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Abstract: Artificial turf provides a consistent and durable surface; however, it has historically been
associated with a high skin injury risk, or a ‘friction burn’, when a player falls or slides. Second-
generation surfaces feature a short carpet pile, whilst third generation (3G) carpet piles are longer,
enabling the integration of a performance infill. 3G surfaces provide sufficient energy absorption
characteristics to be approved as Rugby Turf; however, such pitches can still cause skin injuries,
despite being assessed using a friction-based test. Reducing skin injury risk motivates this study to
develop a more sensitive testing methodology. A new test apparatus and impactor are proposed,
achieving kinematics representative of an elite male rugby tackle. A commercially available skin
simulant is employed to ensure the collection of repeatable and valid data. Photography and
thresholding were used to assess surface abrasion and material transfer, whilst a thermal camera
captured surface temperature change. Accelerometers quantified the surface resistance during
the impact and sliding phases. These metrics were compiled into the Maxwell Tribo Index (MTI),
providing a single measure of skin injury risk. The results demonstrated good repeatability and
validity when four teams tested four different 3G surfaces. These results compared favourably to an
expert panel’s ranked order.

Keywords: rugby; skin injury; skin abrasion; turf burn; test method; novel apparatus; Securisport

1. Introduction

Synthetic surfaces aim to provide a playing experience comparable to an elite natural
turf, whilst achieving high durability. First generation synthetic surfaces adopted a short-
pile carpet laid on an asphalt base, whilst the second generation (2G) included a shallow
infill or dressing material (e.g., sand). Whilst achieving enhanced ball behaviour, the
abrasive constituents meant both generations were associated with high skin injury rates [1].
Third generation (3G) synthetic surfaces are laid upon a shock-absorbing pad and have
a longer carpet pile length to incorporate sand ballast and a performance infill, typically
granulated styrene butyl rubber (SBR). The capacity for greater SBR infill means that 3G
surfaces typically satisfy the additional energy absorption demand that is required for
classification as Rugby Turf [2–4].

Seven and a half million people in 128 countries are registered rugby players, meaning
it is one of the most popular global sports [5]. Rugby is typically played on natural
grass pitches; however, Rugby Turf is increasingly recognised to provide longer playing
time, reduced maintenance costs, and consistent playing conditions [6]. More than seven
hundred Rugby Turf pitches have now been accredited, including within elite clubs and
for use in international competitions. Such activities continue to drive forward the global
synthetic surfaces market, worth USD 3 bn (2022) and projected to reach USD 5.4 bn by
2028 [7].
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Skin provides a protective barrier against external environmental threats; however, it is
susceptible to traumatic injury when exposed to energy that exceeds its inherent mechanical
properties, including stiffness and strength. The precise injury mechanism is influenced
by factors such as magnitude of load, orientation, and velocity [8], with acute wounds
including blisters, lacerations, and contusions. Abrasive ‘friction burns’ (or ‘turf burns’)
were synonymous with early generation pitches, with superficial skin layers removed
when players slid or fell onto the surface [9,10]. Third generation surfaces have reduced
injury incidence; however, these still pose an inflated risk compared to natural turf [11,12].
Williams et al. [11] reported that skin injury risk was almost eight times higher on synthetic
surfaces when surveying elite male 15-a-side rugby. Sevens rugby, a faster-paced variant,
may represent an even greater risk, with unpublished data indicating a further 10-fold
increase in injury rates when compared to 15-a-side. ‘Turf burns’ typically damage the
superficial skin and expose nerve endings, a different aetiology to thermal-related burns
(e.g., from domestic accidents) that damage multiple skin layers [13–16]. Indeed, combined
with a lack of evidence to support a significant temperature increase, a turf burn appears
more likely to be a turf abrasion.

Every player–surface interaction involves different velocities, loads, and sliding direc-
tionalities, as well as skin, surface, and surface conditions, all of which produce a unique
injury risk. Past studies have been unable to isolate factors that are especially injurious,
partly limited by a lack of sensitive testing methodologies. Systematic, laboratory-based
studies using human volunteers allow only limited investigation due to the need to avoid
trauma. Skin simulants provide a route to achieving consistent performance without con-
cern for injury. Chamois leathers and nylon stockings have previously been reported, in
addition to polyurethane-coated polyamide microfibre fleeces (e.g., commercial products
including ‘Lorica Soft’), with similar roughness to dry skin [17–20]. The current skin-surface
testing standard is defined by the Securisport test, which approximates risk by calculating
the relative friction of different surfaces versus a silicone-covered steel anvil moving in a
circular sweeping action. This lacks bio-fidelity by using relatively slow sliding velocities
and loading rates [21] and producing unrealistic infill displacement and pile flattening. A
new system is now needed to better quantify skin injury risk on synthetic surfaces [22].

Accurately simulating skin injuries requires an understanding of player kinematics.
With over 75% of rugby players being male and experiencing higher injury rates compared
to females, men are most often injured [5,23]. Elite male rugby players average 108 kg and
1.87 m [24]. Tackling is the greatest contributor to player–surface contacts in rugby [25];
however, scant data exist to describe the associated biomechanics. Drawing comparison to
soccer, players performing slide tackles generated knee and hip ground reaction forces of
3.0 to 6.4 times their body weight (BW) (2.3 and 4.9 kN), with lower shear forces (1.4 kN
and 1.8 kN, respectively) [26]. Diving goalkeepers generated 3–8 kN ground reaction
forces, with studies describing falls within a laboratory environment reporting 4.2–8.6 BW
increases [27].

This study now describes the development, repeatability, and validity of a new ap-
paratus to quantify skin injury risk, assessed using the new Maxwell Tribo Index (MTI)
metric. Success provides a platform for the sector to enhance player welfare.

2. Materials and Methods
2.1. Materials

A dearth of scientific literature motivated additional searches to identify the most
‘at-risk’ group of athletes, plus the anatomical location and kinematic data that were most
frequently associated with skin injuries on synthetic surfaces.

2.1.1. Apparatus Kinematics

A social media search was performed (September 2021) adopting the terms skin
abrasion; rugby burn; turf burn; friction burn; and Astro burn. This identified the knee and
tibial shank as the anatomical region most frequently associated with skin injury, following
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participation on a synthetic surface. Injuries were most often reported by elite male athletes,
although such a search strategy is inherently biased towards this group, given that they
currently outnumber their female counterparts and have more prominent profiles than
amateurs. Additional ‘live’ data were captured that corroborated the most frequently
injured location and that such injuries typically occur during a tackle. Whilst injury rates
are comparable, absolute skin injury numbers are greater in the male cohort, the larger
playing population. Elite male athletes sprint up to 10 ms−1, though the tackling of a player
anecdotally reduces their speed to an estimated 5 ms−1 [28,29].

2.1.2. Apparatus Design

The apparatus focused on the knee and tibial shank and the impacting force of an
elite male rugby player. Knee anthropometric data corresponding to an average elite male
rugby player were adopted from an online database [30], which enabled the development
of a computer-aided design file. The knee-form impactor was fabricated using additive
manufacturing and polyamide 12, with a wall thickness of 4 mm. Additional rigidity was
achieved by filling the hollow impactor with epoxy resin. Design features were added to
ensure that the impactor could be covered with a taut, synthetic skin. The 95th percentile
popliteal height was selected to represent the knee height, meaning the impactor would
fall 0.5 m, with the tibial shank broadly horizonal to the surface on impact [31]. Adopting a
static pose on a force plate indicated 25–40% BW is transferred through each knee when
tackling (unpublished data). Velocity changes through impact and sliding were captured
by two single-axial (horizontal = 100 g, vertical = 200 g) accelerometers (Differential MEMS
DC accelerometer; Model 3741F; PCB Piezotronics Inc., Depew, NY, USA), mounted at the
impactor’s centre of mass.

The apparatus (Figure 1) was fabricated to straddle surfaces with minimum dimen-
sions 2.5 m (l) × 0.9 m (w), to ensure compatibility with existing test methods (FIFA
Test Method 15 [32]). In brief, parallel rails were securely attached to a rigid frame
(0.6 m (h) × 0.5 m (w) × 6 m (l)), to guide a carriage. The 160 kg carriage was attached
to the rail using low-friction roller bearings and was then accelerated via a linear induction
motor to 5 ms−1. The 36 kg knee impactor was coupled to the carriage via an electromag-
netic system, which allowed for instantaneous release under guided freefall to ensure it
remained parallel to the surface. Anatomical and physiological energy absorption was
simulated using rubber dampeners, ensuring the knee impactor rebound was visually
consistent with ‘real-life’ player–surface interactions.
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2.1.3. Skin Simulant

The skin simulant for the Securisport, the current industry standard for assessing skin
abrasions of artificial turfs, has limited suitability for this testing as its frictional performance
is significantly different from that of ex vivo human skin samples; therefore, an alternative
skin simulant is required [33]. Whilst human skin condition will vary due to various
factors (genetics and body composition, environmental factors, and lifestyle), adopting a
single, commercially available product was prioritised, given the need to ensure consistent
and repeatable testing. Lorica Soft, a polyurethane-coated polyamide microfibre fleece, is
widely reported in the tribology literature as accurately and consistently representing dry
skin [17,34,35].

2.1.4. Skin Temperature

Lorica Soft’s low thermal conductivity caused inaccurate data when attempting to
indirectly capture surface temperature change via underlying thermistors. Instead, peak
surface temperature was captured immediately after each test using a thermal camera
mounted to the apparatus. A region of interest was defined along the surface length, with
a 0.1 m width that was consistent with the maximum contact dimension. The mean peak
temperature (TP) was then computed following five tests.

2.1.5. Skin Abrasion

The uppermost skin simulant layer is red, with a white underlying microfibre layer;
hence, a change in colour across a fixed area provides a measure of abrasion that can
be compared across different interactions. Quantifying the extent of change was aided
by adopting FIFA’s Test Method 16, which utilises a grayscale thresholding technique
to quantify the density of infill splash [36]. This procedure inspired the development
of an objective assessment to quantify the abrasion generated on the skin by producing
filtered ‘negatives’ of the original photograph (Figure 2). Preliminary testing indicated that
some synthetic surfaces could abrade through the entire thickness of the skin simulant,
whilst some material transfer from the infill was likely to darken some focal regions of the
synthetic skin. Microscopic analysis highlighted that this darkened perimeter appeared
smoother than the lighter areas. These two regions were evaluated independently, as they
were anticipated to produce different magnitudes of pain.

A stopband filter was applied to remove red, with the thresholds identified by evalu-
ating fresh skin simulant samples. The grayscale histogram was evaluated, forwards and
backwards from the peak, to establish the intensity index when the gradient was less than
the initial index.

Skin damage assessment from preliminary testing highlighted that peak intensity
varied with infill material. A high-pass filter (threshold = peak grayscale intensity + 17)
defined the abraded area (‘A1’), before a second low-pass filter (threshold = peak grayscale
intensity − 15) defined the darkened area associated with material transfer (‘A2’). This
darkened perimeter was consistent with skin injuries and was generally associated with
less severe trauma; hence, A2 was given half the weight of A1. To ensure that abrasion was
quantified consistently across all surfaces, a coefficient was included to capture any sliding
that was prevented by the apparatus length. This coefficient represents the ratio of expected
sliding distance (dE) based on horizontal sliding speed derived from accelerometer data to
actual sliding distance (dA) and is combined to create the Abrasion Severity Index (ASI;
Equation (1)).

ASI =
dE
dA

(
A1 +

A2

2

)
(1)

Figure 2 presents an example dataset and the associated ASI. The original photograph
(Figure 2a) demonstrates zones of abrasion (white) and, in black, rubber infill transfer. The
abrasion (Figure 2b) and transfer (Figure 2c) zones are then isolated before being summated
(Figure 2d) as per the ASI ratio.
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2.1.6. Surface Resistance

Quantifying the surface resistance represents the deceleration during impact and
sliding phases.

• Surface Impact Resistance (Ri)

The impact zone is the initial contact with the surface. Ri is defined by the peak
horizontal deceleration, as recorded by the impactor-mounted accelerometers. This initial
skin–surface contact is expected to be of short duration and involves only minimal hori-
zontal translation as the impactor rebounds off the surface. Surfaces expected to generate
high Ri are typically ineffective at absorbing energy, including those with less infill (e.g.,
2G) and 3G surfaces where the loose infill may be bound together (e.g., areas contaminated
with soil, a combination of infill material and shape). A high Ri is likely to produce high
contact stresses within the skin and soft tissues, which is hypothesised to cause greater skin
injury risk.

• Surface Sliding Resistance (Rs)

The sliding phase is a protracted slide with the impactor in constant contact with
the surface. Rs is the average deceleration during the sliding phase, derived from the
dedicated accelerometer. This motion is predominantly horizontal, so the impactor will
have relatively low surface resistance.

2.1.7. Maxwell Tribo Index (MTI)

The MTI (Equation (2)) combines the above parameters to provide a single metric
that characterises the relative skin injury risk posed by different synthetic surfaces. The
weighting for each parameter was tuned using preliminary data generated by testing a
multitude of 2G, 3G, and fourth generation (non-infill) surfaces. TP is presented relative to
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a 44 ◦C threshold, which defines the temperature required to burn the basal skin layer [37].
The ASI is normalised to 1750, which was deemed to appropriately reflect the abrasion
variation observed across the different test samples. Ri and Rs were normalised to the peak
values recorded during preliminary testing, thereby representing a worst-case scenario.
These metrics are captured across 5 tests using the same skin sample to achieve greater
sensitivity when assessing each synthetic surface. Each test is performed on a freshly
prepared surface, with the results combined to form the MTI (Equation (2)).

MTI =

(
TP
44

)2
+

(
ASI
1750

)2
+


(

Ri
300

)2
+

(
Rs
2.6

)2

2


× 100 (2)

2.2. Methods

Four operative teams (Teams 1–4), each comprising 2–3 employees from an established
surface testing facility, were trained to use the new device. Each team assessed 4 synthetic
surfaces (Surfaces 1–4). Device repeatability was quantified by comparing the 4 assessments
of the same surface. Device validity was quantified by comparing the mean scores of each
surface to those of an expert panel.

2.2.1. Synthetic Surface Samples

Four 3G synthetic surfaces were constructed to investigate the validity of the new
apparatus. Each ‘carpet’ (comprising the green pile) was cut to fit the specified dimensions
(4 × 1 m), with the drainage holes sealed to prevent infill leakage. Carpets were then
secured to a 10 mm deep prefabricated shock pad. Two carpets had a 60 mm pile length.
Both were filled with sand to a 20 mm depth, before adding a further 20 mm of rubber
(‘Surface 1’) or cork (‘Surface 3’). The other two surfaces had a 45 mm pile length and were
filled with 20 mm of sand, then 15 mm of rubber (‘Surface 2’) or cork (‘Surface 4’). Each
surface was then pre-conditioned by performing 5 cycles with a 90 kg studded roller (FIFA
Test Method 15 [32]). Infill depths were then measured at three equidistant locations across
the width and along the length, producing 18 datapoints per surface.

2.2.2. Expert Survey

To investigate MTI validity, ten synthetic surface experts were presented with the
technical specifications and photographs of the four compositions and were asked to rank
them based on the likely skin injury risk. An expert was defined as someone with at
least 5 years’ experience within the 3G synthetic surface sector. Experts were blinded to
each other and to the data from the apparatus. The final ranked order was determined by
calculating the mean score for each surface.

2.3. Statistical Analysis

Statistical analysis assessed repeatability across the 4 teams and then across the
4 surfaces. A Shapiro–Wilk test was conducted to assess the normal distribution of each met-
ric. Based on these results, either a parametric test (one-way analysis of variance (ANOVA))
or a non-parametric test (Kruskal–Wallis test) was chosen. Following the ANOVA test,
post hoc Tukey’s t-tests were conducted for further analysis. All statistical analyses were
performed using SPSS, adopting a significance threshold of p < 0.05.

3. Results
3.1. Synthetic Surface Compositions

Four 3G synthetic surfaces were constructed to investigate the repeatability and
validity of the new apparatus. The mean thickness of each constituent is described in
Figure 3. The standard deviation was less than 0.18 mm across all measurements.
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Figure 3. Mean constituent depth of the four 3G synthetic surfaces that were constructed to measure
testing repeatability and validity.

3.2. Reliability Testing
3.2.1. Mean Peak Temperature, Tp

The temperature measurements were acquired by a mounted thermal camera, collect-
ing data along the slide length. The median temperatures range from 24 ◦C to 28 ◦C across
the four surfaces (Figure 4), with the interquartile range greatest for those using cork infill
(Surfaces 3 and 4). The 60 mm pile carpet recorded the highest median value, whilst the
shortest recorded the greatest variation in all surfaces. A Shapiro–Wilk test confirmed a
non-normal distribution (p < 0.05), and a Kruskal–Wallis test assessed repeatability (the
same surface measured by different teams) and validity (when combined to form the MTI,
as compared to the expert panel). Supplementary Table S1 describes strong repeatabil-
ity across all measures, and Supplementary Table S2 highlights a statistical difference
between surfaces.
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across the four surfaces, with the interquartile range greatest for the surfaces using cork infill (Surfaces
3 and 4). All surfaces were statistically different except for Surface 1 and 4.

3.2.2. Abrasion Severity Index, ASI

The ASI is calculated as per Equation (1), combining the abrasive wear on the Lor-
ica Soft sample with areas of infill material transfer. The ASI magnitudes were signif-
icantly different between the cork (Surfaces 3 and 4) and SBR (Surfaces 1 and 2) sur-
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faces (Figure 5). The variation in data was low, except for the long-pile cork surface,
which had the greatest interquartile range. The lack of outlying data does, however,
indicate relatively high repeatability across each of the 20 tests. The ASI score per sur-
face (Supplementary Table S1) represents the wear accumulated over five tests, though it
limits statistical analysis. Supplementary Table S2 demonstrates that cork infill yielded
significantly higher ASI scores (p < 0.05) compared to SBR infill.
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Figure 5. ASI reported from 20 tests on each surface. Magnitudes varied significantly between SBR
(Surfaces 1 and 2) and cork (Surfaces 3 and 4).

3.2.3. Surface Resistance during Impact, Ri

The variation in Ri highlighted how the impactor experienced resistance to sliding
during the initial contact (Figure 6). A Shapiro–Wilk test confirmed a normal distribution
(p > 0.05). Consequently, an ANOVA test was conducted to assess repeatability among the
teams and across the four surfaces. Supplementary Table S2 shows that Team 3 produced
less repeatable results; however, despite this variability, Tukey’s post hoc tests detected
significant differences across all surfaces (Figure 6, Supplementary Table S2). Surface
2 reported the greatest range in data, whilst the other short-pile carpet, Surface 4, had
the greatest range among those with cork infill. This is possibly caused by the impactor
penetrating the relatively thin layer of infill, engaging with the underlying sand and
potentially causing it to ‘plug’ like a golf ball landing on soft ground, thus causing a more
rapid deceleration.
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Figure 6. Ri reported from 20 tests on each surface. Cork (Surface 3 and 4) exhibited lower impact
decelerations than SBR (Surface 1 and 2). Concurrently, additional performance infill (Surface 1 and
3) reduced surface resistance. All surfaces were statistically different.

3.2.4. Surface Resistance during Sliding, Rs

Rs is much lower than Ri, which is considered a positive attribute of 3G surfaces
(Figure 7). High deceleration would indicate an abrasive interaction, potentially caused
by a ‘locked’ infill and carpet pile or when testing early-generation surfaces, which have
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a very thin infill layer, causing abrasion against the very short (~10 mm) carpet pile.
The interquartile ranges indicate that this method acquired repeatable data, except for
some outliers associated with the cork surfaces. A Shapiro–Wilks test confirmed a non-
normal distribution (p < 0.05). Subsequently, a Kruskal–Wallis test was conducted to assess
variation across the teams and surfaces. Supplementary Table S1 demonstrates repeatable
data were generated across most surfaces, whilst Supplementary Table S2 again highlights
statistical differences between surfaces.
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Figure 7. Rs reported from 20 tests on each surface. SBR (Surface 1 and 2) exhibited lower slide
resistance than cork (Surface 3 and 4). Concurrently, additional performance infill (Surface 1 and 3)
increased surface resistance. All surfaces were statistically different except for Surface 1 and 4.

3.2.5. Maxwell Tribo Index, MTI

The MTI weights and then summates the above parameters as per Equation (2),
providing a single metric that describes relative injury risk. The composition of each
MTI value is described in Figure 8. Surface 4—the shortest-pile, cork-filled surface—was
identified as being the most likely to cause skin injury. Abrasion was considered the greatest
contribution to this risk; indeed, both cork surfaces presented a far greater abrasion score
than those filled with SBR, where it was reduced to a minor contribution. Tp was broadly
common across all four surfaces and was always lower than the critical injury threshold.
Surface 2 had the greatest Ri value, potentially due to plugging in the sand ballast, with
this relatively high score reflected in a high R value. The overall ranking for Surface 2 is
still low, however, due to the small abrasion contribution. Surface 1, the 60 mm pile carpet
filled with SBR and the traditional composition for Rugby Turf, is considered to represent
the lowest skin injury risk.
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3.2.6. Expert Panel Survey

Ten experts were recruited, with a combined 185 years’ experience in synthetic surfaces.
They ranked the four surfaces as per Table 1, with the mean values calculated to produce
the overall ranking.

Table 1. Results from the expert review panel, describing their individual assessment of injury risk
for each synthetic turf composition. The final ranking was determined by calculating the mean score
for each surface.

Skin Injury Likelihood: Least (1) to Most (4) Injurious

Surface 1 Surface 2 Surface 3 Surface 4

Expert 1 1 2 3 4

Expert 2 1 3 2 4

Expert 3 1 3 2 4

Expert 4 1 2 3 4

Expert 5 1 2 3 4

Expert 6 1 3 2 4

Expert 7 2 1 4 3

Expert 8 1 2 3 4

Expert 9 1 2 3 4

Expert 10 1 3 2 4

Mean score 1.1 ± 0.1 2.3 ± 0.2 2.7 ± 0.2 3.9 ± 0.1

3.2.7. MTI Validation

Directly comparing the blinded rankings of the expert panel with those of the MTI
demonstrated the validity of this new methodology. The direct correlation evident in
Figure 9 demonstrates successful validation, indicating strong measurement sensitivity.
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4. Discussion

A new apparatus has been produced that accurately represents the kinematics of an
elite male player during a tackle scenario, recognised as the rugby event most likely to
cause skin injury [38]. This device captures surface temperature, skin abrasion, and surface
resistance, values that are compiled to form the MTI, a single measure of injury risk. The
MTI has then been used to evaluate and rank four distinct 3G synthetic surfaces. The
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resultant ranking aligns with the consensus opinion of an expert panel, demonstrating
the validity of this new methodology. The ANOVA (Supplementary Table S2) highlights
that testing was most repeatable on Surface 4. Weaker repeatability was evident across
Surfaces 1–3. This may be caused by the lower-volume, lighter infill of Surface 4 (15 mm
cork infill), meaning that surface preparation was easier and more consistent across the
four testing teams. It was not possible to conduct inferential statistics on the ASI scores, as
each surface was tested only once. This is an area for future research.

Skin injury causation on synthetic surfaces has been historically associated with the
generation of heat during sliding, producing burn-like trauma. Direct skin measurement
would require immediate access to the skin surface, which, considering the distance slid
and the impactor mass, proved impractical. Thermocouples embedded within the impactor
reported unreliable data, recording significant fluctuations in temperature without any
differences in other sliding metrics, whilst also inferring too frequent skin injury. Whilst
measuring the surface temperature was a sub-optimal route to quantifying the thermal
effect of sliding, the data were compared closely to those reported elsewhere using more
direct methods [39]. The thermal camera detected significant differences across most of
the 3G surfaces (Figure 4), with cork-based infills typically generating higher tempera-
tures; however, the correlation between surface temperature, natural skin, and trauma
remains unknown.

A novel approach is presented that quantifies skin abrasion via the ASI, incorporat-
ing areas of both obvious abrasion and less-severe material transfer. ASI data showed
good repeatability, with small standard deviations across most surfaces (Figure 5). Past
studies (e.g., Tay et al. [40]) have previously used the Securisport, which, given the above
methodological limitations, prevents meaningful data comparison. The variation in ASI
and, indeed, the damage to the skin simulant varied dramatically across the four surfaces
and was particularly pronounced with the cork infill. The ASI was considered to accurately
quantify these variations.

Quantifying surface resistance (Ri, Rs) provides additional insight into the deceleration
profiles associated with each turf and each player–surface interaction. Ri describes the
initial skin–surface contact, which is typically short in duration with minimal horizontal
translation, as the impactor rebounds from the surface. Surfaces that generate high Ri are
typically ineffective at absorbing energy due to having less elastic infill (and potentially
different underlying shock pads, though a consistent composition was used throughout
this study). This is consistent with Surfaces 1 and 3 having the greatest infill and producing
the lowest Ri values (Figure 6), likely exposing the skin to the least stress during contact
and resulting in minimal injury risk. Surface sliding resistance, Rs, is influenced by pile
length, density, and the interaction with the infill. Achieving minimal resistance when
sliding will likely minimise tension generated within the skin, which is also important in
minimising injury risk. All the 3G surfaces exhibited comparable performance, as each had
very similar exposed pile lengths. Third generation surfaces with greater pile lengths have
previously been shown to be more resistant to sliding [40]. This underscores the importance
of surface maintenance, especially considering that infill displacement is common.

This new methodology has been intentionally designed to replicate a generic player–
surface interaction during an elite, male rugby tackle. Adopting a synthetic skin allows for
repeatable testing, a requirement when establishing a new testing method. The obvious
limitation, however, is that such an approach does not consider natural skin, nor does it
encompass the range of skins and associated attributes of the many players this method is
attempting to represent. Also, the kinematics do not encompass every sliding speed and
load that are possible within a rugby tackle. The apparatus also has limitations, driven
by the development of a design that can be integrated into existing test setups. The need
to achieve representative sliding velocities necessitated a long apparatus, though this
length was limited to comply with the dimensions of the existing wear testing protocols.
These were assumed to be the maximum dimensions acceptable to potential adopters
of this methodology, though this did mean that, in some instances, the impactor did
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not slide to rest. In such instances, accelerometer data were used to extrapolate a likely
additional sliding distance, which was then incorporated into the appropriate measures.
The variability in the impact deceleration results suggests Team 3 required additional
training; however, the enhanced repeatability by the end of our study indicates that all
teams became proficient in executing the test method.

5. Conclusions

This work has demonstrated the validity of the MTI in providing a novel methodology
for assessing skin injury risk, by comparison to expert panel opinions. Scope exists for
improved repeatability, which will form a key aspect of future work performed alongside
experiments to establish an acceptable threshold for skin injury risk.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/lubricants12060207/s1, Table S1: Statistical analysis demonstrating
device repeatability across the 4 Teams; Table S2: Statistical analysis differentiation between synthetic
surfaces. Compiled MTI scores were then compared to the Expert Panel, to demonstrate validity.
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