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Abstract

In this study, organic solar cells (OSCs) with an active layer, a blend of poly-
mer of non-fullerene (NFA) Y6 as an acceptor, and donor PBDB-T-2F as
donor were simulated through the one-dimensional solar capacitance simu-
lator (SCAPS-1D) software to examine the performance of this type of organ-
ic polymer thin-film solar cell by varying the thickness of the active layer.
PEN-Br interfacial layer entrenched in OPV devices gives overall enhanced
open-circuit voltage, short-circuit current density and fill factor thus im-
proving device performance. PEDOT: PSS is an electro-conductive polymer
solution that has been extensively utilized in solar cell devices as a hole
transport layer (HTL) due to its strong hole affinity, good thermal and me-
chanical stability, high work function, and high transparency in the visible
range. The structure of the organic solar cell is ITO/PEDOT: PSS/BTP-4F:
PBDB-T-2F/PFN-Br/Ag. Firstly, the active layer thickness was optimized to
100 nm; after that, the active-layer thickness was varied up to 900 nm. The
results of these simulations demonstrated that the active layer thickness im-
proves efficiency significantly up to 500 nm, then it decreased with increasing
the thickness of the active layer from 600 nm, also notice that the short circuit
current and the fill factor decrease with increasing the active layer from 600
nm, while the open voltage circuit increased with increasing the thickness of
the active layer. The optimum thickness is 500 nm.
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SCAPS 1D

1. Introduction

Organic solar cells (OSCs) are regarded as a promising technology for the com-
mercialization of solar energy conversion due to their appealing features, such as
their low weight, low cost, and the ability to produce large-area devices using
solution casting techniques on mechanically flexible substrates [1] [2] [3]. The
PEDOT: PSS and PEN-Br represent the electron and the hole transport layers
(ETL and HTL). The PEDOT: PSS has high transparency in the visible region,
good thermal stability, high mechanical stability, strong hole affinity and high
work function [4], while the PFN-Br (PFN-Br) is used as anode and cathode in-
terfacial materials, resulting in a promising PCE of 9.12% for a typical device
with good stability [5]. The hole transport layers (HTL) make it easier for the
positive charge carriers, or holes, which are produced when light is absorbed in
the active layer to flow toward the anode. These layers typically comprise sub-
stances that are well suited to work with the layers next to them and that can
move holes quickly. Conversely, the electron transport layer (ETL) facilitates the
transfer of negative charge carriers, or electrons, produced in the active layer to
the cathode [6] [7] [8].

Organic semiconductors have a relatively high exciton binding energy of sev-
eral hundreds of mV, in contrast to traditional inorganic semiconductors [9]
[10]. This is mostly due to the strong electron-hole interaction caused by a rela-
tively low dielectric constant. Because of this, the production of free charges in
ordered organic semiconductors is highly inefficient, and high temperatures and
electric fields are needed to effectively separate excitons into charges [11].
Forming a so-called type II heterojunction—a combination of two materials
with suitable energy level offsets—is one method to get past this issue [12]. The
electron and hole frontier orbitals in this instance exhibit a parallel energy offset
at the contact. Consequently, one of the components (the donor D) will donate a
photoexcited electron to the second component (the acceptor A), or the other
way around.

BTP-4F (Y6) is a non-fullerene acceptor or n-type organic semiconductor as
shown in Figure 1. The absorption of BTP-4F is 600 nm - 1000 nm in the region
corresponding to the near-infrared region, the absorption coefficient of BTP-4F
is 821 nm [11], and its band gap is 1.4 eV [13]. PBDB-T-2F (PM6) is one mem-
ber of the PBDB-T family and it is used as a donor polymer for the Polymer so-
lar cells [14]. The HOMO/LUMO energy levels are pulled in PBDB-T by adding
two fluorine atoms to each thiophene unit of the benzodithiophene (BDT) side
chains as shown in Figure 2. Its absorption range is between 400 nm to 600 nm,
and with an optical band gap of 1.80 eV [13]. One of the primary causes of the
high JSC in OSC is that the two materials (BTP-4F, PBDB-T-2F) fully use the

photons in the solar radiation spectrum [14].
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Figure 1. The chemical structure of (a): BTPY-4F (Y6), (b): PBDB-T-2F (PM6).
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Figure 2. Chemical structure of PM6 and Y6 and energy levels.

2. Materials & Methods
2.1. Materials

ITO/PEDOT: PSS/PBDB-T-2F: BTP-4F/PFN-Br/Ag is the configuration of the
simulated BHJ-OSC, PEN-Br is the electron transport layers ETL, PEDOT: PSS
is the hole transport layers HTL, PBDB-T: BTP-4F is the active layer, ITO is the
front contact, and Ag is the back contact. The fundamental structure of the si-

mulated cell, as well as the other levels, are depicted in Figure 3.
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Figure 3. The fundamental structure
of the simulated cell.

2.2. Methods

The SCAPS software (3.3.09) was used to carry out the simulation. This
one-dimensional solar cell simulator was created by the University of Gent in
Belgium. SCAPS 1D simultaneously solves many important semiconductor pho-
tovoltaic equations for the electron and hole separately, such as the continuity
equation, Poisson equations, charge transport equations, diffusivity equations,
and optical absorption equations. These formulas use geometrical and physical
characteristics associated with each layer to calculate the total photovoltaic re-
sponse of the designated solar cell [16].

Table 1 lists the numerical parameters that were used to execute the SCAPS
simulation. Consequently, measurements of photovoltaic characteristics were
made, including power conversion efficiency (PCE), fill factor (FF), open-circuit
voltage (Voc), and short circuit current density (Jsc). Figure 4 shows a J-V curve
that is lit.

3. Results and Discussions
3.1. Results

Table 1 displays the important physical characteristics of the solar cell layers as
defined by the simulation. Energy band gap is represented by £, relative permit-
tivity by &, electron affinity by y; electron and hole mobility by u, and g, The
effective DOS of the valence and conduction bands are N, and N, respectively,
while the densities of the donor and acceptor materials are Npand N, [17]. The
work function for Ag is 4.1 eV, Ag used as a back contact [16], ITO with work
function of 4.2—5€V, used as a front contact [18].

J — V characteristic of the simulated device. /— V curves are the parameters
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Table 1. Parameters used in the SCAPS-1D software [2] [15] [16] [17] [24] [25] [26].

PBDB-T-2F: BTP-4F

Parameters PEDO: PSS . PFN-Br (ETL)
(Active layer)
Thickness (nm) 40 50 - 1450 10
x(eV) 34 4.03 4
E; (eV) 1.6 1.27 2.98
& (primitivity) 3 6.1 5
N:(cm?) 1 x 10% 1x 10" 1 x 10"
N, (cm?) 1x 102 1x10° 1x10°
Mp 9.9 x 107> 2.96 x 1074 1x10™*
HUn 4.5x 107 1.7 x 1073 2% 107
Ny (cm™) 0 0 0
Np (cm™) 2 x 108 7.5 x 106 9 x 108
Current Density
current mode gJ (current density in mA/cm?)
2.5BH b ey ..nf TTEETTTT I Current Density
I99'5-OE+" £ current mode = (current density in mA/cm?)
=i EE: R R adonlbiibdest Al Uit ——
- Abs ¥ Blog -50E+2 £
-1.5E+3 + =lin ¥
—~ § kS ! Abs ~1.0E+3 ES
E 208+ + -1.5E+3
E -2.5E+3 3 T -20E+3 *
-~ I o o
= -3.0E+3 + < -25E+3 =+
I £ I
35E+3 , ¥ = S0EsS +
/ S -3.5E+3 =
-4.0E+3 =S E S
k3 -4.0E+3 F
el ¥ , 4513 :
-1.80 -1.50-1.25-1.00 -0.75-0.50 -0.25 0.00 0.250.50 0.80 7180 -1.50 -1.25-1.00 -0.75-0.50-0.25 0.00 0.25 0.50 0.80
voltage (V) log voltage (V) log
lin lin
Voc (V) Jsc (mA/cm?) FF (%) eta (%)
Voc (V Jsc (mA/cm? FF (% eta (%
01001 17o6s4T )| bAB. 503 02517 j SRl 56.44 a4
() (b)

Figure 4. (a): /— V characteristic of the simulated device for the thickness of 100 nm. (b): /— V characteristic of the simulated

device for the thickness of 500 nm.

used to calculate the electrical output power of solar cells. Figure 4 shows the /-

V curve of the hybrid simulated device for 100 nm layer thickness. The thickness

changes from 100 nm to 900 nm. The solar cells are output parameters under the

standard simulated sunlight of AM1.5G. The working condition is at ambient

temperature and frequency of 106 Hz. In Figures 5-8, the effect of the thickness

variation on the efficiency, fill factor, short-circuit current, and open circuit vol-

tage is illustrated using SCAPS Simulation, that govern the device’s /- V prop-

erties, taking into account the layer thicknesses explicitly. This comprehensive

technique enables us to calculate how much material mobility should be improved

and/or the recombination coefficient reduced in PM6:Y6 thick-junction
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Figure 5. The effect of the thickness of active layer on the efficiency
of solar cell.
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Figure 6. The effect of the thickness of active layer on the fill factor.

devices in order to achieve the parameters that affect the performance of the so-
lar cells. The device with the optimal thickness is found to be 500 nm. The device
VOC and JSC (0.251 V and 29.14, respectively) have little thickness dependence.
We just determined that the invariant JSC is due to Y6’s extremely long diffu-
sion length [19]. On the other hand, the VOC trend is fairly typical [20] and
hence will not be examined further. As an example, introducing fullerene PCBM
to a PM6/Y6 blend resulted in a significant improvement in both hole and electron
mobilities [21]. This is consistent with past cases of adding PCBM to NFA-based
solar cells, which resulted in better mobilities and device performance [22].

However, little is known about how such changes in morphological features
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Figure 7. The effect of the thickness of active layer on the short
density current.
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Figure 8. The effect of the thickness of active layer on the open cir-
cuit voltage.

affect the energy landscape of the mix and the competition between charge ex-
traction and recombination. Furthermore, the optical and electrical contribution
of the third component to the binary BH] makes comprehension challenging.
Thus, motivated by these findings and our understanding of the significance of
molecular additives, which can increase polymer crystallization and packing
[23], we modified the percentage of the integrated molecular component in the

mix for various junction thicknesses.

3.2. Discussions

The inverted devices were approximated with the glass/indium tin oxide (ITO),
PEDOT: PSS/active layer/PFN-Br/Ag structure. The peak light absorption range
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is the primary consideration when selecting new materials. Specifically, in
PEDOT: PSS electrodes, the highest occupied molecular orbital HOMO energy
level is around 5.0 to 5.3 eV and the lowest unoccupied molecular orbital LUMO
energy level is around 2.2 eV, which increased the performance of the solar cells
by facilitating hole injection, PM6 between 550 nm and 650 nm, and Y6 between
750 nm and 850 nm. The active layer in the blue visible range increases the de-
vice’s overall absorption spectrum coverage. The lowest unoccupied molecular
orbital LUMO energy levels of PEDOT: PSS, PM6, and Y6 are —2.2 eV, —=3.75 eV,
and —4.09 eV, respectively. The equivalent the highest occupied molecular orbit-
al HOMO energy levels are —5.3 eV, —=5.50 eV, and —5.61 eV. This configuration
creates a trapezoidal structure, which improves the transit efficiency of free elec-
trons and holes after exciton dissociation. Notably, Y6 has a higher lowest un-
occupied molecular orbital (LUMO) energy level than PMS6, resulting in a
stronger built-in electric field at the device heterojunction and so reducing elec-
tron-hole recombination [24] [27] [28] [29].

Under simulated AM 1.5G light, the results show that Figure 4(a) and Figure
4(b) display the current density—voltage (/— V) curves for the 100 and 500 nm
thick PM6:Y6. At the thickness of 500 nm, the device displays 4.1% PCE, a VOC
of 0.25V, a JSC of 29.14 mA/cm?, and an FF of 56.44.4%. Figure 5 clear increase
in efficiency response between 100 nm to 500 nm was observed when the active
layer increases (Figure 5) by increasing the thickness of the active layer of our
solar cells, the short circuit current and the efficiency increase up to 500 nm,
then they began to decreases slightly. To be more precise, the short-circuit cur-
rent density rises to 29.14 mA/cm?® from 17.39 mA/cm? and then marginally falls
to 27.4 mA/cm? Figure 7. The main reason for this is a thickness increase, which
raises the mobility of free electrons and holes and increases the efficiency of ex-
citon dissociation. nevertheless, also raising, raising the exciton recompilations
[30]. The open circuit voltage increases by increasing the active layer of the solar
cells. As the thickness of the active layer increases, the decrease in FF is mainly
caused by an increase in series resistance. The decrease in the FF can be ex-
plained, as has been previously mentioned in the literature, by higher bimolecu-
lar recombination losses [31] [32] during charge transport or space charge ef-
fects, which can be brought on by imbalanced carrier mobilities or increasing the
thickness of the active layer [15] [33] [34]. Charge carrier entrapment, the longer
distance charge carriers must travel, and an increase in resistance losses within

the device are all responsible for this rise in resistance losses.

4. Conclusion

ITO/PEDOT: PSS/BTP-4F: PBDB-T-2F/PFN-Br/Ag bulk heterojunction solar
cell is simulated for various active layer thicknesses (100 nm - 900 nm with a
difference of 100 nm). The effect of the thickness of the active layer (BTP-4F:
PBDB-T-2F) of the solar cell on the power conversion efficiency and the other

electrical parameters such as open circuit voltage, short circuit current density
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(Jsc, fill factor, and the open circuit voltage (Voc), is studied. It was observed
that short circuit current density and power conversion efficiency increase with
thickness up to 500 nm of the active layer thickness in simulated bulk hetero-
junction (BH]J) solar cells and thereafter decrease. The strong dependence of
short circuit current density (Jsc) on power conversion efficiency is observed.
The fill factor declines with increasing as thickness grows. This is due to charge
recombination appears to decrease with thickness. Optimizing the thickness is

necessary to get optimal efficiency.
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