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ABSTRACT

In the field of fluid mechanics, the temperature distribution and the nanoparticles concentration
are usually described by singular boundary value problems (SBVPs). Such SBVPs are also used
to describe various models with applications in engineering and other areas. Generally, obtaining
the analytic solutions of such kind of problems is a challenge due to the singularity involved in
the governing equations. In this paper, a class of SBVPs is analyzed. The solution of this class
is analyzed and investigated through developing several theorems and lemmas. In addition, the
theoretical results are invested to construct several solutions for various models/problems in fluid
mechanics in the literature. Moreover, the published results are recovered as special cases of our
analysis.
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1 INTRODUCTION
In this paper, we consider a generalized class of
singular boundary value problem (SPVBs) in the
form:

τ
2
χ
′′
(τ)+

(
Pτ + Qτ

2
)
χ
′
(τ)+(l + Rτ)χ(τ) = σ τ

a+1
, (1)

such that

χ(0) = 0, χ(b) = 1 + ϵχ′(b), b ∈ R− {0},
a > −1, σ ∈ R, ϵ ∈ R.

(2)

Eq. (1) is introduced in this form such that it
covered several special cases in the literature.
Moreover, the class (1-2) arises in several
engineering applications. For example, the
coefficients P , Q, l, σ, and R are related to
the properties of nanofluids such as density,
thermal conductivity, and heat capacitance [1-
11]. Besides, a, b, and ϵ are specified according
to the final forms of the heat/concentration
equations along with the boundary conditions
(BCs). Usually, the researchers resort to direct
softwares or approximate numerical/analytical
methods to solve physical models in finite/infinite
domain [1, 12-19]. Although softwares are
capable of solving many scientific models in
physics and engineering, they can not provide
use with a clear picture about the conditions
that admit the convergence of the solutions.
In addition, the approximate numerical/analytical
methods may need a massive computational
work to conduct a solution. Moreover, such
approximate methods, sometimes, lead to
inaccurate results as pointed out in Refs. [20-
24]. Regarding, the authors [20] mentioned
that there were great differences between their
exact results and those approximately obtained in
Ref. [25]. Khaled [21] re-investigated the effects
of radiation on the MHD Marangoni convection

boundary layer over a flat surface via an exact
approach. He concluded that the existing results
[26] agree with his exact results up to only
three/four digits. Also, the authors [22-24]
mentioned further remarks on some approximate
methods.

In view of the above discussion, the exact
solution is always the best and preferred when
available for any physical model. Accordingly,
the motivation of this paper is to exactly solve
the class (1-2). Generally, obtaining analytic
solutions of such a class is a challenge due to
the singularity involved in the governing equation.
In addition, the current paper is of great benefit,
not only for researchers in both pure and applied
differential equations, but also for researchers in
fluid mechanics. The researchers in a such field
will be allowed and able to invest the present
results to directly obtain the exact solutions for
their future models instead of handling each
model separately. So, the main goal of this
work is to provide the researchers, especially
in the field of fluid mechanics, with the direct
solution for possible future models describing the
temperature/nanoparticles distributions or other
phenomena in the form given by the generalized
class (1-2).

The paper is organized as follows. In section 2, a
theoretical analysis is introduced which includes
the proofs of basic theorems and lemmas.
Derivation of these theorems and lemmas is a
cornerstone to achieve the task of this paper.
Section 3 is devoted to discuss the applications
of the present results, where several exact
solutions for physical problems in the literature
are recovered as special cases of our generalized
exact solution. In addition, the present results
and outcomes are concluded in section 4.

2 ANALYSIS

Theorem 1: The differential equation (1) reduces to τρ′′(τ)+(P1 +Qτ) ρ′(τ)+R1ρ(τ) = στa−ν under

the transformation χ(τ) = τνρ(τ), where P1 = 2ν + P , R1 = νQ+R, and ν =
1−P±

√
(1−P )2−4l

2
.

Proof: We have from χ(τ) = τνρ(τ) that

χ′(τ) = τν−1 (τρ′(τ) + νρ(τ)
)
, (3)

χ′′(τ) = τν−2 (τ2ρ′′(τ) + 2νtρ′(τ) + ν (ν − 1) ρ(τ)
)
. (4)
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Substituting Eqs. (3-4) into Eq. (1), yields

τ2ρ′′(τ) +
(
(2ν + P ) τ +Qτ2) ρ′(τ) + ((

ν2 − ν + νP + l
)
+ (νQ+R) τ

)
ρ(τ) = στa−ν+1, (5)

which implies that
τρ′′(τ) + (P1 +Qτ) ρ′(τ) +R1ρ(τ) = στa−ν , (6)

when
ν2 − ν + νP + l = 0, (7)

and
P1 = 2ν + P, R1 = νQ+R. (8)

Solving Eq. (7) for ν, we obtain

ν =
1− P ±

√
(1− P )2 − 4l

2
, (9)

which completes the proof. The rules of choosing the positive/negative sign in Eq. (9) will be
discussed later for several applied problems.

Theorem 2: Under the boundary conditions (2) and the constrain R = −(a + 1)Q, the solution
of Eq. (1) is given by

χ(τ) =
(τ/b)1−ν−P

1F1[−a− ν − P, 2− 2ν − P,−Q τ ]
(
1− σba(b−ϵ(a+1))

(a−ν+1)(a+ν+P )

)
(1− ϵ(1− ν − P )/b) Λ1 − ϵQ(ν + a+ P )Λ2

+

σ τa+1

(a− ν + 1) (a+ ν + P )
, (10)

such that
1− ν − P > 0, a > −1, (a− ν + 1) (a+ ν + P ) ̸= 0, (11)

where Λ1 and Λ2 are defined by

Λ1 = 1F1[−a− ν − P, 2− 2ν − P,−Qb], (12)

Λ2 = 1F1[1− a− ν − P, 3− 2ν − P,−Qb], (13)

and 1F1 is Kummer’s function.

Proof: Based on theorem 1, the solution χ(τ) of Eq. (1) can be directly obtained when the solution
ρ(τ) of Eq. (6) is available. Let ρc(τ) is the complementary solution and ρp(τ) is the particular solution
of Eq. (6), accordingly,

ρ(τ) = ρc(τ) + ρp(τ). (14)

Following the authors [27], the ρc(τ) is given as

ρc(t) =
h τω1+ω2−1

(ω1 + ω2)
1F1[ω1, ω1 + ω2,−Q τ ], ω1 + ω2 > 1, (15)

where h is a constant to be determined, and

ω1 = 1− P1 +
R1

Q
, ω2 = 1− R1

Q
. (16)

From Eqs. (8) and Eq. (16), we have

ω1 = 1− ν − P +
R

Q
, ω2 = 1− ν − R

Q
. (17)
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Also, the ρp(t) of Eq. (6) can be obtained as

ρp(t) =
σ τa−ν+1

(a− ν + 1) (a− ν + P1)
, (18)

such that
R1 = −(a− ν + 1)Q. (19)

From Eq. (19) and Eqs. (8), we obtain

R = −(a+ 1)Q. (20)

In this case, Eq. (6) reduces to

τρ′′(τ) + ((2γ + P ) +Qτ) ρ′(τ)− (n− γ + 1)Qρ(τ) = στa−ν . (21)

Substituting P1 in Eqs. (8) into Eq. (18), yields

ρp(τ) =
σ τa−ν+1

(a− ν + 1) (a+ ν + P )
. (22)

The general solution of Eq. (21) is obtained from (14) as

ρ(τ) =
h τω1+ω2−1

(ω1 + ω2)
1F1[ω1, ω1 + ω2,−Q τ ] +

σ τa−ν+1

(a− ν + 1) (a+ ν + P )
, (23)

where ω1 and ω2 are finally defined by

ω1 = −a− ν − P, ω2 = 2 + a− ν. (24)

Consequently, the solution of the original equation (1), provided that R = −(a+ 1)Q,

τ2χ′′(τ) +
(
Pτ +Qτ2)χ′(τ) + (l − (n+ 1)Qτ)χ(τ) = στa+1, (25)

is obtained by

χ(τ) =
h τν+ω1+ω2−1

(ω1 + ω2)
1F1[ω1, ω1 + ω2,−Q τ ] +

σ τa+1

(a− ν + 1) (a+ ν + P )
. (26)

It is observed from Eq. (26) that χ(0) = 0 is satisfied if

ν + ω1 + ω2 > 1, a > −1, (a− ν + 1) (a+ ν + P ) ̸= 0. (27)

The constant h is determined from the condition χ(b) = 1 + ϵχ′(b), hence,

h =
b1−ν−ω1−ω2(ω1 + ω2)

(
1− σba(b−ϵ(a+1))

(a−ν+1)(a+ν+P )

)
(1− ϵ(ν + ω1 + ω2 − 1)/b) Λ1 + (ϵQω1)Λ2

, (28)

where
Λ1 = 1F1[ω1, ω1 + ω2,−Qb], Λ2 = 1F1[1 + ω1, 1 + ω1 + ω2,−Qb], (29)

and the relation:

d

dτ
(1F1[ω1, ω1 + ω2,−Qτ ]) = − (Qω1) 1F1[1 + ω1, 1 + ω1 + ω2,−Qτ ], (30)

was implemented to calculate h in (28). Inserting (28) into (26), we get

χ(τ) =
(τ/b)ν+ω1+ω2−1

1F1[ω1, ω1 + ω2,−Q τ ]
(
1− σba(b−ϵ(a+1))

(a−ν+1)(a+ν+P )

)
(1− ϵ(ν + ω1 + ω2 − 1)/b) Λ1 + (ϵQω1)Λ2

+

σ τa+1

(a− ν + 1) (a+ ν + P )
. (31)
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Inserting ω1 and ω2 from Eqs. (24) into Eqs. (31,27,29), we obtain the solution provided by this
theorem.

Lemma 1: If l = 0 and R = −(a+ 1)Q, the solution of Eq. (1) is given by

χ(τ) =
(τ/b)1−P

1F1 [−a− P, 2− P,−Q τ ]
(
1− σba(b−ϵ(a+1))

(a+1)(a+P )

)
(1− ϵ(1− P )/b) Λ1 − ϵQ(a+ P )Λ2

+

σ τa+1

(a+ 1) (a+ P )
, (32)

such that
1− P > 0, a > −1, (a+ 1) (a+ P ) ̸= 0, (33)

where Λ1 and Λ2 are defined by

Λ1 = 1F1 [−a− P, 2− P,−Qb] , Λ2 = 1F1 [1− a− P, 3− P,−Qb] . (34)

Proof: At l = 0 and R = −(a+ 1)Q, Eq. (1) becomes

χ′′(τ) +

(
P

τ
+Q

)
χ′(τ)−

(
(a+ 1)Q

τ

)
χ(τ) = στa−1, a > −1, σ ∈ R, (35)

which is equivalent to Eq. (25) when l = 0. Accordingly, the solution of Eq. (35) is directly obtained
from theorem 2, Eqs. (10-13), when ν is calculated at l = 0. In such case, ν = 1−P±|1−P |

2
from Eq.

(10). For P < 1 and P > 1, ν is either 1−P or zero. However, ν = 1−P doesn’t satisfy 1−γ−P > 0
(the first condition in Eq. (11)). Therefore, ν = 0 when l = 0. Thus, the solution given by Eqs. (10-13)
reduces to Eqs. (32-34). Moreover, the solution obtained by this lemma agrees with the published
one, see Ref. [28] for details.

Lemma 2: If σ = 0, the solution of Eq. (1) is given by

χ(τ) =
(τ/b)1−ν−P

1F1

[
1− ν − P + R

Q
, 2− 2ν − P,−Q τ

]
(1− ϵ(1− ν − P )/b) Λ1 + ϵ (Q(1− ν − P ) +R) Λ2

, 1− ν − P > 0, (36)

where

Λ1 = 1F1

[
1− ν − P +

R

Q
, 2− 2ν − P,−Qb

]
, (37)

Λ2 = 1F1

[
2− ν − P +

R

Q
, 3− 2ν − P,−Qb

]
. (38)

Proof: At σ = 0, Eq. (1) becomes homogenous and takes the form:

χ′′(τ) +

(
P

τ
+Q

)
χ′(τ) +

(
l

τ2
+

R

τ

)
χ(τ) = 0, (39)

which can be reduced to the following form:

τρ′′(τ) + (P1 +Qτ) ρ′(τ) +R1ρ(τ) = 0, (40)

under the transformation introduced by theorem 1, where P1 and R1 are defined by Eqs. (8). The
solution of Eq. (40) is

ρ(τ) =
A τω1+ω2−1

(ω1 + ω2)
1F1[ω1, ω1 + ω2,−Q τ ], (41)
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and A is a constant to be determined, where ω1 and ω2 are given by Eqs. (17). Hence, the solution
of Eq. (39) is

χ(τ) =
A τν+ω1+ω2−1

(ω1 + ω2)
1F1[ω1, ω1 + ω2,−Q τ ]. (42)

The condition χ(0) = 0 is satisfied when ν + ω1 + ω2 > 1. Applying χ(b) = 1 + ϵχ′(b) on Eq. (42),
yields

A =
b1−ν−ω1−ω2(ω1 + ω2)

(1− ϵ(ν + ω1 + ω2 − 1)/b) Λ1 + (ϵQω1)Λ2
, (43)

where Λ1 and Λ2 are given in their general forms by Eqs. (29). Substituting Eq. (43) into Eq. (42)
and implementing Eqs. (17) and Eqs. (29), we obtain the solution provided by this lemma.

3 APPLICATIONS

It is shown in this section that the solution provided by theorem 2 reduces to several solutions in the
relevant literature as special cases of the parameters σ, ϵ, a, and b and the coefficients P , Q, l, and
R.

3.1 ϵ = 0, l = 0, σ ̸= 0

In this case the class (1-2) reduces to the same one of Ref. [29]:

τχ′′(τ) + (P +Qτ)χ′(τ)− ((n+ 1)Q)χ(τ) = σ τa, χ(0) = 0, χ(b) = 1. (44)

It was declared in lemma 1 that l = 0 leads to ν = 0 and hence the solution provided by lemma 1 can
be applied here, in the absence of ϵ. Substituting ϵ = 0 into Eq. (32), we obtain

χ(τ) =
(τ/b)1−P

1F1[−a− P, 2− P,−Q τ ]

Λ1

(
1− σ(b)a+1

(a+ 1) (a+ P )

)
+

σ τa+1

(a+ 1) (a+ P )
. (45)

Inserting Λ1 defined by Eq. (34) into Eq. (45), yields

χ(τ) =
(τ/b)1−P

1F1[−a− P, 2− P,−Q τ ]

1F1[−a− P, 2− P,−Qb]

(
1− σ(b)a+1

(a+ 1) (a+ P )

)
+

σ τa+1

(a+ 1) (a+ P )
, (46)

which is the same result of Ref. [29].

3.2 ϵ ̸= 0, l = 0, σ = 0, b = 1

Here, the system (1-2) reduces to that one studied by [27]

χ′′(τ) +

(
P

τ
+Q

)
χ′(τ) +

(
R

τ

)
χ(τ) = 0, (47)

such that
χ(0) = 0, χ(1) = 1 + ϵχ′(1). (48)

6
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Here, Eq. (47) is a special case of Eq. (39) when l = 0. Therefore, the solution of Eqs. (47-48) is
derived from lemma 2 by substituting ν − 1− P into Eq. (36). Consequently,

χ(τ) =
τ1−P

1F1

[
1− P + R

Q
, 2− P,−Qτ

]
(1− ϵ(1− P )/b) Λ1 + ϵ (Q (1− P ) +R) Λ2

, (49)

where Λ1 and Λ2, given in Eqs. (37-38), become

Λ1 = 1F1

[
1− P +

R

Q
, 2− P,−Qb

]
, Λ2 = 1F1

[
2− P +

R

Q
, 3− P,−Qb

]
. (50)

The results in Eqs. (49-50) are in full agreement with those of Ref. [27].

3.3 ϵ = 0, l ̸= 0, σ ̸= 0

At the special case ϵ = 0, our solution given by Eq. (10) reduces to

χ(τ) =
(τ/b)1−ν−P

1F1[−a− ν − P, 2− 2ν − P,−Q τ ]
(
1− σba+1

(a−ν+1)(a+ν+P )

)
Λ1

+

σ τa+1

(a− ν + 1) (a+ ν + P )
. (51)

Inserting Λ1 given by Eq. (12) into Eq. (51), we obtain

χ(τ) =
(τ/b)1−ν−P

1F1[−a− ν − P, 2− 2ν − P,−Q τ ]
(
1− σba+1

(a−ν+1)(a+ν+P )

)
1F1[−a− ν − P, 2− 2ν − P,−Qb]

+

σ τa+1

(a− ν + 1) (a+ ν + P )
, (52)

which agrees with the solution in Ref. [30] (see Eq. 3.16 in [30]) as special cases of our equation
(52).

4 CONCLUSION

In this paper, a generalized class of singular
BVPs was analyzed and exactly solved. The
considered class was of wide applications in
nanofluids researches. Some theorems and
lemmas were theoretically proven in several
cases of the involved coefficients of the
generalized governing equation. The present
results may be of great interest for researchers,
not only in pure/applied differential equations, but
also for researchers in fluid mechanics. In view
of our results, several existing solutions were
derived as special cases. Instead of handling
each model separately, researchers in a such
field are able to directly construct the exact
solutions for their possible future models in fluid
mechanics. The current results not only save
time and effort for researchers in this field, but

also provided the best solutions, which are the
exact solutions.
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