
________________________________________ 
 
*Corresponding author: Email: kaks.mirgichan@gmail.com; 

 

Cite as: James, Mirgichan Khobocha, Cyrus Gitonga Ngari, Stephen Karanja, and Robert Muriungi. 2024. “Modeling HIV-HBV Co-
Infection Dynamics: Stochastic Differential Equations and Matlab Simulation With Euler-Maruyama Numerical Method”. Asian Research 

Journal of Mathematics 20 (7):49-69. https://doi.org/10.9734/arjom/2024/v20i7811. 

 

 
 

 

Asian Research Journal of Mathematics 

 
Volume 20, Issue 7, Page 49-69, 2024; Article no.ARJOM.119562 
ISSN: 2456-477X 

 

 
_______________________________________________________________________________________________________________________________________ 

 

Modeling HIV-HBV Co-infection 

Dynamics: Stochastic Differential 

Equations and Matlab Simulation with 

Euler-Maruyama Numerical Method 
 

Mirgichan Khobocha James a*, Cyrus Gitonga Ngari b,  

Stephen Karanja a and Robert Muriungi a 
  

a Department of Mathematics, School of Pure and Applied Sciences, Meru University of Science and 

Technology, P.O.BOX 972-60200, Meru, Kenya. 
b Department of pure and Applied Sciences, Kirinyaga University, Kerugoya, Kenya. 

 

Authors’ contributions 

 

This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 

 

Article Information 
 

DOI: https://doi.org/10.9734/arjom/2024/v20i7811  

 
Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review 

comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/119562  

 

 

Received: 05/05/2024 

Accepted: 07/07/2024 

Published: 11/07/2024 

__________________________________________________________________________________ 
 

Abstract 

 
HIV/AIDS and Hepatitis B co-infection complicates population dynamics and brings forth a wide range of 

clinical outcomes which makes it a difficult situation for public health. In particular designing treatment plans 

for the co-infection. A Stochastic Differential Equation (SDE) model is a special class of a stochastic model 

with continuous parameter space and continuous state space. Deterministic model lacks randomness while an 
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SDE model accounts for randomness and uncertainties. In this study, an SDE model was formulated from an 

existing deterministic model to examine the variability of dynamic behavior. The analysis and numerical 

schemes were derived based on Euler-Maruyama SDE algorithms. The model utilized epidemiological 

insights with current developments in mathematical modeling approaches to represent the interaction between 

these two viruses. Matlab software was used to obtain SDE numerical results alongside the deterministic 

solution. Descriptive statistics of the sample paths indicated that the variability of infection outcomes 

oscillates around the deterministic trajectory. None of the sample paths are absorbed during the time steps. 

This shows the persistence of the co-infection in the population, in particular 𝐼𝐻𝐵(𝑡). The variability of the 

infections ranges between 1.972 and 202.4, being lowest in AIDS infectives and highest in acute Hepatitis B 

infectives. An indication that variability cannot be ignored in designing control interventions of co-infections. 

These results provide new insights into the dynamics of co-infection through in-depth research and 

simulation, which helps to understand the inherent nature of deterministic model by incorporating the 

stochastic effects. These understanding will further help the policy makers in health sector to take care of the 

variability and uncertainty in designing treatment and management strategies. 

 

 
Keywords: HIV-HBV co-infection; Stochastic Differential Equations (SDEs); Euler-Maruyama numerical 

scheme; Ito formula; Weiner process; Matlab software. 

 

1 Introduction 
 

Both Human Immunodeficiency Virus and Hepatitis B Virus are common viral infections that have substantial 

independent and combined negative effects on health outcomes around the world. Moreover, co-infection with 

both viruses presents unique challenges in designing treatment plans and management effort to curb this 

neglected co-infection, as their interactions accelerates the progression and spread of the mono-infections [1]. In 

co-infected individuals, the interaction between HIV and HBV can lead to complex and non-linear dynamics . 

Stochastic models allow incorporation of variability in viral load trajectories, providing insights on the 

emergence of viral mutants, drug resistance, and the likelihood of viral rebound following treatment 

interruptions [2]. The immune response plays a critical role in controlling viral infections, and its variability 

among individuals can significantly influence disease outcomes.  

 

A stochastic process is described as a random process which evolves over time. It determines the probability 

distribution of a random variable. Stochastic processes are classified based on the random nature of parameter 

and state space; Discrete Parameter-Discrete state space, Discrete parameter-continuous state space, continuous 

parameter-Discrete state space and continuous parameter-continuous state space. Based on this categorization, 

we have Discrete-Time Markov Chain, Continuous Time Markov Chain, random walk, Poisson process, time 

series process and Brownian motion. An SDE is a special type of continuous time stochastic process. Various 

numerical schemes of solving stochastic model; Gillespie algorithms, Monte Carlo simulation, Euler-Maruyama 

and higher order numerical schemes such as Milstein method. 

 

Stochastic models enable the exploration of how stochastic fluctuations in immune response parameters affect 

the progression of HIV-HBV co-infection and the efficacy of immune-based therapies [3]. Demographic factors 

such as population heterogeneity, contact patterns, and migration can introduce randomness into disease 

transmission dynamics. Stochastic models account for these factors, allowing for the assessment of the impact of 

demographic stochasticity on the spread of HIV and HBV within populations and the effectiveness of public 

health interventions [4] Although infectious disease dynamics have historically been studied using the classical 

deterministic models [5], these models frequently fall short of capturing the intrinsic heterogeneity and 

stochasticity of biological systems. Thus, stochastic mathematical modelling forms a basis and potential 

approach for understanding the intricate dynamics and interactions of this co-infection. 

 

 Few research have examined HBV co-infection in pregnant HIV-positive women. In addition, there is 

inadequate information on HIV-HBV co-infection from areas where the prevalence of chronic hepatitis B is 

high especially in remote settings of Sub-Saharan Africa. However, research conducted in Africa suggests that 

pregnant women with HIV are twice as likely to test positive for HBeAg and three times more likely to test 

positive for HBV DNA. High HBV DNA levels and HBeAg expression are linked to a greater chance of HBV 

transmission from a HIV-positive pregnant mother to her offspring [6].  
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Deterministic and stochastic models have been studied extensively in infectious disease modelling, but their 

application in HIV-HBV co-infection modelling has been limited due to difficulties in obtaining analytic results 

and the difficulty of analysing large populations. Many studies have shown that environmental variations have a 

huge impact on the development of an epidemic. Because person-to-person encounters are unpredictable, the 

nature of epidemic growth and spread for human illnesses is fundamentally random [7]. Additionally, the 

population is exposed to a continuous spectrum of disturbances [8]. As a result, the environment's 

unpredictability and fluctuation influence the epidemic's current status [8]. As a result, the environment's 

unpredictability and fluctuation influence the epidemic's current status [8]. Stochastic differential equation 

(SDEs) models is an appropriate way of modelling epidemics in many circumstances as used by  Britton [9], 

Gray, A., et al. [10,11,12].  

 

From a mathematical and biological point of view, there are several ways to incorporate random effects into 

epidemic models impacted by ambient white noise [2]. It has been shown by certain researchers that an 

environmentally perturbed system may be obtained by stochastically perturbing one or more system parameters 

using a white noise term. The general stochastic differential equation formulated in this study adopts the 

approach by Mao et al. [13,10]. This approach has been pursued in studies by  Mandal, P. S., & Banerjee, M, 

[12] and assumes that the parameters involved in the model fluctuate around a mean value due to continuous 

fluctuations in the environment. 

 

This paper aims to formulate, analyse and simulate a stochastic mathematical model to study the dynamic 

behavior of HIV-HBV co-infection at population scale. First, the model considered the deterministic model 

incorporating vaccination, viral load saturation function, treatment, infection levels and vertical transmission. 

We then convert deterministic model to a stochastic model using stochastic differential equations (SDEs) that 

incorporates random terms to better understand the random inherent nature and uncertainties in the dynamics of 

HIV-HBV co-infection outcomes and explains the complex interactions between HIV and HBV. It is therefore 

essential to comprehend the dynamics of HIV-HBV co-infection in order to design treatment approaches and 

lower the burden of HIV-HBV co-infection. In order to account for elements including host immune response 

variability, demographic stochasticity, and viral replication stochasticity, stochastic modelling techniques 

provide a more reasonable understanding of the dynamics of HIV-HBV co-infection. This  model provides an 

insight on the dynamics of random perturbations such transmission rates,  the possibility of infection and 

progression.  

 

The paper is organized as follows; In section 2, the deterministic and stochastic model formulation is described 

and analyzed. Then, in section 3 we present the mathematical analysis of numerical model. In section 4, we 

validate the model numerically using secondary data. Obtained from the literature and finally, in section 5 we 

discuss the numerical results and followed by conclusion in section 6. 

 

2 Model Formulation and Analysis 
 

We first consider a deterministic model of HIV-HBV co-infection by dividing the general human population 

into three sub-populations; HIV sub-populations comprising of 𝐼𝐻(𝑡), 𝑉𝐻(𝑡), 𝐴(𝑡) and HBV sub-populations 

consisting of 𝑉(𝑡), 𝐼𝐵(𝑡), 𝐼𝑐𝐵(𝑡), 𝑇𝐵(𝑡), 𝑅(𝑡)  and co-infected sub-populations; 𝐼𝐻𝐵(𝑡), 𝐼𝐻𝐶𝐵(𝑡)  and 𝑇𝐻𝐵(𝑡) . 

Beside these populations, we have the susceptible population, 𝑆(𝑡). The populations are clustered based on their 

infection status and are considered differentiable functions of time. The model variables and parameters are 

defined in Table 1 and Table 2 as follows;  

 

Table 1. Description of model variables 

 

Variable Description 

𝑆(𝑡) Susceptible Individuals at time t 

𝐼𝐻(𝑡) Individuals infected with HIV with AIDS symptoms at time t 

𝐴(𝑡) Individuals with full blow AIDS symptoms at time t 

𝐼𝐻𝐵(𝑡) Co-infected individuals with HIV and AHB at time t 

𝐼𝐻𝑐𝐵(𝑡) Co-infected individuals with HIV and CHB at time t 

𝑇𝐻𝐵(𝑡) Co-infected individuals under HIV-HBV treatment at time t 

𝐼𝐵(𝑡) Individuals with AHB infection at time t 
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Variable Description 

𝐼𝑐𝐵(𝑡) Individuals with CHB infection at time t 

𝑇𝐵(𝑡) HBV infected individuals under treatment at time t 

𝑅(𝑡) Individuals who recover from HBV infection through treatment or natural immunity 

𝑉(𝑡) Vaccinated individuals against HBV 

𝑉𝐻(𝑡) HIV infected individuals vaccinated against HBV 

𝑁(𝑡) The total population at time t 

 

Table 2. Description of model parameters 

 

Parameter Description 

Λ Force of infection 

Π Recruitment rate 

𝑏 Birth rate 

β Infection rate 

μ Natural mortality rate 

δ1 Mortality rate due to HIV/AIDS 

δ2 Induced death rate due to HBV infection 

δ3 Induced death rate due to HBV treatment 

δ4 Induced death rate due to HIV-HBV co infection 

θ1 Proportion of births infected with HIV 

θ2 Proportion of births infected with HBV 

θ3 Proportion of births vaccinated with HBV 

θ4 Proportion of births infected with HIV and vaccinated with HBV  

θ5 Proportion of susceptible births 

ϵ1 Efficacy of HIV drugs 

ϵ2 Efficacy of HBV drugs 

σ Treatment rate of HIV-HBV co-infected individuals 

α Hep B recovery rate due to natural immunity 

ω Drug/immunity wanning rate 

φ Recovery rate of Hep B infected individuals due to treatment 

τ Treatment rate for mild Hep B to seek treatment 

ϕ Treatment rate of Acute Hep B infectious individuals 

ψ Progression rate of acute to chronic Hep B 

γ Progression rate of mild to chronic HIV-HBV co infection 

𝐷𝐻  HIV viral load saturation function 

𝐷𝐵 HBV viral load saturation function 

Γ Progression rate of Hep B vaccinated to HIV  

ν Progression rate of HIV vaccinated to HIV-HBV co infected 

ρ Proportion of HIV-HBV births 

 

For the deterministic model, we make the following assumptions; both HIV and HBV infections are transmitted 

to mother to child during pregnancy, birth or breastfeeding, transmission or contact rates, recovery rate, 

progression rates are constant and both infections induces death alongside the natural death, individuals at AIDS 

stage and chronic stage of Hepatitis B don’t recover in the course of the infection but individuals at acute stage 

of hepatitis B recover due to natural immunity and treatment. All individuals surge to natural death. 

 

Based on these assumptions and definitions of model variables and parameters we construct a compartment 

structure for the populations as shown in Fig. 1. 
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Fig. 1. HIV-HBV co-infection model flowchart 

 

The deterministic model is governed by the following non-linear ordinary differential equations;  

 
𝑑𝑆

𝑑𝑡
= 𝜃5𝜋 + (𝜆1 + 𝜆2 + 𝜆3 + 𝜇)𝑆 + 𝜔𝑅         (1) 

 
𝑑𝐼𝐻

𝑑𝑡
= 𝜃1𝜋 + 𝜆1𝑆 + (1 − 𝜖2)𝜎𝑇𝐻𝐵 − (𝜆4 + 𝜇 + (1 − 𝜖1)𝐷𝐻)𝐼𝐻         (2) 

 
𝑑𝐴

𝑑𝑡
= (1 − 𝜖1)𝐷𝐻𝐼𝐻 − (𝛿1 + 𝜇)𝐴           (3) 

 
𝑑𝐼𝐻𝐵

𝑑𝑡
= (1 − 𝜌)𝜋 + 𝜆3𝑆 + (𝐼𝐻 + 𝜈)𝜆4 + 𝜆5𝐼𝐵 − (𝜙 + 𝛾 + 𝜇)𝐼𝐻𝐵     (4) 

 
𝑑𝑇𝐻𝐵

𝑑𝑡
= 𝜙𝐼𝐻𝐵 − (𝜇 + 𝛿3 + (1 − 𝜖2)𝜎)𝑇𝐻𝐵        (5) 

 
𝑑𝐼𝐻𝑐𝐵

𝑑𝑡
= 𝛾𝐼𝐻𝐵 − (𝜇 + 𝛿4)𝐼𝐻𝑐𝐵         (6) 

 
𝑑𝑉

𝑑𝑡
= 𝜃3𝜋 − (𝜇 + 𝛤𝜆1)𝑉          (7) 

 
𝑑𝑉𝐻

𝑑𝑡
= 𝜃4𝜋 + 𝛤𝜆1𝑉 − (𝜇 + 𝜈𝜆4)𝑉𝐻         (8) 

 
𝑑𝐼𝐵

𝑑𝑡
= 𝜃2𝜋 + 𝜆2𝑆 − (𝜇 + 𝜆5 + 𝛼 + 𝜏 + 𝜓𝐷𝐵)𝐼𝐵       (9) 

 
𝑑𝐼𝑐𝐵

𝑑𝑡
= 𝜓𝐷𝐵𝐼𝐵 − (𝜇 + 𝛿2)𝐼𝑐𝐵          (10) 

 
 𝑑𝑇𝐵

𝑑𝑡
= 𝜏𝐼𝐵 − (𝜇 + 𝛿3 + (1 − 𝜖2)𝜑)𝑇𝐵        (11) 

 
𝑑𝑅

𝑑𝑡
= 𝛼𝐼𝐵 + (1 − 𝜖2)𝜑𝑇𝐵 − (𝜔 + 𝜇)𝑅        (12) 

 

Where;  

 

 ρ = θ1 + θ2 + θ3 + θ4 + θ5 , 
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 λ1 =
β1(𝐼𝐻+η1𝐼𝐻𝐵+η2𝐼𝐻𝑐𝐵+η3𝐴+η4𝑇𝐻𝐵)

𝑁
,where η1 > η2 > η3 > η4, 

 

𝜆2 = β2(𝐼𝐵 + χ1𝐼𝑐𝐵 + χ2𝐼𝐻𝐵 + χ3𝐼𝐻𝑐𝐵 + χ4𝑇𝐵 + χ5𝑇𝐻𝐵), 𝑤ℎ𝑒𝑟𝑒χ1 > χ2 > χ3 > χ4, 

 

 λ3 = β3(𝐼𝐻𝐵 +Ψ1𝐼𝐻𝑐𝐵 +Ψ2𝑇𝐻𝐵),where, Ψ1 > Ψ2, 
 

 λ4 = β4(𝐼𝐻 + Λ1𝐼𝐻𝐵 + Λ2𝐼𝐻𝑐𝐵 + Λ3𝐴 + Λ4𝑇𝐻𝐵 + Λ5𝑉𝐻) , where Λ1 > Λ2 > Λ3 > Λ4 > Λ5  and λ5 =
β5(𝐼𝐵 + Υ1𝐼𝐻𝐵 + Υ2𝐼𝑐𝐵 + Υ3𝐼𝐻𝑐𝐵 + Υ4𝑇𝐵 + Υ5𝑇𝐻𝐵), where Υ1 > Υ2 > Υ3 > Υ4 > Υ5 and Γ ≤ 1 𝑎𝑛𝑑 𝜐 ≤ 1  
 

and the total human population is defined by; 

 

𝑁(𝑡) = 𝑆(𝑡) + 𝐼𝐻(𝑡) + 𝐴(𝑡) + 𝑉(𝑡) + 𝑉𝐻(𝑡) + 𝐼𝐻𝐵(𝑡) + 𝐼𝐻𝑐𝐵(𝑡) + 𝑇𝐻𝐵(𝑡) + 𝐼𝐵(𝑡) + 𝐼𝑐𝐵(𝑡) + 𝑇𝐵(𝑡) + 𝑅(𝑡) (13) 

 

Formulation of SDEs from deterministic model involves inserting randomness or stochasticity into the ordinary 

differential equations (1) to (12) that explain the variability of the infections. Because it represents the intrinsic 

unpredictability in the transmission process, such as the probability of interactions between susceptible and 

infected people, randomness is critical to co-infectionmodels. We incorporate randomness into the transmission 

rates of both HIV and HBV, considering factors such as the frequency and randomness of sexual contacts, 

sharing of needles or other drug paraphernalia, and perinatal transmission. We also consider the interactions 

between HIV and HBV infections, including the potential synergistic effects of co-infection on infection 

progression and transmission. Introducing stochastic terms to represent the effectiveness of treatment and 

control measures, such as ART for HIV and ART for HBV, as well as vaccination campaigns and behavioural 

interventions. We take into account for individual-level heterogeneity in contact patterns, susceptibility, and 

other factors that influence disease transmission, which may introduce additional stochasticity into the model. 

By formulating an SDE for an epidemic model, researchers can better capture the complex and dynamic nature 

of co-epidemics, including the effects of stochasticity on disease spread and the potential impact of interventions 

on epidemic dynamics (Allen, 2010).The study by Farnoosh and Parsamanesh [14] applied a general SDE to an 

SIS epidemic model with vaccination and immigration and the Ito’s stochastic differential equations from 

transition probabilities technique, which is predicated on the diffusion process, was developed by (Allen, 2007) 

and Bonnet [15]. The generic form of the stochastic differential equation applied by Farnoosh and Parsamanesh, 

[14] and Allen (2007) is of the form; 

 

𝑑𝑋 = 𝑓(𝑡, 𝑋(𝑡))𝑑𝑡 + 𝑔(𝑡, 𝑋(𝑡))𝑑𝑊(𝑡)        (14) 

 

where 𝑋 = [𝑋𝑛]
𝑇 = {𝑆, 𝐼𝐻 , 𝐴, 𝐼𝐻𝐵 , 𝑇𝐻𝐵 , 𝐼𝐻𝑐𝐵 , 𝑉, 𝑉𝐻 , 𝐼𝐵 , 𝐼𝑐𝐵 , 𝑇𝐵 , 𝑅}

𝑇is the vector of population of each compartment 

and 𝑊(𝑡) = [𝑊𝑛(𝑡), ]
𝑇  is n-dimensional Wiener process. Vector 𝑓  and 12 × 12  matrix 𝑔  are drift or 

deterministic part and diffusion coefficients or stochastic terms, respectively. The functions f and g are defined 

as follows; 

 

𝑓(𝑡, 𝑋(𝑡)) = 𝐸(𝛥𝑋/𝛥𝑡)𝑎𝑛𝑑𝑔(𝑡, 𝑋(𝑡)) = √𝐸[𝛥𝑋(𝛥𝑋)𝑇]/𝛥𝑡                                                                  (15)

    

According to Ditlevsen and Samson [16], continuous time processes are the focus of deterministic models, 

which are frequently represented by ODEs. These theories pre-assume that internal and deterministic 

mechanisms are the only ones driving the observable dynamics. Nevertheless, there will always be impacts on 

genuine biological systems that are poorly understood or impractical to formally represent. The analysis of the 

biological systems under study may suffer if these events are ignored in the modelling. As a result, there is a 

growing need to expand the deterministic models to include more intricate dynamical variations. Adding noise 

or random effects is one method of modelling these components. A system of SDEs is a logical extension of a 

deterministic differential equations model, in which pertinent parameters are either modelled as appropriate 

stochastic processes or additional stochastic processes are introduced to the driving system equations. This 

method makes the assumption that noise contributes to the dynamics. 

 

Throughout this section, we assume that the states 

 

𝑆(𝑡), 𝐼𝐻(𝑡), 𝐼𝐻𝐵(𝑡), 𝐴(𝑡), 𝐼𝐵(𝑡), 𝐼𝑐𝐵(𝑡), 𝐼𝐻𝑐𝐵(𝑡), 𝑇𝐵(𝑡), 𝑇𝐻𝐵(𝑡), 𝑉(𝑡), 𝑉𝐻(𝑡) and R(t) are continuous random 

variables, that is,  
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𝑆(𝑡), 𝐼𝐻(𝑡), 𝐼𝐻𝐵(𝑡), 𝐴(𝑡), 𝐼𝐵(𝑡), 𝐼𝑐𝐵(𝑡), 𝐼𝐻𝑐𝐵(𝑡), 𝑇𝐵(𝑡), 𝑇𝐻𝐵(𝑡), 𝑉(𝑡), 𝑉𝐻(𝑡) and 𝑅(𝑡) ∈ [0, 𝑁] , and that the time 

variable is continuous, 𝑡 ∈ [0,∞) . 
  

and we denote; 

 

Δ𝑆 = 𝑆(𝑡 + Δ𝑡) − 𝑆(𝑡)  
Δ𝐼𝐻 = 𝐼𝐻(𝑡 + Δ𝑡) − 𝐼𝐻(𝑡)  
Δ𝐴 = 𝐴(𝑡 + Δ𝑡) − 𝐴(𝑡)  
Δ𝐼𝐻𝐵 = 𝐼𝐻𝐵(𝑡 + Δ𝑡) − 𝐼𝐻𝐵(𝑡)  
Δ𝑇𝐻𝐵 = 𝑇𝐻𝐵(𝑡 + Δ𝑡) − 𝑇𝐻𝐵(𝑡)  
Δ𝐼𝐻𝑐𝐵 = 𝐼𝐻𝑐𝐵(𝑡 + Δ𝑡) − 𝐼𝐻𝑐𝐵(𝑡)  
Δ𝑉 = 𝑉(𝑡 + Δ𝑡) − 𝑉(𝑡)  
Δ𝑉𝐻 = 𝑉𝐻(𝑡 + Δ𝑡) − 𝑉𝐻(𝑡)  
Δ𝐼𝐵 = 𝐼𝐵(𝑡 + Δ𝑡) − 𝐼𝐵(𝑡)  
Δ𝐼𝑐𝐵 = 𝐼𝑐𝐵(𝑡 + Δ𝑡) − 𝐼𝑐𝐵(𝑡)  
Δ𝑇𝐵 = 𝑇𝐵(𝑡 + Δ𝑡) − 𝑇𝐵(𝑡)  
Δ𝑅 = 𝑅(𝑡 + Δ𝑡) − 𝑅(𝑡)  

 
In addition, we also assume that the change or transition of random variables 

𝑆(𝑡), 𝐼𝐻(𝑡), 𝐴(𝑡), 𝐼𝐻𝐵(𝑡), 𝑇𝐻𝐵(𝑡), 𝐼𝐻𝑐𝐵(𝑡), 𝑉(𝑡), 𝑉𝐻(𝑡), 𝐼𝐵(𝑡), 𝐼𝑐𝐵(𝑡), 𝑇𝐵(𝑡), 𝑅(𝑡)  is approximately normally 

distributed, 

 

Δ𝑆(𝑡) ∼ 𝑁(μ(𝑠)Δ𝑡, σ2(𝑠)Δ𝑡), Δ𝐼𝐻(𝑡) ∼ 𝑁(μ(𝐼𝐻)Δ𝑡, σ
2(𝐼𝐻)Δ𝑡), Δ𝐴(𝑡) ∼ 𝑁(μ(𝐴)Δ𝑡, σ

2(𝐴)Δ𝑡), Δ𝐼𝐻𝐵(𝑡) ∼
𝑁(μ(𝐼𝐻𝐵)Δ𝑡, σ

2(𝐼𝐻𝐵)Δ𝑡), Δ𝑇𝐻𝐵(𝑡)  ∼ 𝑁(μ(𝑇𝐻𝐵)Δ𝑡, σ
2(𝑇𝐻𝐵)Δ𝑡), Δ𝐼𝐻𝑐𝐵(𝑡) ∼

𝑁(μ(𝐼𝐻𝑐𝐵)Δ𝑡, σ2(𝐼𝐻𝑐𝐵)Δ𝑡), Δ𝑉(𝑡) ∼ 𝑁(μ(𝑉)Δ𝑡, σ2(𝑉)Δ𝑡), Δ𝑉𝐻(𝑡) ∼ 𝑁(μ(𝑉𝐻)Δ𝑡, σ
2(𝑉𝐻)Δ𝑡), Δ𝐼𝐵(𝑡) ∼

𝑁(μ(𝐼𝐵)Δ𝑡, σ
2(𝐼𝐵)Δ𝑡), Δ𝐼𝑐𝐵(𝑡) ∼ 𝑁(μ(𝐼𝑐𝐵)Δ𝑡, σ

2(𝐼𝑐𝐵)Δ𝑡), Δ𝑇𝐵(𝑡) ∼ 𝑁(μ(𝑇𝐵)Δ𝑡, σ
2(𝑇𝐵)Δ𝑡), Δ𝑅(𝑡) ∼

𝑁(μ(𝑅)Δ𝑡, σ2(𝑅)Δ𝑡)  
 

for small time intervals Δ𝑡.  
 

We let 𝑋  be the number of individuals in each class and Δ𝑋  the corresponding change in the number of 

individuals during time interval Δ𝑡 ,  
 

where vector 𝑋 = {𝑆, 𝐼𝐻 , 𝐴, 𝐼𝐻𝐵 , 𝑇𝐻𝐵 , 𝐼𝐻𝑐𝐵 , 𝑉, 𝑉𝐻 , 𝐼𝐵 , 𝐼𝑐𝐵 , 𝑇𝐵 , 𝑅}
𝑇 and  

 

Δ𝑋 = {Δ𝑆, Δ𝐼𝐻 , Δ𝐴, Δ𝐼𝐻𝐵 , Δ𝑇𝐻𝐵 , Δ𝐼𝐻𝑐𝐵 , Δ𝑉, Δ𝑉𝐻 , Δ𝐼𝐵 , Δ𝐼𝑐𝐵 , Δ𝑇𝐵 , Δ𝑅}
𝑇  

 

be n-dimensional stochastic vectors. The possible changes or transitions from the deterministic model in Fig. 1 

and their associated probabilities in a small time-interval Δ𝑡 are computed as shown in the Table 4. 

 

Table 3. Transition probabilities 

 

Possible change of state  Probability  Event description  

Δ𝑋1 = (1 0 0 0 0 0 0 0 0 0 0 0) 𝑃1 = 𝜃5𝜋Δ𝑡 Birth of a susceptible 

Δ𝑋2 = (1 0 0 0 0 0 0 0 0 0 0 −1) 𝑃2 = ω𝑅Δ𝑡 Recovered becomes re-

infected with HBV 

Δ𝑋3 = (−1 0 0 0 0 0 0 0 0 0 0 0) 𝑃3 = μ𝑆Δ𝑡 Susceptible dies a natural 

death 

Δ𝑋4 = (−1 1 0 0 0 0 0 0 0 0 0 0) 𝑃4 = λ1𝑆Δ𝑡 Susceptible becomes 

infected with HIV 

Δ𝑋5 = (−1 0 0 0 0 0 0 0 1 0 0 0) 𝑃5 = λ2𝑆Δ𝑡 Susceptible becomes 

infected with HBV 

Δ𝑋6 = (−1 0 0 1 0 0 0 0 0 0 0 0) 𝑃6 = λ3𝑆Δ𝑡 Susceptible becomes co-

infected with HIV-HBV 

Δ𝑋7 = (0 1 0 0 0 0 0 0 0 0 0 0) 𝑃7 = θ1πΔ𝑡 Birth of infected HIV 

infants 
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Possible change of state  Probability  Event description  

Δ𝑋8 = (0 1 0 0 −1 0 0 0 0 0 0 0) 𝑃8
= (1 − ϵ2)σ𝑇𝐻𝐵Δ𝑡 

Treated Co-infected 

persons become infected 

with HIV 

Δ𝑋9 = (0 −1 1 0 0 0 0 0 0 0 0 0) 𝑃9 = (1 − ϵ1)𝐷𝐻𝐼𝐻Δ𝑡 HIV infected persons 

progress to AIDS class 

Δ𝑋10
= (0 −1 0 0 0 0 0 0 0 0 0 0) 

𝑃10 = μ𝐼𝐻Δ𝑡 HIV infected dies natural 

death 

Δ𝑋11
= (0 0 −1 0 0 0 0 0 0 0 0 0) 

𝑃11 = δ1𝐴Δ𝑡 AIDS infected persons 

dies due to HIV infection 

Δ𝑋12
= (0 0 −1 0 0 0 0 0 0 0 0 0) 

𝑃12 = μ𝐴Δ𝑡 AIDS infected person dies 

naturally 

Δ𝑋13
= (0 0 0 1 0 0 0 0 −1 0 0 0) 

𝑃13 = λ5𝐼𝐵Δ𝑡 AHB infected person 

becomes co-infected 

Δ𝑋14 = (0 0 0 1 0 0 0 0 0 0 0 0) 𝑃14 = (1 − ρ)πΔ𝑡 Birth of co-infected 

infants 

Δ𝑋15
= (0 0 0 1 0 0 0 −1 0 0 0 0) 

𝑃15 = νλ4𝑉𝐻Δ𝑡 HIV positive-vaccinated 

with Hep B becomes co-

infected 

Δ𝑋16
= (0 0 0 −1 0 0 0 0 0 0 0 0) 

𝑃16 = μ𝐼𝐻𝐵Δ𝑡 HIV-HBV co-infected 

person dies natural death 

Δ𝑋17
= (0 0 0 −1 1 0 0 0 0 0 0 0) 

𝑃17 = ϕ𝐼𝐻𝐵Δ𝑡 Co-infected seeks Hep B 

treatment 

Δ𝑋18
= (0 0 0 −1 0 1 0 0 0 0 0 0) 

𝑃18 = γ𝐼𝐻𝐵Δ𝑡 Co-infected becomes 

chronically infected with 

Hep B 

Δ𝑋19
= (0 0 0 0 −1 0 0 0 0 0 0 0) 

𝑃19 = μ𝑇𝐻𝐵Δ𝑡 Treated co-infected person 

dies natural death 

Δ𝑋20
= (0 0 0 0 −1 0 0 0 0 0 0 0) 

𝑃20 = δ3𝑇𝐻𝐵Δ𝑡 Treated co-infected person 

dies due to effects of Hep 

B treatment 

Δ𝑋21
= (0 0 0 0 0 −1 0 0 0 0 0 0) 

𝑃21 = μ𝐼𝐻𝑐𝐵Δ𝑡 HIV-CHB co-infected 

person dies naturally 

Δ𝑋22
= (0 0 0 0 0 −1 0 0 0 0 0 0) 

𝑃22 = δ4𝐼𝐻𝑐𝐵Δ𝑡 HIV-CHB co-infected 

person dies due to co-

infection 

Δ𝑋23 = (0 0 0 0 0 0 1 0 0 0 0 0) 𝑃23 = θ3πΔ𝑡 Birth of susceptible infants 

vaccinated with Hep B 

vaccine 

Δ𝑋24
= (0 0 0 0 0 0 −1 0 0 0 0 0) 

𝑃24 = μ𝑉Δ𝑡 HIV positive -vaccinated 

with Hep B vaccine dies 

natural death 

Δ𝑋25
= (0 0 0 0 0 0 −1 1 0 0 0 0) 

𝑃25 = Γλ1𝑉Δ𝑡 Hep B vaccinated person 

becomes infected with 

HIV 

Δ𝑋26 = (0 0 0 0 0 0 0 1 0 0 0 0) 𝑃26 = θ4πΔ𝑡 HIV positive births 

vaccinated with Hep B 

vaccine 

Δ𝑋27
= (0 0 0 0 0 0 0 −1 0 0 0 0) 

𝑃27 = μ𝑉𝐻Δ𝑡 HIV-positive with Hep B 

vaccine dies natural death 

Δ𝑋28 = (0 0 0 0 0 0 0 0 1 0 0 0) 𝑃28 = θ2πΔ𝑡 Births infected with Hep B 

Δ𝑋29
= (0 0 0 0 0 0 0 0 −1 1 0 0) 

𝑃29 = ψ𝐷𝐵𝐼𝐵Δ𝑡 Hep B infected person 

progresses to CHB 

Δ𝑋30
= (0 0 0 0 0 0 0 0 −1 0 1 0) 

𝑃30 = τ𝐼𝐵Δ𝑡 AHB infected person 

seeks treatment 
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Possible change of state  Probability  Event description  

Δ𝑋31
= (0 0 0 0 0 0 0 0 −1 0 0 1) 

𝑃31 = α𝐼𝐵Δ𝑡 AHB infected recovers by 

natural immunity 

Δ𝑋32
= (0 0 0 0 0 0 0 0 −1 0 0 0) 

𝑃32 = μ𝐼𝐵Δ𝑡 AHB infected person dies 

natural death 

Δ𝑋33
= (0 0 0 0 0 0 0 0 0 −1 0 0) 

𝑃33 = μ𝐼𝑐𝐵Δ𝑡 CHB infected person dies 

natural death 

Δ𝑋34
= (0 0 0 0 0 0 0 0 0 −1 0 0) 

𝑃34 = δ2𝐼𝑐𝐵Δ𝑡 CHB infected person dies 

due to Hep B infection 

Δ𝑋35
= (0 0 0 0 0 0 0 0 0 0 −1 1) 

𝑃35
= (1 − ϵ2)φ𝑇𝐵Δ𝑡 

Hep B treated person 

recovers 

Δ𝑋36
= (0 0 0 0 0 0 0 0 0 0 −1 0) 

𝑃36 = μ𝑇𝐵Δ𝑡 Treated Hep B infected 

person dies natural death 

Δ𝑋37
= (0 0 0 0 0 0 0 0 0 0 −1 0) 

𝑃37 = δ3𝑇𝐵Δ𝑡 Treated Hep B person dies 

due to treatment effects 

Δ𝑋38
= (0 0 0 0 0 0 0 0 0 0 0 −1) 

𝑃38 = μ𝑅Δ𝑡 Death of recovered 

individuals 

 
In order to formulate the SDEs, we compute the expectation matrix, 𝐸(Δ𝑋) and the covariance matrix, 𝐶𝑜𝑣 =
𝐸[Δ𝑋(Δ𝑋)𝑇] as follows; 

 
𝐸(𝛥𝑋) = ∑ 𝑃𝑖𝛥𝑋𝑖

38
𝑖=1 = 𝑃1𝛥𝑋1 + 𝑃2𝛥𝑋2 + 𝑃3𝛥𝑋3 + 𝑃4𝛥𝑋4 + 𝑃5𝛥𝑋5 + 𝑃6𝛥𝑋6 + 𝑃7𝛥𝑋7 + 𝑃8𝛥𝑋8 +

𝑃9𝛥𝑋9 + 𝑃10𝛥𝑋10 + 𝑃11𝛥𝑋11 + 𝑃12𝛥𝑋12 + 𝑃13𝛥𝑋13 + 𝑃14𝛥𝑋14 + 𝑃15𝛥𝑋15 + 𝑃16𝛥𝑋16 + 𝑃17𝛥𝑋17 +
𝑃18𝛥𝑋18 + 𝑃19𝛥𝑋19 + 𝑃20𝛥𝑋20 + 𝑃21𝛥𝑋21 + 𝑃22𝛥𝑋22 + 𝑃23𝛥𝑋23 + 𝑃24𝛥𝑋24 + 𝑃25𝛥𝑋25 + 𝑃26𝛥𝑋26 +
𝑃27𝛥𝑋27 + 𝑃28𝛥𝑋28 + 𝑃29𝛥𝑋29 + 𝑃30𝛥𝑋30 + 𝑃31𝛥𝑋31 + 𝑃32𝛥𝑋32 + 𝑃33𝛥𝑋33 + 𝑃34𝛥𝑋34 + 𝑃35𝛥𝑋35 +
𝑃36𝛥𝑋36 + 𝑃37𝛥𝑋37 + 𝑃38𝛥𝑋38           (16) 

 
substituting for 𝑃𝑖Δ𝑋𝑖  and Δ𝑋 = {Δ𝑆, Δ𝐼𝐻 , Δ𝐴, Δ𝐼𝐻𝐵 , Δ𝑇𝐻𝐵 , Δ𝐼𝐻𝑐𝐵 , Δ𝑉, Δ𝑉𝐻 , Δ𝐼𝐵 , Δ𝐼𝑐𝐵 , Δ𝑇𝐵 , Δ𝑅}

𝑇  into equation 

(16) we have 

 

𝐸(𝛥𝑋)

𝛥𝑡
= 𝑓(𝑋(𝑡), 𝑡) =

(

 
 
 
 
 
 
 
 
 
 

𝜃5𝜋 + 𝜔𝑅 − 𝜇𝑆 − 𝜆1𝑆 − 𝜆2𝑆 − 𝜆3𝑆

𝜆1𝑆 + 𝜃1𝜋 − (1 − 𝜖2)𝜎𝑇𝐻𝐵 − (1 − 𝜖1)𝐷𝐻 − 𝜇𝐼𝐻
(1 − 𝜖1)𝐷𝐻𝐼𝐻 − 𝜇𝐴 − 𝛿1𝐴

𝜆5𝐼𝐵 + (1 − 𝜌)𝜋 + 𝜈𝜆4𝑉𝐻 − 𝜇𝐼𝐻𝐵 − 𝜙𝐼𝐻𝐵 − 𝛾𝐼𝐻𝐵
𝜙𝐼𝐻𝐵 − 𝜇𝑇𝐻𝐵 − 𝛿3𝑇𝐻𝐵
𝛾𝐼𝐻𝐵 − 𝜇𝐼𝐻𝑐𝐵 − 𝛿4𝐼𝐻𝑐𝐵
𝜃3𝜋 − 𝜇𝑉 − 𝛤𝜆1𝑉
𝜃4𝜋 − 𝜇𝑉𝐻 − 𝜈𝜆4𝑉𝐻

𝜆2𝑆 + 𝜃2𝜋 − 𝛼𝐼𝐵 − 𝜇𝐼𝐵 − 𝜆5𝐼𝐵 − 𝜓𝐷𝐵𝐼𝐵
𝜓𝐷𝐵𝐼𝐵 − 𝜇𝐼𝑐𝐵 − 𝛿2𝐼𝑐𝐵

𝜏𝐼𝐵 − (1 − 𝜖2)𝜑𝑇𝐵 − 𝜇𝑇𝐵 − 𝛿3𝑇𝐵
𝛼𝐼𝐵 + (1 − 𝜖2)𝜑𝑇𝐵 − 𝜔𝑅 − 𝜇𝑅 )

 
 
 
 
 
 
 
 
 
 

                                              (17) 

 
similarly, the covariance matrix is also computed as:  

 
𝐸[Δ𝑋(Δ𝑋)𝑇]

∆𝑡
= ∑ 𝑃𝑖Δ𝑋(Δ𝑋)

𝑇 = 𝑉(𝑋(𝑡), 𝑡) =38
𝑖=1   

 

(

 
 
 
 
 
 
 
 
 
 

𝑓1 −𝜆1𝑆 0 0 0 0 0 0 0 0 0 −𝜔𝑅

−𝜆1𝑆 𝑓2 −(1 − ϵ1)𝐷𝐻𝐼𝐻 0 −(1 − ϵ2)σ𝑇𝐻𝐵 0 0 0 −(λ1𝑆 + λ3𝑆 − θ1π) 0 0 0

0 −(1 − ϵ1)𝐷𝐻𝐼𝐻 𝑓3 0 0 0 0 0 0 0 0 0
0 0 0 𝑓4 −ϕ𝐼𝐻𝐵 −γ𝐼𝐻𝐵 −νλ4𝑉𝐻 0 −λ5𝐼𝐵 0 0 0

0 −(1 − ϵ2)σ𝑇𝐻𝐵 0 −ϕ𝐼𝐻𝐵 𝑓5 0 0 0 0 0 0 0
0 0 0 −γ𝐼𝐻𝐵 0 𝑓6 0 0 0 0 0 0
0 0 0 −νλ4𝑉𝐻 0 μ𝑉 + Γλ1𝑉 𝑓7 0 0 0 0 0
0 0 0 0 0 −Γλ1𝑉 Γλ1𝑉 θ4π+ μ𝑉𝐻 0 0 0 0

−(λ1𝑆 + λ3𝑆) θ1𝜋 0 −λ5𝐼𝐵 0 0 0 0 𝑓8 −ψ𝐷𝐵𝐼𝐵 −τ𝐼𝐵 −α𝐼𝐵
0 0 0 0 0 0 0 0 −ψ𝐷𝐵𝐼𝐵 𝑓9 0 0

0 0 0 0 0 0 0 0 −τ𝐼𝐵 0 0 −(1 − ϵ2)φ𝑇𝐵
−𝜔𝑅 0 0 0 0 0 0 0 −α𝐼𝐵 0 −(1 − ϵ2)φ𝑇𝐵 𝑓11 )

 
 
 
 
 
 
 
 
 
 

           (18) 

 

 



 
 

 

 
James et al.; Asian Res. J. Math., vol. 20, no. 7, pp. 49-69, 2024; Article no.ARJOM.119562 

 

 

 
58 

 

Where  

 

𝑓1 = θ5π + ω𝑅 + μ𝑆 + λ1𝑆 + λ2𝑆 + λ3𝑆        

𝑓2 = λ1𝑆 + θ1π + (1 − ϵ2)σ𝑇𝐻𝐵 + μ𝐼𝐻 + (1 − ϵ1)𝐷𝐻𝐼𝐻      

𝑓3 = (1 − ϵ1)𝐷𝐻𝐼𝐻 + δ1𝐴 + μ𝐴  

𝑓4 = λ5𝐼𝐵 + (1 − ρ)π + νλ4𝑉𝐻 + μ𝐼𝐻𝐵 +ϕ𝐼𝐻𝐵 + γ𝐼𝐻𝐵 

𝑓5 = (1 − ϵ2)σ𝑇𝐻𝐵 + ϕ𝐼𝐻𝐵 + μ𝑇𝐻𝐵 + δ3𝑇𝐻𝐵 

𝑓6 = γ𝐼𝐻𝐵 + μ𝐼𝐻𝑐𝐵 + δ4𝐼𝐻𝑐𝐵 

𝑓7 = νλ4𝑉𝐻 + θ3π − Γλ1 

𝑓8 = λ1𝑆 + λ3𝑆 + θ1π + λ5𝐼𝐵 + θ2π + ψ𝐷𝐵𝐼𝐵 + τ𝐼𝐵 + α𝐼𝐵 + μ𝐼𝐵 

𝑓9 = ψ𝐷𝐵𝐼𝐵 + μ𝐼𝑐𝐵 + δ2𝐼𝑐𝐵  

𝑓10 = τ𝐼𝐵 + (1 − ϵ2)φ𝑇𝐵 + μ𝑇𝐵 + δ3𝑇𝐵 

𝑓11 = ω𝑅 + α𝐼𝐵 + (1 − ϵ2)φ𝑇𝐵 + μ𝑅 

 

And thus, 𝑔(𝑋(𝑡), 𝑡) = √𝑉 , which represent the stochastic components of the transitions between 

compartments. These stochastic terms introduce randomness into the model, capturing the variability in the 

transmission, progression and recovery processes hence predicting the infection outcomes in future time, t. 

Applying equation (14) to the deterministic model, the following system of SDEs are derived; 

 

𝑑𝑆(𝑡) = (𝜃5𝜋 − (𝜆1 + 𝜆2 + 𝜆3 + 𝜇)𝑆 + 𝜔𝑅)𝑑𝑡 + √𝑓1𝑑𝑊1(𝑡) − √𝜆1𝑆𝑑𝑊2(𝑡) − √𝜔𝑅𝑑𝑊3(𝑡)  (19) 

 

𝑑IH(t) = (θ1π + λ1S + (1 − ϵ2)σTHB − (λ4 + μ + (1 − ϵ1)DH)IH)dt − √λ1SdW2(t) + √f2dW4(t) −

√(1 − ϵ1)DHIHdW5(t) − √(1 − ϵ2)σTHBdW6(t) − √λ1S + λ3S − θ1πdW7(t)    (20) 

 

dA(t) = ((1 − ϵ1)DHIH − (δ1 + μ)A)dt − √(1 − ϵ1)DHIHdW5(t) + √f3dW8(t)  (21) 

 

dIHB(t) = ((1 − ρ)π + λ3S + νλ4VH + λ4IH + λ5IB − (ϕ + γ + μ))IHB)dt + √f4dW9(t) −

√ϕIHBdW10(t) − √γIHBdW11(t) − √νλ4VHdW12(t) − √λ5IBdW13(t)     (22) 

 

dTHB(t) = (ϕIHB − (μ + δ3 + (1 − ϵ2)σ)THB)dt − √(1 − ϵ2)σTHBdW6(t) − √ϕIHBdW10(t) + √f5dW14(t)(23) 

 

dIHcB(t) = (γIHB − (μ + δ4)IHcB)dt − √γIHBdW11(t) + √f6dW15(t)     (24) 

 

dV(t) = (θ3π − (μ + Γλ1)V)dt − √νλ4VHdW12(t) + √μV + Γλ1VdW16(t) + √f7dW17(t)  (25) 
 

dVH(t) = (θ4π + Γλ1V − (μ + νλ4)VH)dt − √Γλ1VdW18(t) + √Γλ1VdW19(t) + √θ4π + μVHdW20(t)   (26) 
 

dIB(t) = (θ2π + λ2S − (μ + λ5 + α + τ + ψDB)IB)dt − √λ1S + λ3SdW21(t) + √θ1πdW22(t) −

√λ5IBdW13(t) + √f8dW23(t) − √ψDBIBdW24(t) − √τIBdW25(t) − √αIBdW26(t)   (27) 
 

dIcB(t) = (ψDBIB − (μ + δ2)IcB)dt − √ψDBIBdW24(t) + √f9dW27(t)    (28) 
 

dTB(t) = (τIB − (μ + δ3 + (1 − ϵ2)φ)TB)dt − √τIBdW25(t) + √f10dW28(t) −

√(1 − ϵ2)φTBdW29(t)           (29) 
 

dR(t) = (αIB + (1 − ϵ2)φTB − (ω + μ)R)dt − √ωRdW3(t) − √αIBdW26(t) −

√(1 − ϵ2)φTBdW29(t) + √f11dW30(t)        (30) 
 

Where,  
 

𝑑𝑊1, 𝑑𝑊2, 𝑑𝑊3, 𝑑𝑊4, 𝑑𝑊5, 𝑑𝑊6, 𝑑𝑊7, 𝑑𝑊8, 𝑑𝑊9, 𝑑𝑊10, 𝑑𝑊11, 𝑑𝑊12, 𝑑𝑊13, 𝑑𝑊14, 𝑑𝑊15,  
𝑑𝑊16, 𝑑𝑊17, 𝑑𝑊18, 𝑑𝑊19, 𝑑𝑊20, 𝑑𝑊21, 𝑑𝑊22, 𝑑𝑊23, 𝑑𝑊24, 𝑑𝑊25, 𝑑𝑊26, 𝑑𝑊28, 𝑑𝑊29, 𝑑𝑊30  
are the Wiener processes that denotes the random fluctuations over time, and there independent of each other. 
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3 Numerical Model 
 

To complement the analytical results, we develop a numerical simulation framework using Euler-Maruyama 

scheme as explained by Bonnet, F. D. [15]. Euler-Maruyama numerical method is employed to capture 

stochastic fluctuations and assess the variability in model outcomes. The Euler-Maruyama is an analogue of the 

explicit Euler method for solving first order ODEs. The method is simple to implement and computationally 

efficient. It sets foundation for other numerical schemes for SDEs, such as Milstein and Runge-Kutta methods. 

It is first order accurate as it converges as ∆𝑡 is reduced. By incorporating uncertainty in parameter estimates 

and initial conditions, the numerical model provides a comprehensive understanding of co-infection dynamics 

under real-world conditions. Solving the system of SDEs obtained above by direct integration techniques is not 

possible analytically, thus we solve numerically. Now to integrate equations (19) to (29) we state the Ito's 

lemma as follows; 

 

Lemma 1: Suppose that the value of a variable 𝑋𝑡   follows the Ito process, then the SDE of 𝑋𝑡 is given by 

 

𝑑𝑋𝑡 = 𝑓(𝑋, 𝑡) + 𝐺(𝑋, 𝑡)𝑑𝑊         (31) 

 

where 𝑑𝑊 is a Wiener process (Brownian motion) and 𝑓 and 𝐺 are functions of X and t. 

 

Based on SDEs (19) to (29) and by applying the Ito's Lemma (30), the corresponding Euler-Maruyama 

numerical scheme is given by;  

 

𝑆(t + Δt) = S(t) + (θ5π − (λ1 + λ2 + λ3 + μ)S + ωR)∆t + √f1[W1(t + ∆t) − W1(t)] −

√λ1S[W2(t + ∆t) − W2(t)] − √ωR[W3(t + ∆t) − W3(t]           (32) 

           

IH(t + Δt) = IH(t) + (θ1π + λ1S + (1 − ϵ2)σTHB − (λ4 + μ + (1 − ϵ1)DH)IH)∆t − √λ1S[W2(t +

∆t) − W2(t)] + √f2[W4(t + ∆t) − W4(t)] − √(1 − ϵ1)DHIH[W5(t + ∆t) − W5(t)] −

√(1 − ϵ2)σTHB[W6(t + ∆t) − W6(t)] − √λ1S + λ3S − θ1π[W7(t + ∆t) −W7(t)]      (33) 

 

A(t + ∆t) = A(t) + ((1 − ϵ1)DHIH − (δ1 + μ)A)∆t − √(1 − ϵ1)DHIH[W5(t + ∆t) − W5(t)] +

√f3[W8(t + ∆t) − W8(t)]          (34) 

 

IHB(t + ∆t) = IHB(t) + ((1 − ρ)π + λ3S + νλ4VH + λ4IH + λ5IB − (ϕ + γ + μ)IHB)∆t +

√f4[W9(t + ∆t) −W9(t)] − √ϕIHB[W10(t + ∆t) − W10(t)] − √γIHB[W11(t + ∆t) − W11(t)] −

√νλ4VH[W12(t + ∆t) − W12(t)] − √λ5IB[W13(t + ∆t) − W13(t)]       (35) 

 

THB(t + ∆t) = THB(t) + (ϕIHB − (μ + δ3 + (1 − ϵ2)σ)THB)∆t − √(1 − ϵ2)σTHB[W6(t + ∆t) −

W6(t)] − √ϕIHB[W10(t + ∆t) −W10(t)] + √f5[W14(t + ∆t) − W14(t)]     (36) 

 

IHcB(t + ∆t) = IHcB(t) + (γIHB − (μ + δ4)IHcB)∆t − √γIHB[W11(t + ∆t) −W11(t)] + √f6[W15(t +

∆t) − W15(t)]            (37) 

 

V(t + ∆t) = V(t) + (θ3π − (μ + Γλ1)V)∆t − √νλ4VH[W12(t + ∆t) − W12(t)] + √μV + Γλ1V[W16(t +

∆t) − W16(t)] + √f7[W17(t + ∆t) − W17(t)]       (38) 

 

VH(t + ∆t) = VH(t) + (θ4π + Γλ1V − (μ + νλ4)VH)∆t − √Γλ1V[W18(t + ∆t) − W18(t)]  +

√Γλ1V[W19(t + ∆t) − W19(t)]  + √θ4π + μVH[W20(t + ∆t) − W20(t)]        (39) 

 

IB(t + ∆t) = IB(t) + (θ2π + λ2S − (μ + λ5 + α + τ + ψDB)IB)∆t − √λ1S + λ3S[W21(t + ∆t) −

W21(t)] + √θ1π[W22(t + ∆t) − W22(t)] − √λ5IB[W13(t + ∆t) −W13(t)] + √f8[W23(t + ∆t) −
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W23(t)] − √ψDBIB[W24(t + ∆t) − W24(t)] − √τIB[W25(t + ∆t) − W25(t)] − √αIB[W26(t + ∆t) −

W26(t)]             (40)    

 

IcB(t) = IcB(t) + (ψDBIB − (μ + δ2)IcB)∆t − √ψDBIB[W24(t + ∆t) − W24(t)] + √f9[W27(t + ∆t) −

W27(t)]             (41) 

 

TB(t + ∆t) = TB(t) + (τIB − (μ + δ3 + (1 − ϵ2)φ)TB)∆t − √τIB[W25(t + ∆t) − W25(t)] +

√f10[W28(t + ∆t) − W28(t)] − √(1 − ϵ2)φTB[W29(t + ∆t) − W29(t)]     (42) 

 

R(t + ∆t) = R(t) + (αIB + (1 − ϵ2)φTB − (ω + μ)R)∆t − √ωR[W3(t + ∆t) − W3(t)] −

√αIB[W26(t + ∆t) −W26(t)] − √(1 − ϵ2)φTB[W29(t + ∆t) −W29(t)] + √f11[W30(t + ∆t) − W30(t)]  

           (43) 

 

4 Results and Discussion 
 
In this section, we solve the SDEs by applying the Euler-Maruyama method in Matlab, which take into account 

the stochastic terms to approximate the system's behaviour over time. These simulations allow us to study the 

effects of stochasticity on co-infection dynamics and the uncertainty associated with model predictions. The 

same values of the parameters as in Table 4 are used but the initial conditions are estimated for small 

populations.  

 
Table 4. Parameter values and initial conditions 

 

Parameter Nominal value/range Source 

𝑁 1,196,275,773 https://www.worlddata.info/africa 

𝑆 1,617,203,400 https://www.ncbi.nlm.nih.gov 

𝑏 4.18 -37.1% (2021) https://www.worlddata.info/africa 

𝜇 13.1% https://www.worlddata.info/africa/nigeria/index.php 

𝜇 0.0246 (China) Bacaër et al. [17] 

𝛿1 1.62% (2022) https://www.who.int/news-room/fact-sheets/detail/hiv-aids 

𝛿1 0.7114 Zhang et al. (2011) 

𝛿2 0.28%-15% WHO (2019) 

𝛿3 2.84 per 100persons/yr Jia et al. (2022) 

𝛿4 42% National Institutes of Health [18] 

𝜏 10.5% WHO (2019) 

𝜔 2-24 weeks https://www.hepb.org 

𝐼𝐻  39million WHO (2022) 

A 29.8million UNAIDS (2022), https://www.unaids.org. 

𝑉𝐻 2

3
 of people with HIV Martin et al [19] 

V 1 Billion people (2017) https://www.hepb.org 

𝐼𝐵 1.704 Billion (2019) https://www.hepb.org 

𝐼𝑐𝐵  80million Feigin et al [20] 

𝐼𝐻𝐵 2.7 Million (1%) WHO (2019), https://www.who.int/fact-sheets/hepatitis-b 

𝐼𝐻𝑐𝐵  8-10% of 𝐼𝐻𝐵 Leumi et al. [21]  

𝑇𝐵  6.6%  WHO (2019)  

𝑇𝐻𝐵  12-25% of 𝐼𝐻𝐵  NIH (2020)  

R  1.5336 Billion (90%)  https://www.hepb.org  

λ1  9.0%  Goliber [22]  

λ2 3.2-7.5%   WHO (2022)  

λ3   7.4-10% WHO (2019), Thio [23]  

λ4 10%  NIH (2022) 

λ5  5-10%  Okocha et al. [24]  

φ 2 -24 weeks  https://www.hepb.org  
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Parameter Nominal value/range Source 

β1  0.0257 - 0.0347  Nagelkerke et al. [25], Han et al. [26]  

β2 0.1-20%  Inoue and Tanaka [27]  

β3 10%  CDC, 2021  

ψ  5-10%  Hyams [28]  

γ 20-25% Bodsworth et al. [29]  

ϕ 17%  Hutin et al. [30]  

β4 5-20% Singh et al. [31]  

ν 8% Mohareb and Kim [32] 

𝐷𝐻   2.3-5  Chen et al. [33], https://www.iapac.org  

𝐷𝐵 0.00008249 De Boer et al. [34], Whalley et al. [35]  

α  94-98%  Organization et al. [36], Gastanaduy et al. [37]  

Γ 22% Allen et al. [38]  

θ1 85-90%  Frigati et al. [39]  

θ2  5.8-6% Razavi-Shearer et al. [40]  

θ3 10-18% Feldstein et al. [41], CDC (2022)  

θ4  15-45% https://www.who.int/hepatitis/publications/global-hepatitis-

report2017/en/  

ϵ1  60-80%  Koethe et al. [42]  

ϵ2  72-96%  Hadziyannis et al. [43]  

ρ 0.7 to 11.6%  Landes et al. [44]  

σ 80.7% Pappoe et al. [45]  
 

Both deterministic solution and sample paths of SDEs related to infectious classes 𝐼𝐻(𝑡) , 𝐴 , 𝐼𝐵(𝑡), 𝐼𝑐𝐵(𝑡), 
𝐼𝐻𝐵(𝑡), and 𝐼𝐻𝑐𝐵(𝑡) are demonstrated in the following figures. Three sample paths of the SDEs are obtained to 

illustrate the range of variability of infections. The sample paths follow a property of the Wiener process that the 

sample paths are continuous but not differentiable. 
 

 
 

Fig. 2. Deterministic and Sample paths of  𝐈𝐇(𝐭) 
 

Fig. 2 above demonstrates the deterministic solution of 𝐼𝐻(𝑡) for a period of 1 year together with three sample 

paths of 𝐼𝐻(𝑡) for the same initial condition of 𝐼𝐻(𝑡)  , and parameter values remain constant. It is observed that 

the sample paths oscillate around the deterministic solution. The random fluctuations are as a result of stochastic 

processes 𝑑𝑊2 , 𝑑𝑊4 , 𝑑𝑊5   , 𝑑𝑊6  and 𝑑𝑊7  . The range of volatility is shown by sample path 1 and 2. The 

variance between the deterministic and stochastic solution is marginally small. Sample 3 shows the smallest 

variability in the infections while sample path 1 shows the highest variability of infections. The data statistics 

for each of the sample is summarized in the table below; 
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Table 5. Data statistics for sample paths of IH(t) 

 

Sample path Ymin Ymax Mean Range 

S1 10 134 97.62 124 

S2 10 123.8 88.93 113.8 

S3 10 119.7 93.63 109.7 

Deterministic 10 118.2 91.27 108.2 

 

 
 

Fig. 3. Deterministic solution and sample paths of 𝐀(𝐭) 
 

Fig. 3 shows the deterministic and stochastic solutions of 𝐴(𝑡) for a period of 1 year. In deterministic solution, 

the AIDS infectives drops gradually following a smooth trajectory assuming no random fluctuations over time. 

This exponential decay is due to decrease in viral load as a result of consistent use of ARVS and efforts geared 

to reduce rate of new infections. Each of the sample paths of 𝐴(𝑡) shows large variations from deterministic 

trajectory due to changes in random shocks 𝑑𝑊5  and 𝑑𝑊8 . Sample path 2 shows the highest variability in 

infection outcomes while sample path 3 shows the lowest variations in infection outcomes as summarized in the 

table below; 

 

Table 6. Data statistics for sample paths of A(t) 

 

Sample path Ymin Ymax Mean Range 

S1 2.12 5.128 3.965 3.008 

S2 1.347 5.539 2.815 4.291 

S3 3.442 5.414 4.345 1.972 

Deterministic 2.437 5.006 3.57 2.57 

 

Table 7. Data statistics of sample paths of IB(t) 

 

Sample path Ymin Ymax Mean Range 

S1 95.16 297.6 193.4 202.4 

S2 62.8 172.1 119.7 109.3 

S3 52.29 205.7 130.1 153.4 

Deterministic 100 186.6 152.8 86.59 
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.  
 

Fig. 4. Deterministic and sample paths of 𝐈𝐁(𝐭) 
 

Fig. 4 illustrates the dynamics of 𝐼𝐵(𝑡)  over time in both deterministic and stochastic perspectives. In 

deterministic case, 𝐼𝐵(𝑡) increases over time, indicating a growing population of 𝐼𝐵(𝑡) This trend is attributed by 

rate of new infections exceeding the rate of acute Hep B infectives recovery or mortality. While in stochastic 

case, three sample paths display random fluctuations about the deterministic trajectory. Sample path 1 exhibit 

the largest variations in infections while sample path 2 shows the smallest variations in infections. These 

variations result from changes in Wiener processes 𝑑𝑊13, 𝑑𝑊21, 𝑑𝑊22, 𝑑𝑊23 , 𝑑𝑊24, 𝑑𝑊25  and 𝑑𝑊26   .The 

descriptive statistics for each of the sample paths of IB(t) are tabulated as follows Table 7. 
 

 
 

Fig. 5. Deterministic and sample paths of IcB(t) 
 

Fig. 5 depicts the deterministic and sample paths of 𝐼𝑐𝐵(𝑡) . The number of individuals with chronic viral 

hepatitis B increases with time due to increase in progression rate, compromised natural immunity, low 

treatment seeking behaviour of acute hepatitis B infectives or even low transmission rates of HIV-HBV co-

infection. The Wiener processes  𝑑𝑊24 and 𝑑𝑊27 influences the random fluctuations of infections around the 

deterministic smooth trajectory. The magnitude and direction of random fluctuations vary with the sample paths 

with sample path 2 exhibiting the largest variation in infection and sample path 1 showing the smallest 

variations [46-48]. 
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Table 8. Data statistics for sample paths of IcB(t) 
 

Sample path Ymin Ymax Mean Range 

S1 7.697 11.3 9.444 3.607 

S2 8.525 12.6 11 4.074 

S3 9.904 13.68 11.88 3.777 

Deterministic 10 12.6 11.07 21.56 

 

 
 

Fig. 6. Deterministic and sample paths of THB(t) 

 

Fig. 6 illustrates the deterministic and stochastic sample paths of THB(t). In deterministic case, the number of 

treated co-infected individuals decreases with time as a result of induced deaths due to adverse effects of HIV-

HBV drugs, HIV re-infection, natural deaths as opposed to low treatment rates of co-infected individuals. On 

the other hand, the number of treated co-infected individuals fluctuates about the deterministic path for each of 

the sample paths. This demonstrates that the solution paths are not converging or absorbing to infection free 

equilibrium point. The variability is visualized from the following data statistics for the solution paths. Sample 

path 3 gives the highest variability while sample path 1 gives the lowest [49-51].  

 

Table 9. Data statistics for the solution paths of THB(t) 

 

Solution path Ymin Ymax Mean Range 

S1 9.373 10.13 9.689 0.7555 

S2 9.064 10.42 9.742 1.354 

S3 8.582 10.27 9.192 1.685 

Deterministic 9.329 10 9.662 0.6737 

 

Fig. 7 shows the deterministic and stochastic dynamic behaviour of 𝐼𝐻𝐵(𝑡)  with time. It is observed that 

𝐼𝐻𝐵(𝑡) grows linearly in deterministic case with time due to increase in transmission rates, progression rates and 

interactions between HIV and HBV infectives. The stochastic solution is demonstrated by three different sample 

paths with different realization of infection outcomes around the deterministic path. Sample path 2 shows the 

largest variability while sample path 3 exhibits the smallest variability of infection outcomes. The results of each 

sample path are as follows Table 10. 
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Fig. 7. Deterministic and Sample paths of  𝐈𝐇𝐁(𝐭) 
 

Table 10. Data statistics for sample paths of IHB(t) 

 

Sample path Ymin Ymax Mean Range 

S1 19.97 45.35 34.41 25.37 

S2 17.88 47.46 29.36 29.58 

S3 18.6 35.81 27.38 17.21 

Deterministic 20 37.72 28.88 17.72 

 

 
 

Fig. 8. Deterministic and Sample Paths of 𝐈𝐇𝐜𝐁(𝐭) 
 

In Fig. 8, it is observed that the number of 𝐼𝐻𝑐𝐵(𝑡) infectives declines with time in the deterministic case. This 

trend is due to slow rate of new HIV and HBV infections as well as high treatment rates for HIV-HBV co-

infected individuals. In stochastic solution, the magnitude and direction of random fluctuations vary among the 

sample paths representing the Wiener processes 𝑑𝑊11 and 𝑑𝑊15  . Sample path 3 shows the highest variability 

of infections while sample path 1 gives the lowest as displayed in the table below. 
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Table 11. Data statistics for sample paths of IHcB(t) 

 

Sample path Ymin Ymax Mean Range 

S1 1.625 5.147 3.604 3.522 

S2 3.716 9.018 5.89 5.303 

S3 2.614 7.971 4.82 5.357 

Deterministic 3.256 5 4.067 1.744 

 

5 Conclusion 
 

In this paper, we converted the deterministic model to a stochastic model by formulating SDEs. The drift and 

volatility coefficients are derived from the expectation matrix and covariance matrix of the transition matrices of 

the possible stochastic processes. Numerical simulations using the Euler-Maruyama method showed that 

stochastic processes introduce variability into the dynamics of infectious disease dynamics, leading to deviations 

from the deterministic solution. The sample paths oscillate around the deterministic trajectory over time, a 

characteristic behaviour due to the interplay between deterministic and stochastic forces. Sample paths showed 

varying levels of variability in each case ranging between 1.972 and 202.4. From the numerical simulations of 

the solution paths, it is evident that there exist variations in the mean and range of infection dynamics. This 

confirms that there is variability in infection outcomes in all the infectious classes contributing to co-infection.  

 

Despite the presence of stochastic processes, the variance between deterministic and stochastic solutions is 

close, suggesting that the overall trend remains consistent with the deterministic solution. Thus, to mitigate 

HIV-HBV co-infection randomness in transmission rates should be taken into consideration in designing 

treatment and management strategies. This provides insights to policy health makers and implementers. Hence, 

key considerations should be made on implementing both clinical and non-clinical control interventions. 

Especially formulating and implementing national policy for immunization schedule for viral hepatitis as well as 

vaccinating infants born by HIV mothers.  Screening of susceptible population is also key as a potential 

intervention to identify vulnerable populations. The health practitioners should consider to diagnose all patients 

seeking any medical attention. Further, the government through the Ministry of Health should conduct regular 

campaigns on HIV-HBV coinfection and give appropriate guidelines.  These variability in infection outcomes 

further implies that demographic patterns, contact or interaction patterns among other factors are key 

components to consider to make better decisions in designing optimal control measures.  
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