION 
 
In this paper, the impact of smoking on oral 
carcinogenesis was assessed through differential 
expression analysis. The DE analysis showed 
elevation of keratin-related genes, extracellular 
matrix (ECM))-related genes, and 
immunoglobulin-related genes in smoker tissues. 
The upregulated keratin (KRT, COL1A1, 
S100A7) and ECM (MMPs) related genes have 
the capability to remodel the microenvironment of 
the tissue. The harsher environment of smoker 
tissue could have triggered the cell’s protection 
pathway to morph the surrounding 
microenvironment in favor of slowing down 
penetration of tobacco’s carcinogens. 
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